1. |
Dumas, A. The Three Musketeers. Chapter 9. 1844.
|
2. |
Arora, D.; Robey P. G. The biological basis of bone marrow stromal cell/skeletal stem cell heterogeneity. Biomater Transl. 2022, 2, 3-16.
|
3. |
Triffitt, J. T. A brief history of the development of stromal stem cells (stem cells of the skeleton). Biomater Transl. 2021, 2, 287-293.
|
4. |
Benayahu, D. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing. Biomater Transl. 2022, 2, 17-23.
|
5. |
Zhang, X.; Caetano, A. J.; Sharpe, P. T.; Volponi, A. A. Oral stem cells, decoding and mapping the resident cells populations. Biomater Transl. 2022, 2, 24-30.
|
6. |
Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978, 4, 7-25.
|
7. |
Discher, D. E.; Mooney, D. J.; Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science. 2009, 324, 1673-1677.
doi: 10.1126/science.1171643
URL
|
8. |
Watt, S. M. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. Biomater Transl. 2022, 2, 31-54.
|
9. |
Cao, S.; Yuan, Q. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review. Biomater Transl. 2022, 2, 55-64.
|
10. |
Steijvers, E.; Ghei, A.; Xia, Z. Manufacturing artificial bone allografts: a perspective. Biomater Transl. 2022, 2, 65-80.
|
11. |
Hu, K.; Li, Y.; Ke, Z.; Yang, H.; Lu, C.; Li, Y.; Guo, Y.; Wang, W. History, progress and future challenges of artificial blood vessels: a narrative review. Biomater Transl. 2022, 2, 81-98.
|