Biomaterials Translational ›› 2021, Vol. 2 ›› Issue (3): 188-196.doi: 10.12336/biomatertransl.2021.03.003
• REVIEW • Previous Articles Next Articles
Ying Luo1, Jue Wang2, Michael Tim Yun Ong3, Patrick Shu-hang Yung3, Jiali Wang1,*(), Ling Qin3,*(
)
Received:
2021-06-02
Revised:
2021-07-20
Accepted:
2021-08-12
Online:
2021-09-28
Published:
2021-09-28
Contact:
Jiali Wang,Ling Qin
E-mail:wangjli8@mail.sysu.edu.cn;qin@ort.cuhk.edu.hk
About author:
Ling Qin, qin@ort.cuhk.edu.hk.#Author Equally.
Luo, Y.; Wang, J.; Ong, M. T. Y.; Yung, P. S.; Wang, J.; Qin, L. Update on the research and development of magnesium-based biodegradable implants and their clinical translation in orthopaedics. Biomater Transl. 2021, 2(3), 188-196.
Figure 2. Research status of ACL reconstruction. (A) HP Mg screws were applied for ACL reconstruction in a rabbit model. Reprinted from Wang et al.12 Copyright 2018, with permission from Elsevier. (B) ACL reconstruction conducted in fresh cadaveric knee joints using HP Mg interference screws. Reprinted from Song et al.16 (C) A bioabsorbable mono-crystalline Mg ring device used to repair the ruptured ACL of goats. Reprinted from Farraro et al.17 Copyright 2016, with permission from the Orthopaedic Research Society. (D) A WE43 Mg alloy stretch plate used for ACL reconstruction in Beagle dogs to support ligament grafts at the femoral ends (green arrowheads). Reprinted from Mao et al.18 Copyright 2018, with permission from American Chemical Society. ACL: anterior cruciate ligament; HP: high-purity; Mg: magnesium; Ti: titanium.
Figure 3. Research and development of Mg-based orthopaedic implants for fixation of fractures at low weight-bearing skeletal sites in different animal models. (A) High-purity Mg (HPM) screws used to fix femoral condylar fractures in rabbits. a: HPM screw; b: polymer screw; c: femoral condyle fracture; d: fixation of the fracture; e: schematic diagram showing the surgery. Scale bars: 2 mm. Reprinted from Han et al.19 Copyright 2015, with permission from Elsevier. (B) A Mg-Nd-Zn-Zr alloy screw for fixation of a femoral condyle fracture in a goat model. Reprinted from Kong et al.20 Copyright 2018, with permission from Elsevier. (C) Pure Mg screws and plates used to fix ulnar fractures in rabbits. Reprinted from Chaya et al.21 Copyright 2015, with permission from Elsevier. Mg: magnesium.
Figure 4. Research and development of Mg-based orthopaedic devices for fixation of fractures at high weight-bearing sites in various animal models. (A) The WE43 alloy screw used in the tibia fracture model of beagle dogs.23 Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reprinted with permission. (B) The HP Mg screw used to fix goat femoral neck fractures. The blue arrow indicates the femoral head. Reprinted from Huang et al.24 Copyright 2020, with permission from Elsevier. (C) The Mg2Ag intramedullary nails for femoral fractures in mice. Reprinted from Jähn et al.25 Copyright 2016, with permission from Elsevier. (D) The innovative Mg/Ti hybrid fixation device (blue arrow) to fix tibial fractures in rabbits. Scale bar: 10 mm. Adapted from Hou et al.26 Copyright 2018, with permission from Elsevier. Mg: magnesium; Ti: titanium.
Figure 5. Clinical studies of Mg-based screws in orthopaedics. (A) MAGNEZIX screws produced in Germany for the treatment of mild hallux valgus fractures. Reprinted from Windhagen et al.40 licensee BioMed Central Ltd. (B) Representative images of the MAGNEZIX screws applied for fixation of fractures at skeletal sites in children and adolescents. Red arrows indicate implants. Reprinted from Stürznickel et al.41 Copyright 2021, with permission from Elsevier. (C) Mg-based alloy screws composed of Mg-Ca-Zn alloy made in Korea for fixation of distal radius fractures. (D) HP Mg screws for fixation of vascularised autogenous bone flaps to treat vascular necrosis of the femoral head in China. Reprinted from Zhao et al.44 Copyright 2016, with permission from Elsevier. (E) JDBM screws (white arrows) for fixation of medial malleolar fractures in China. Reprinted from Xie et al.45 DF: distal femur; HP: high-purity; JDBM: Mg-Nd-Zn-Zr alloy; Mg: magnesium; PT: proximal tibia; UAJ: upper ankle joint.
Figure 6. The research and development strategies of novel magnesium-based implants and hybrid systems in orthopaedics. (A) Novel design of the structure of a magnesium-based interference screw for improved maximal torque. Reprinted from Luo et al.8 (B) Mg-containing hybrid devices for fixation of fractures at high weight-bearing skeletal sites. Adapted from Tian et al.47
[1] |
Elder, G. M.; Harvey, E. J.; Vaidya, R.; Guy, P.; Meek, R. N.; Aebi, M. The effectiveness of orthopaedic trauma theatres in decreasing morbidity and mortality: a study of 701 displaced subcapital hip fractures in two trauma centres. Injury. 2005, 36, 1060-1066.
doi: 10.1016/j.injury.2005.05.001 URL |
[2] |
Mourad, A.; Nurmohamed, S.; Parsons, L. Metal hypersensitivity to orthopedic implants. Dermatitis. 2019, 30, 278-280.
doi: 10.1097/DER.0000000000000485 URL |
[3] |
Bagheri, Z. S.; Tavakkoli Avval, P.; Bougherara, H.; Aziz, M. S.; Schemitsch, E. H.; Zdero, r. Biomechanical analysis of a new carbon fiber/flax/epoxy bone fracture plate shows less stress shielding compared to a standard clinical metal plate. J Biomech Eng. 2014, 136, 091002.
doi: 10.1115/1.4027669 URL |
[4] |
Stradiotti, P.; Curti, A.; Castellazzi, G.; Zerbi, A. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 2009, 18 Suppl 1, 102-108.
doi: 10.1007/s00586-009-0998-5 URL |
[5] | Wang, J. L.; Xu, J. K.; Hopkins, C.; Chow, D. H.; Qin, L. Biodegradable magnesium-based implants in orthopedics-a general review and perspectives. Adv Sci (Weinh). 2020, 7, 1902443. |
[6] |
Minkowitz, R. B.; Bhadsavle, S.; Walsh, M.; Egol, K. A. Removal of painful orthopaedic implants after fracture union. J Bone Joint Surg Am. 2007, 89, 1906-1912.
doi: 10.2106/00004623-200709000-00003 URL |
[7] |
Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials. 2017, 112, 287-302.
doi: 10.1016/j.biomaterials.2016.10.017 URL |
[8] | Luo, Y.; Zhang, C.; Wang, J.; Liu, F.; Chau, K. W.; Qin, L.; Wang, J. Clinical translation and challenges of biodegradable magnesium-based interference screws in ACL reconstruction. Bioact Mater. 2021, 6, 3231-3243. |
[9] | Sun, Y.; Wu, H.; Wang, W.; Zan, R.; Peng, H.; Zhang, S.; Zhang, X. Translational status of biomedical Mg devices in China. Bioact Mater. 2019, 4, 358-365. |
[10] | Thormann, U.; Alt, V.; Heimann, L.; Gasquere, C.; Heiss, C.; Szalay, G.; Franke, J.; Schnettler, R.; Lips, K. S. The biocompatibility of degradable magnesium interference screws: an experimental study with sheep. Biomed Res Int. 2015, 2015, 943603. |
[11] | Diekmann, J.; Bauer, S.; Weizbauer, A.; Willbold, E.; Windhagen, H.; Helmecke, P.; Lucas, A.; Reifenrath, J.; Nolte, I.; Ezechieli, M. Examination of a biodegradable magnesium screw for the reconstruction of the anterior cruciate ligament: a pilot in vivo study in rabbits. Mater Sci Eng CMater Biol Appl. 2016, 59, 1100-1109. |
[12] |
Wang, J.; Wu, Y.; Li, H.; Liu, Y.; Bai, X.; Chau, W.; Zheng, Y.; Qin, L. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials. 2018, 157, 86-97.
doi: 10.1016/j.biomaterials.2017.12.007 URL |
[13] |
Cheng, P.; Han, P.; Zhao, C.; Zhang, S.; Zhang, X.; Chai, Y. Magnesium inference screw supports early graft incorporation with inhibition of graft degradation in anterior cruciate ligament reconstruction. Sci Rep. 2016, 6, 26434.
doi: 10.1038/srep26434 URL |
[14] |
Cheng, P.; Han, P.; Zhao, C.; Zhang, S.; Wu, H.; Ni, J.; Hou, P.; Zhang, Y.; Liu, J.; Xu, H.; Liu, S.; Zhang, X.; Zheng, Y.; Chai, Y. High-purity magnesium interference screws promote fibrocartilaginous entheses regeneration in the anterior cruciate ligament reconstruction rabbit model via accumulation of BMP-2 and VEGF. Biomaterials. 2016, 81, 14-26.
doi: 10.1016/j.biomaterials.2015.12.005 URL |
[15] |
Wang, J.; Xu, J.; Song, B.; Chow, D. H.; Shu-Hang Yung, P.; Qin, L. Magnesium (Mg) based interference screws developed for promoting tendon graft incorporation in bone tunnel in rabbits. Acta Biomater. 2017, 63, 393-410.
doi: 10.1016/j.actbio.2017.09.018 URL |
[16] |
Song, B.; Li, W.; Chen, Z.; Fu, G.; Li, C.; Liu, W.; Li, Y.; Qin, L.; Ding, Y. Biomechanical comparison of pure magnesium interference screw and polylactic acid polymer interference screw in anterior cruciate ligament reconstruction-A cadaveric experimental study. J Orthop Translat. 2017, 8, 32-39.
doi: 10.1016/j.jot.2016.09.001 URL |
[17] |
Farraro, K. F.; Sasaki, N.; Woo, S. L.; Kim, K. E.; Tei, M. M.; Speziali, A.; McMahon, P. J. Magnesium ring device to restore function of a transected anterior cruciate ligament in the goat stifle joint. J Orthop Res. 2016, 34, 2001-2008.
doi: 10.1002/jor.23210 URL |
[18] |
Mao, G. W.; Gong, H. B.; Wang, Y.; Li, X.; Lv, R.; Sun, J.; Bian, W. G. Special biodegradable fixation device for anterior cruciate ligament reconstruction-safety and efficacy in a beagle model. ACS Biomater Sci Eng. 2018, 4, 3600-3609.
doi: 10.1021/acsbiomaterials.8b00426 URL |
[19] |
Han, P.; Cheng, P.; Zhang, S.; Zhao, C.; Ni, J.; Zhang, Y.; Zhong, W.; Hou, P.; Zhang, X.; Zheng, Y.; Chai, Y. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials. 2015, 64, 57-69.
doi: 10.1016/j.biomaterials.2015.06.031 URL |
[20] | Kong, X.; Wang, L.; Li, G.; Qu, X.; Niu, J.; Tang, T.; Dai, K.; Yuan, G.; Hao, Y. Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model. Mater Sci Eng CMater Biol Appl. 2018, 86, 42-47. |
[21] |
Chaya, A.; Yoshizawa, S.; Verdelis, K.; Myers, N.; Costello, B. J.; Chou, D. T.; Pal, S.; Maiti, S.; Kumta, P. N.; Sfeir, C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015, 18, 262-269.
doi: 10.1016/j.actbio.2015.02.010 URL |
[22] | Chow, D. H. K.; Wang, J.; Wan, P.; Zheng, L.; Ong, M. T. Y.; Huang, L.; Tong, W.; Tan, L.; Yang, K.; Qin, L. Biodegradable magnesium pins enhanced the healing of transverse patellar fracture in rabbits. Bioact Mater. 2021, 6, 4176-4185. |
[23] | Marukawa, E.; Tamai, M.; Takahashi, Y.; Hatakeyama, I.; Sato, M.; Higuchi, Y.; Kakidachi, H.; Taniguchi, H.; Sakamoto, T.; Honda, J.; Omura, K.; Harada, H. Comparison of magnesium alloys and poly-l-lactide screws as degradable implants in a canine fracture model. J Biomed Mater Res BAppl Biomater. 2016, 104, 1282-1289. |
[24] |
Huang, S.; Wang, B.; Zhang, X.; Lu, F.; Wang, Z.; Tian, S.; Li, D.; Yang, J.; Cao, F.; Cheng, L.; Gao, Z.; Li, Y.; Qin, K.; Zhao, D. High-purity weight-bearing magnesium screw: Translational application in the healing of femoral neck fracture. Biomaterials. 2020, 238, 119829.
doi: 10.1016/j.biomaterials.2020.119829 URL |
[25] |
Jähn, K.; Saito, H.; Taipaleenmäki, H.; Gasser, A.; Hort, N.; Feyerabend, F.; Schlüter, H.; Rueger, J. M.; Lehmann, W.; Willumeit-Römer, R.; Hesse, E. Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomater. 2016, 36, 350-360.
doi: 10.1016/j.actbio.2016.03.041 URL |
[26] |
Tian, L.; Sheng, Y.; Huang, L.; Chow, D. H.; Chau, W. H.; Tang, N.; Ngai, T.; Wu, C.; Lu, J.; Qin, L. An innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site. Biomaterials. 2018, 180, 173-183.
doi: 10.1016/j.biomaterials.2018.07.018 URL |
[27] |
Hou, P.; Han, P.; Zhao, C.; Wu, H.; Ni, J.; Zhang, S.; Liu, J.; Zhang, Y.; Xu, H.; Cheng, P.; Liu, S.; Zheng, Y.; Zhang, X.; Chai, Y. Accelerating corrosion of pure magnesium Co-implanted with titanium in vivo. Sci Rep. 2017, 7, 41924.
doi: 10.1038/srep41924 URL |
[28] |
Yoshizawa, S.; Brown, A.; Barchowsky, A.; Sfeir, C. Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater. 2014, 10, 2834-2842.
doi: 10.1016/j.actbio.2014.02.002 URL |
[29] |
Hung, C. C.; Chaya, A.; Liu, K.; Verdelis, K.; Sfeir, C. The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomater. 2019, 98, 246-255.
doi: 10.1016/j.actbio.2019.06.001 URL |
[30] |
Díaz-Tocados, J. M.; Herencia, C.; Martínez-Moreno, J. M.; Montes de Oca, A.; Rodríguez-Ortiz, M. E.; Vergara, N.; Blanco, A.; Steppan, S.; Almadén, Y.; Rodríguez, M.; Muñoz-Castañeda, J. R. Magnesium chloride promotes osteogenesis through notch signaling activation and expansion of mesenchymal stem cells. Sci Rep. 2017, 7, 7839.
doi: 10.1038/s41598-017-08379-y URL |
[31] | Hamushan, M.; Cai, W.; Zhang, Y.; Ren, Z.; Du, J.; Zhang, S.; Zhao, C.; Cheng, P.; Zhang, X.; Shen, H.; Han, P. High-purity magnesium pin enhances bone consolidation in distraction osteogenesis via regulating Ptch protein activating Hedgehog-alternative Wnt signaling. Bioact Mater. 2021, 6, 1563-1574. |
[32] | Zhang, X.; Chen, Q.; Mao, X. Magnesium enhances osteogenesis of BMSCs by tuning osteoimmunomodulation. Biomed Res Int. 2019, 2019, 7908205. |
[33] |
Qiao, W.; Wong, K. H. M.; Shen, J.; Wang, W.; Wu, J.; Li, J.; Lin, Z.; Chen, Z.; Matinlinna, J. P.; Zheng, Y.; Wu, S.; Liu, X.; Lai, K. P.; Chen, Z.; Lam, Y. W.; Cheung, K. M. C.; Yeung, K. W. K. TRPM7 kinase-mediated immunomodulation in macrophage plays a central role in magnesium ion-induced bone regeneration. Nat Commun. 2021, 12, 2885.
doi: 10.1038/s41467-021-23005-2 URL |
[34] |
Wang, X. Y.; Guo, X.; Qu, S. X.; Weng, J.; Cheng, C. Y. Temporal and spatial CGRP innervation in recombinant human bone morphogenetic protein induced spinal fusion in rabbits. Spine (Phila Pa 1976). 2009, 34, 2363-2368.
doi: 10.1097/BRS.0b013e3181b04e52 URL |
[35] |
Zhang, Y.; Xu, J.; Ruan, Y. C.; Yu, M. K.; O’Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; Chen, S.; Feng, J. Q.; Chow, D. H.; Xie, X.; Zheng, L.; Huang, L.; Huang, S.; Leung, K.; Lu, N.; Zhao, L.; Li, H.; Zhao, D.; Guo, X.; Chan, K.; Witte, F.; Chan, H. C.; Zheng, Y.; Qin, L. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016, 22, 1160-1169.
doi: 10.1038/nm.4162 URL |
[36] |
Xie, H.; Cui, Z.; Wang, L.; Xia, Z.; Hu, Y.; Xian, L.; Li, C.; Xie, L.; Crane, J.; Wan, M.; Zhen, G.; Bian, Q.; Yu, B.; Chang, W.; Qiu, T.; Pickarski, M.; Duong, L. T.; Windle, J. J.; Luo, X.; Liao, E.; Cao, X. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014, 20, 1270-1278.
doi: 10.1038/nm.3668 URL |
[37] | Han, H. S.; Jun, I.; Seok, H. K.; Lee, K. S.; Lee, K.; Witte, F.; Mantovani, D.; Kim, Y. C.; Glyn-Jones, S.; Edwards, J. R. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair. Adv Sci (Weinh). 2020, 7, 2000800. |
[38] | Lin, S.; Yang, G.; Jiang, F.; Zhou, M.; Yin, S.; Tang, Y.; Tang, T.; Zhang, Z.; Zhang, W.; Jiang, X. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv Sci (Weinh). 2019, 6, 1900209. |
[39] |
Witte, F. The history of biodegradable magnesium implants: a review. Acta Biomater. 2010, 6, 1680-1692.
doi: 10.1016/j.actbio.2010.02.028 URL |
[40] |
Windhagen, H.; Radtke, K.; Weizbauer, A.; Diekmann, J.; Noll, Y.; Kreimeyer, U.; Schavan, R.; Stukenborg-Colsman, C.; Waizy, H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013, 12, 62.
doi: 10.1186/1475-925X-12-62 URL |
[41] |
Stürznickel, J.; Delsmann, M. M.; Jungesblut, O. D.; Stücker, R.; Knorr, C.; Rolvien, T.; Kertai, M.; Rupprecht, M. Safety and performance of biodegradable magnesium-based implants in children and adolescents. Injury. 2021. doi: 10.1016/j.injury.2021.03.037.
doi: 10.1016/j.injury.2021.03.037 URL |
[42] | Lam, W. H.; Tso, C. Y.; Tang, N.; Cheung, W. H.; Qin, L.; Wong, R. M. Y. Biodegradable magnesium screws in elbow fracture fixation: clinical case series. J Orthop Trauma Rehabil. 2021, 2210491720986983. |
[43] |
Lee, J. W.; Han, H. S.; Han, K. J.; Park, J.; Jeon, H.; Ok, M. R.; Seok, H. K.; Ahn, J. P.; Lee, K. E.; Lee, D. H.; Yang, S. J.; Cho, S. Y.; Cha, P. R.; Kwon, H.; Nam, T. H.; Han, J. H.; Rho, H. J.; Lee, K. S.; Kim, Y. C.; Mantovani, D. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A. 2016, 113, 716-721.
doi: 10.1073/pnas.1518238113 URL |
[44] |
Zhao, D.; Huang, S.; Lu, F.; Wang, B.; Yang, L.; Qin, L.; Yang, K.; Li, Y.; Li, W.; Wang, W.; Tian, S.; Zhang, X.; Gao, W.; Wang, Z.; Zhang, Y.; Xie, X.; Wang, J.; Li, J. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head. Biomaterials. 2016, 81, 84-92.
doi: 10.1016/j.biomaterials.2015.11.038 URL |
[45] |
Xie, K.; Wang, L.; Guo, Y.; Zhao, S.; Yang, Y.; Dong, D.; Ding, W.; Dai, K.; Gong, W.; Yuan, G.; Hao, Y. Effectiveness and safety of biodegradable Mg-Nd-Zn-Zr alloy screws for the treatment of medial malleolar fractures. J Orthop Translat. 2021, 27, 96-100.
doi: 10.1016/j.jot.2020.11.007 URL |
[46] |
Mau, J. R.; Hawkins, K. M.; Woo, S. L.; Kim, K. E.; McCullough, M. B. A. Design of a new magnesium-based anterior cruciate ligament interference screw using finite element analysis. J Orthop Translat. 2020, 20, 25-30.
doi: 10.1016/j.jot.2019.09.003 URL |
[47] |
Tian, L.; Tang, N.; Ngai, T.; Wu, C.; Ruan, Y.; Huang, L.; Qin, L. Hybrid fracture fixation systems developed for orthopaedic applications: A general review. J Orthop Translat. 2019, 16, 1-13.
doi: 10.1016/j.jot.2018.06.006 URL |
[1] | Hongtao Yang, Wenjiao Lin, Yufeng Zheng. Advances and perspective on the translational medicine of biodegradable metals [J]. Biomaterials Translational, 2021, 2(3): 177-187. |
[2] | Xirui Jing, Qiuyue Ding, Qinxue Wu, Weijie Su, Keda Yu, Yanlin Su, Bing Ye, Qing Gao, Tingfang Sun, Xiaodong Guo. Magnesium-based materials in orthopaedics: material properties and animal models [J]. Biomaterials Translational, 2021, 2(3): 197-213. |
[3] | Yu Lu, Subodh Deshmukh, Ian Jones, Yu-Lung Chiu. Biodegradable magnesium alloys for orthopaedic applications [J]. Biomaterials Translational, 2021, 2(3): 214-235. |
[4] | Jialin Niu, Hua Huang, Jia Pei, Zhaohui Jin, Shaokang Guan, Guangyin Yuan. Research and development strategy for biodegradable magnesium-based vascular stents: a review [J]. Biomaterials Translational, 2021, 2(3): 236-247. |
[5] | Qingchuan Wang, Weidan Wang, Yanfang Li, Weirong Li, Lili Tan, Ke Yang. Biofunctional magnesium coating of implant materials by physical vapour deposition [J]. Biomaterials Translational, 2021, 2(3): 248-256. |
[6] | Aditya Joshi, George Dias, Mark P. Staiger. In silico modelling of the corrosion of biodegradable magnesium-based biomaterials: modelling approaches, validation and future perspectives [J]. Biomaterials Translational, 2021, 2(3): 257-271. |
[7] | Jing Long, Bin Teng, Wei Zhang, Long Li, Ming Zhang, Yingqi Chen, Zhenyu Yao, Xiangbo Meng, Xinluan Wang, Ling Qin, Yuxiao Lai. Preclinical evaluation of acute systemic toxicity of magnesium incorporated poly(lactic-co-glycolic acid) porous scaffolds by three-dimensional printing [J]. Biomaterials Translational, 2021, 2(3): 272-284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||