Biomaterials Translational ›› 2022, Vol. 3 ›› Issue (1): 17-23.doi: 10.12336/biomatertransl.2022.01.003
• REVIEW • Previous Articles Next Articles
Received:
2021-11-29
Revised:
2022-02-07
Accepted:
2022-02-23
Online:
2022-03-28
Published:
2022-03-28
Contact:
Dafna Benayahu
E-mail:dafnab@tauex.tau.ac.il
About author:
Dafna Benayahu, dafnab@tauex.tau.ac.il.
Benayahu, D. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing. Biomater Transl. 2022, 3(1), 17-23.
1. |
Benayahu, D.; Shacham, N.; Shur, I. Insights on the functional role of chromatin remodelers in osteogenic cells. Crit Rev Eukaryot Gene Expr. 2007, 17, 103-113.
doi: 10.1615/CritRevEukarGeneExpr.v17.i2 URL |
2. |
Benayahu, D.; Shefer, G.; Shur, I. Insights into the transcriptional and chromatin regulation of mesenchymal stem cells in musculo-skeletal tissues. Ann Anat. 2009, 191, 2-12.
doi: 10.1016/j.aanat.2008.07.008 URL |
3. |
Benayahu, D.; Akavia, U. D.; Shur, I. Differentiation of bone marrow stroma-derived mesenchymal cells. Curr Med Chem. 2007, 14, 173-179.
doi: 10.2174/092986707779313363 URL |
4. | Zipori, D. The nature of stem cells: state rather than entity. Nat Rev Genet. 2004, 5, 873-878. |
5. |
Shostak, S. (Re)defining stem cells. Bioessays. 2006, 28, 301-308.
doi: 10.1002/(ISSN)1521-1878 URL |
6. | Friedenstein, A. J. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980, 25, 19-29. |
7. |
Pittenger, M. F.; Mackay, A. M.; Beck, S. C.; Jaiswal, R. K.; Douglas, R.; Mosca, J. D.; Moorman, M. A.; Simonetti, D. W.; Craig, S.; Marshak, D. R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999, 284, 143-147.
doi: 10.1126/science.284.5411.143 URL |
8. |
Pittenger, M. F.; Discher, D. E.; Péault, B. M.; Phinney, D. G.; Hare, J. M.; Caplan, A. I. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019, 4, 22.
doi: 10.1038/s41536-019-0083-6 URL |
9. |
Aggarwal, S.; Pittenger, M. F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005, 105, 1815-1822.
doi: 10.1182/blood-2004-04-1559 URL |
10. |
Fontaine, M. J.; Shih, H.; Schäfer, R.; Pittenger, M. F. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev. 2016, 30, 37-43.
doi: 10.1016/j.tmrv.2015.11.004 URL |
11. |
Le Blanc, K.; Pittenger, M. Mesenchymal stem cells: progress toward promise. Cytotherapy. 2005, 7, 36-45.
doi: 10.1016/S1465-3249(05)70787-8 URL |
12. |
Murphy, M. B.; Moncivais, K.; Caplan, A. I. Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013, 45, e54.
doi: 10.1038/emm.2013.94 URL |
13. |
Caplan, A. I. Mesenchymal stem cells. J Orthop Res. 1991, 9, 641-650.
doi: 10.1002/(ISSN)1554-527X URL |
14. |
Caplan, A. I.; Dennis, J. E. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98, 1076-1084.
doi: 10.1002/(ISSN)1097-4644 URL |
15. |
Kuznetsov, S. A.; Krebsbach, P. H.; Satomura, K.; Kerr, J.; Riminucci, M.; Benayahu, D.; Robey, P. G. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 1997, 12, 1335-1347.
doi: 10.1359/jbmr.1997.12.9.1335 URL |
16. |
Robey, P. G. Series Introduction: Stem cells near the century mark. J Clin Invest. 2000, 105, 1489-1491.
doi: 10.1172/JCI10256 URL |
17. | Gimble, J. M.; Frazier, T. P.; Salgado, A. Shining a new light onto adipose stromal/stem cells. Acta Physiol (Oxf). 2020, 230, e13536. |
18. | Grayson, W. L.; Bunnell, B. A.; Martin, E.; Frazier, T.; Hung, B. P.; Gimble, J. M. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015, 11, 140-150. |
19. |
Salgado, A. J.; Reis, R. L.; Sousa, N. J.; Gimble, J. M. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010, 5, 103-110.
doi: 10.2174/157488810791268564 URL |
20. |
Ben-Arye, T.; Shandalov, Y.; Ben-Shaul, S.; Landau, S.; Zagury, Y.; Ianovici, I.; Lavon, N.; Levenberg, S. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat Food. 2020, 1, 210-220.
doi: 10.1038/s43016-020-0046-5 URL |
21. |
Wasserstrom, A.; Adar, R.; Shefer, G.; Frumkin, D.; Itzkovitz, S.; Stern, T.; Shur, I.; Zangi, L.; Kaplan, S.; Harmelin, A.; Reisner, Y.; Benayahu, D.; Tzahor, E.; Segal, E.; Shapiro, E. Reconstruction of cell lineage trees in mice. PLoS One. 2008, 3, e1939.
doi: 10.1371/journal.pone.0001939 URL |
22. |
Reizel, Y.; Itzkovitz, S.; Adar, R.; Elbaz, J.; Jinich, A.; Chapal-Ilani, N.; Maruvka, Y. E.; Nevo, N.; Marx, Z.; Horovitz, I.; Wasserstrom, A.; Mayo, A.; Shur, I.; Benayahu, D.; Skorecki, K.; Segal, E.; Dekel, N.; Shapiro, E. Cell lineage analysis of the mammalian female germline. PLoS Genet. 2012, 8, e1002477.
doi: 10.1371/journal.pgen.1002477 URL |
23. |
Ducy, P.; Zhang, R.; Geoffroy, V.; Ridall, A. L.; Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997, 89, 747-754.
doi: 10.1016/S0092-8674(00)80257-3 URL |
24. |
Komori, T.; Yagi, H.; Nomura, S.; Yamaguchi, A.; Sasaki, K.; Deguchi, K.; Shimizu, Y.; Bronson, R. T.; Gao, Y. H.; Inada, M.; Sato, M.; Okamoto, R.; Kitamura, Y.; Yoshiki, S.; Kishimoto, T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997, 89, 755-764.
doi: 10.1016/S0092-8674(00)80258-5 URL |
25. |
Otto, F.; Thornell, A. P.; Crompton, T.; Denzel, A.; Gilmour, K. C.; Rosewell, I. R.; Stamp, G. W.; Beddington, R. S.; Mundlos, S.; Olsen, B. R.; Selby, P. B.; Owen, M. J. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997, 89, 765-771.
doi: 10.1016/S0092-8674(00)80259-7 URL |
26. |
Lian, J. B.; Stein, G. S.; Javed, A.; van Wijnen, A. J.; Stein, J. L.; Montecino, M.; Hassan, M. Q.; Gaur, T.; Lengner, C. J.; Young, D. W. Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord. 2006, 7, 1-16.
doi: 10.1007/s11154-006-9001-5 URL |
27. |
Ducy, P.; Starbuck, M.; Priemel, M.; Shen, J.; Pinero, G.; Geoffroy, V.; Amling, M.; Karsenty, G. A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev. 1999, 13, 1025-1036.
doi: 10.1101/gad.13.8.1025 URL |
28. |
Shur, I.; Benayahu, D. Characterization and functional analysis of CReMM, a novel chromodomain helicase DNA-binding protein. J Mol Biol. 2005, 352, 646-655.
doi: 10.1016/j.jmb.2005.06.049 URL |
29. |
Shur, I.; Socher, R.; Benayahu, D. In vivo association of CReMM/CHD9 with promoters in osteogenic cells. J Cell Physiol. 2006, 207, 374-378.
doi: 10.1002/(ISSN)1097-4652 URL |
30. |
Shur, I.; Solomon, R.; Benayahu, D. Dynamic interactions of chromatin-related mesenchymal modulator, a chromodomain helicase-DNA-binding protein, with promoters in osteoprogenitors. Stem Cells. 2006, 24, 1288-1293.
doi: 10.1634/stemcells.2005-0300 URL |
31. |
Marom, R.; Shur, I.; Hager, G. L.; Benayahu, D. Expression and regulation of CReMM, a chromodomain helicase-DNA-binding (CHD), in marrow stroma derived osteoprogenitors. J Cell Physiol. 2006, 207, 628-635.
doi: 10.1002/(ISSN)1097-4652 URL |
32. |
Molkentin, J. D.; Olson, E. N. Defining the regulatory networks for muscle development. Curr Opin Genet Dev. 1996, 6, 445-453.
doi: 10.1016/S0959-437X(96)80066-9 URL |
33. |
Zammit, P. S.; Partridge, T. A.; Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem. 2006, 54, 1177-1191.
doi: 10.1369/jhc.6R6995.2006 URL |
34. |
Brennan, T. J.; Olson, E. N. Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization. Genes Dev. 1990, 4, 582-595.
doi: 10.1101/gad.4.4.582 URL |
35. |
Puri, P. L.; Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. J Cell Physiol. 2000, 185, 155-173.
doi: 10.1002/(ISSN)1097-4652 URL |
36. |
Yahi, H.; Philipot, O.; Guasconi, V.; Fritsch, L.; Ait-Si-Ali, S. Chromatin modification and muscle differentiation. Expert Opin Ther Targets. 2006, 10, 923-934.
doi: 10.1517/14728222.10.6.923 URL |
37. |
Tapscott, S. J. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development. 2005, 132, 2685-2695.
doi: 10.1242/dev.01874 URL |
38. |
de la Serna, I. L.; Ohkawa, Y.; Imbalzano, A. N. Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet. 2006, 7, 461-473.
doi: 10.1038/nrg1882 URL |
39. |
Brack, A. S.; Conboy, M. J.; Roy, S.; Lee, M.; Kuo, C. J.; Keller, C.; Rando, T. A. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007, 317, 807-810.
doi: 10.1126/science.1144090 URL |
40. |
Sekiya, I.; Larson, B. L.; Vuoristo, J. T.; Cui, J. G.; Prockop, D. J. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res. 2004, 19, 256-264.
doi: 10.1359/JBMR.0301220 URL |
41. |
Shefer, G.; Wleklinski-Lee, M.; Yablonka-Reuveni, Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci. 2004, 117, 5393-5404.
doi: 10.1242/jcs.01419 URL |
42. |
Benayahu, D.; Wiesenfeld, Y.; Sapir-Koren, R. How is mechanobiology involved in mesenchymal stem cell differentiation toward the osteoblastic or adipogenic fate? J Cell Physiol. 2019, 234, 12133-12141.
doi: 10.1002/jcp.v234.8 URL |
43. |
Surapureddi, S.; Viswakarma, N.; Yu, S.; Guo, D.; Rao, M. S.; Reddy, J. K. PRIC320, a transcription coactivator, isolated from peroxisome proliferator-binding protein complex. Biochem Biophys Res Commun. 2006, 343, 535-543.
doi: 10.1016/j.bbrc.2006.02.160 URL |
44. |
Gerber, H. P.; Condorelli, F.; Park, J.; Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997, 272, 23659-23667.
doi: 10.1074/jbc.272.38.23659 URL |
45. |
Mal, A.; Harter, M. L. MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci U S A. 2003, 100, 1735-1739.
doi: 10.1073/pnas.0437843100 URL |
46. |
Halevy, O.; Novitch, B. G.; Spicer, D. B.; Skapek, S. X.; Rhee, J.; Hannon, G. J.; Beach, D.; Lassar, A. B. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science. 1995, 267, 1018-1021.
doi: 10.1126/science.7863327 URL |
47. |
Mal, A.; Sturniolo, M.; Schiltz, R. L.; Ghosh, M. K.; Harter, M. L. A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. EMBO J. 2001, 20, 1739-1753.
doi: 10.1093/emboj/20.7.1739 URL |
48. |
Peschiaroli, A.; Figliola, R.; Coltella, L.; Strom, A.; Valentini, A.; D’Agnano, I.; Maione, R. MyoD induces apoptosis in the absence of RB function through a p21(WAF1)-dependent re-localization of cyclin/cdk complexes to the nucleus. Oncogene. 2002, 21, 8114-8127.
doi: 10.1038/sj.onc.1206010 URL |
49. |
Cobrinik, D.; Lee, M. H.; Hannon, G.; Mulligan, G.; Bronson, R. T.; Dyson, N.; Harlow, E.; Beach, D.; Weinberg, R. A.; Jacks, T. Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev. 1996, 10, 1633-1644.
doi: 10.1101/gad.10.13.1633 URL |
50. |
Palacios, D.; Puri, P. L. The epigenetic network regulating muscle development and regeneration. J Cell Physiol. 2006, 207, 1-11.
doi: 10.1002/(ISSN)1097-4652 URL |
51. |
Leung, K. L.; Sanchita, S.; Pham, C. T.; Davis, B. A.; Okhovat, M.; Ding, X.; Dumesic, P.; Grogan, T. R.; Williams, K. J.; Morselli, M.; Ma, F.; Carbone, L.; Li, X.; Pellegrini, M.; Dumesic, D. A.; Chazenbalk, G. D. Dynamic changes in chromatin accessibility, altered adipogenic gene expression, and total versus de novo fatty acid synthesis in subcutaneous adipose stem cells of normal-weight polycystic ovary syndrome (PCOS) women during adipogenesis: evidence of cellular programming. Clin Epigenetics. 2020, 12, 181.
doi: 10.1186/s13148-020-00970-x URL |
52. | Ricard-Blum, S. The collagen family. Cold Spring Harb Perspect Biol. 2011, 3, a004978. |
53. |
Walters, B. D.; Stegemann, J. P. Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 2014, 10, 1488-1501.
doi: 10.1016/j.actbio.2013.08.038 URL |
54. |
Benayahu, D.; Sharabi, M.; Pomeraniec, L.; Awad, L.; Haj-Ali, R.; Benayahu, Y. Unique collagen fibers for biomedical applications. Mar Drugs. 2018, 16, 102.
doi: 10.3390/md16040102 URL |
55. |
Mandelberg, Y.; Benayahu, D.; Benayahu, Y. Octocoral Sarcophyton auritum Verseveldt & Benayahu,, 1978: microanatomy and presence of collagen fibers. Biol Bull. 2016, 230, 68-77.
doi: 10.1086/BBLv230n1p68 URL |
56. |
Sharabi, M.; Mandelberg, Y.; Benayahu, D.; Benayahu, Y.; Azem, A.; Haj-Ali, R. A new class of bio-composite materials of unique collagen fibers. J Mech Behav Biomed Mater. 2014, 36, 71-81.
doi: 10.1016/j.jmbbm.2014.04.008 URL |
57. |
Sharabi, M.; Benayahu, D.; Benayahu, Y.; Isaacs, J.; Haj-Ali, R. Laminated collagen-fiber bio-composites for soft-tissue bio-mimetics. Compos Sci Technol. 2015, 117, 268-276.
doi: 10.1016/j.compscitech.2015.06.024 URL |
58. |
Sharabi, M.; Varssano, D.; Eliasy, R.; Benayahu, Y.; Benayahu, D.; Haj-Ali, R. Mechanical flexure behavior of bio-inspired collagen-reinforced thin composites. Compos Struct. 2016, 153, 392-400.
doi: 10.1016/j.compstruct.2016.06.031 URL |
59. |
Ruggiero, F.; Exposito, J. Y.; Bournat, P.; Gruber, V.; Perret, S.; Comte, J.; Olagnier, B.; Garrone, R.; Theisen, M. Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett. 2000, 469, 132-136.
doi: 10.1016/S0014-5793(00)01259-X URL |
60. |
Jeong, S. I.; Kim, S. Y.; Cho, S. K.; Chong, M. S.; Kim, K. S.; Kim, H.; Lee, S. B.; Lee, Y. M. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007, 28, 1115-1122.
doi: 10.1016/j.biomaterials.2006.10.025 URL |
61. |
Mauck, R. L.; Baker, B. M.; Nerurkar, N. L.; Burdick, J. A.; Li, W. J.; Tuan, R. S.; Elliott, D. M. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng Part B Rev. 2009, 15, 171-193.
doi: 10.1089/ten.teb.2008.0652 URL |
62. |
Song, E.; Yeon Kim, S.; Chun, T.; Byun, H. J.; Lee, Y. M. Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials. 2006, 27, 2951-2961.
doi: 10.1016/j.biomaterials.2006.01.015 URL |
63. |
Widdowson, J. P.; Picton, A. J.; Vince, V.; Wright, C. J.; Mearns-Spragg, A. In vivo comparison of jellyfish and bovine collagen sponges as prototype medical devices. J Biomed Mater Res B Appl Biomater. 2018, 106, 1524-1533.
doi: 10.1002/jbm.v106.4 URL |
64. |
Addad, S.; Exposito, J. Y.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar Drugs. 2011, 9, 967-983.
doi: 10.3390/md9060967 URL |
65. |
Shao, Y.; Fu, J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv Mater. 2014, 26, 1494-1533.
doi: 10.1002/adma.v26.10 URL |
66. |
Bax, D. V.; Nair, M.; Weiss, A. S.; Farndale, R. W.; Best, S. M.; Cameron, R. E. Tailoring the biofunctionality of collagen biomaterials via tropoelastin incorporation and EDC-crosslinking. Acta Biomater. 2021, 135, 150-163.
doi: 10.1016/j.actbio.2021.08.027 URL |
67. |
Pomeraniec, L.; Benayahu, D. Mesenchymal cell growth and differentiation on a new biocomposite material: a promising model for regeneration therapy. Biomolecules. 2020, 10, 458.
doi: 10.3390/biom10030458 URL |
68. | Benayahu, D.; Pomeraniec, L.; Shemesh, S.; Heller, S.; Rosenthal, Y.; Rath-Wolfson, L.; Benayahu, Y. Biocompatibility of a marine collagen-based scaffold in vitro and in vivo. MarDrugs. 2020, 18, 420. |
69. |
Ahmad, K.; Lim, J. H.; Lee, E. J.; Chun, H. J.; Ali, S.; Ahmad, S. S.; Shaikh, S.; Choi, I. Extracellular matrix and the production of cultured meat. Foods. 2021, 10, 3116.
doi: 10.3390/foods10123116 URL |
70. | Bomkamp, C.; Skaalure, S. C.; Fernando, G. F.; Ben-Arye, T.; Swartz, E. W.; Specht, E. A. Scaffolding biomaterials for 3D cultivated meat: prospects and challenges. Adv Sci (Weinh). 2022, 9, e2102908. |
71. |
Mor-Yossef Moldovan, L.; Kislev, N.; Lustig, M.; Pomeraniec, L.; Benayahu, D. Biomechanical stimulation effects on the metabolism of adipocyte. J Cell Physiol. 2020, 235, 8702-8713.
doi: 10.1002/jcp.v235.11 URL |
[1] | Dafna Benayahu. Mesenchymal stem cell differentiation and usage for biotechnology applications: tissue engineering and food manufacturing [J]. Biomaterials Translational, 2022, 3(online first): 0-1. |
[2] | Peter W. Andrews. Human pluripotent stem cells: tools for regenerative medicine [J]. Biomaterials Translational, 2021, 2(4): 294-300. |
[3] | Xing Yang, Yuanyuan Li, Xujie Liu, Wei He, Qianli Huang, Qingling Feng. Nanoparticles and their effects on differentiation of mesenchymal stem cells [J]. Biomaterials Translational, 2020, 1(1): 58-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||