Biomaterials Translational ›› 2024, Vol. 5 ›› Issue (3): 236-256.doi: 10.12336/biomatertransl.2024.03.003
• REVIEW • Previous Articles Next Articles
Chung-Hsun Lin1,2, Jesse R. Srioudom1, Wei Sun3, Malcolm Xing4, Su Yan1, Le Yu1,5,*(), Jian Yang6,7,*(
)
Received:
2024-07-12
Revised:
2024-08-22
Accepted:
2024-09-12
Online:
2024-09-28
Published:
2024-09-28
Contact:
Le Yu,Jian Yang
E-mail:le.yu@umkc.edu;yangjian07@westlake.edu.cn
About author:
Le Yu, le.yu@umkc.edu.
Lin, C.; Srioudom, JR.; Sun, W; Xing, M.; Yan, S; Yu, L; Yang, J. The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration. Biomater Transl. 2024, 5(3), 236-256.
Fabrication technique | Material | Chemical modification | Crosslinking method |
---|---|---|---|
Microfluidic emulsion | Alginate | Unmodified | Ionic crosslinking with Calcium ions |
Microfluidic emulsion | Gelatine | Methacrylamide | UV crosslinking |
Microfluidic emulsion | Hyaluronic acid | Methacrylate, | UV crosslinking |
Microfluidic emulsion | PEG | Vinyl sulfone, | Michael addition |
Batch emulsion | Hyaluronic acid | Glycidyl methacrylate, | UV crosslinking |
Batch emulsion | Hyaluronic acid | Aldehyde + hydrazide | Inverse emulsion crosslinking |
Batch emulsion | PEG | Diacrylate | Light-induced crosslinking |
Batch emulsion | Silk fibroin | Norbornene | Thiol-ene photo-click reaction |
Electrohydrodynamic spraying | Alginate | Unmodified, | Ionic crosslinking with Calcium ions |
Electrohydrodynamic spraying | PEG | Norbornene | Thiol-ene reaction |
Electrohydrodynamic spraying | PEG | Acrylate + toluene & mercaptopropionic acid | Michael addition |
Electrohydrodynamic spraying | Chitosan | Unmodified | Electrostatic interactions |
Lithography | Gelatine | Methacrylate | UV crosslinking |
Lithography | Hyaluronic acid | Methacrylate, | UV crosslinking |
Lithography | Hyaluronic acid | Vinyl ester | Thiol-ene reaction |
Lithography | PEG | Diacrylate | UV crosslinking |
Mechanical fragmentation | Hyaluronic acid | Norbornene, | UV crosslinking |
Mechanical fragmentation | PEG | Maleimide | Thiol-ene reaction |
Mechanical fragmentation | Carboxybetaine acrylamide | Unmodified | UV crosslinking |
Table 1. Various methods and materials used in producing hydrogel microspheres
Fabrication technique | Material | Chemical modification | Crosslinking method |
---|---|---|---|
Microfluidic emulsion | Alginate | Unmodified | Ionic crosslinking with Calcium ions |
Microfluidic emulsion | Gelatine | Methacrylamide | UV crosslinking |
Microfluidic emulsion | Hyaluronic acid | Methacrylate, | UV crosslinking |
Microfluidic emulsion | PEG | Vinyl sulfone, | Michael addition |
Batch emulsion | Hyaluronic acid | Glycidyl methacrylate, | UV crosslinking |
Batch emulsion | Hyaluronic acid | Aldehyde + hydrazide | Inverse emulsion crosslinking |
Batch emulsion | PEG | Diacrylate | Light-induced crosslinking |
Batch emulsion | Silk fibroin | Norbornene | Thiol-ene photo-click reaction |
Electrohydrodynamic spraying | Alginate | Unmodified, | Ionic crosslinking with Calcium ions |
Electrohydrodynamic spraying | PEG | Norbornene | Thiol-ene reaction |
Electrohydrodynamic spraying | PEG | Acrylate + toluene & mercaptopropionic acid | Michael addition |
Electrohydrodynamic spraying | Chitosan | Unmodified | Electrostatic interactions |
Lithography | Gelatine | Methacrylate | UV crosslinking |
Lithography | Hyaluronic acid | Methacrylate, | UV crosslinking |
Lithography | Hyaluronic acid | Vinyl ester | Thiol-ene reaction |
Lithography | PEG | Diacrylate | UV crosslinking |
Mechanical fragmentation | Hyaluronic acid | Norbornene, | UV crosslinking |
Mechanical fragmentation | PEG | Maleimide | Thiol-ene reaction |
Mechanical fragmentation | Carboxybetaine acrylamide | Unmodified | UV crosslinking |
Figure 1. Schematic diagrams of hydrogel microsphere processing routes. (A, B) Microfluidic: (A) The microfluidic chip has three chips to form a shell-like microsphere in a continuous oil flow. Reprinted from Wang et al.40 Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (B) A microcapillary device with a magnified image of the part where droplets formed. Reprinted from Martinez et al.29 Copyright 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (C) Batch emulsion: Cell encapsulated hydrogel microsphere made by mixing PEGDA hydrogel precursor solution and allogeneic skin fibroblasts in mineral oil. Reprinted from Sonnet et al.54 Copyright 2013 Orthopaedic Research Society. (D) Mechanical fragmentation: Fragmented microgels can be obtained by applying forces to bulk hydrogels using a fragmenting device like the tissue homogeniser. Reprinted from Widener et al.69 (E–G) Lithography: (E) Imprint lithography places PDMS moulds on a layer of hyaluronic acid and crosslinks the material by exposing it to UV light. Reprinted from Khademhosseini et al.61 Copyright 2006 Wiley Periodicals, Inc. (F) Photolithography uses a photomask to screen the UV light and crosslink the materials exposed to the UV light. (G) The flow lithography technique allows a continuous stream of material to pass through a region of UV light with specific shape. Reprinted from Laza et al.68 Copyright 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (H) Electrohydrodynamic spraying: A syringe pump sprays the hydrogel and cell precursor solution into the oil bath through a needle tip connected to a high-pressure source. Reprinted from Kim et al.57 HA: hyaluronic acid; HGF: hepatocyte growth factor; OECs: outgrowth endothelial cells; PDMS: polydimethylsiloxane; PEGDA: poly(ethylene glycol) diacrylate; UV: ultraviolet; VEGF: vascular endothelial growth factors.
Figure 2. Schematic diagram of the fabrication process of BMSCs-loaded GelMA HMs and their results of micromorphometric and histological analysis. (A) HMs produced from microfluidic methods are then crosslinked by UV light, seeded with BMSCs, and transplanted to the skull defect. (B) Micromorphometric analysis of the skull defect 8 weeks after transplantation. Images are superficial, three-dimensional, and sagittal views of microcomputed tomography images. Scale bars: 5 mm (left and right), 10 mm (middle). (C) HE staining in the skull defect area of control, HMs and BMSC/HMs groups at 8 weeks after transplantation. Scale bars: 50 μm. (D) Immunohistochemical staining of OCN-positive cells in the skull defect area 8 weeks after transplantation of HMs and BMSC/HMs. Scale bars: 50 μm (upper), 20 μm (lower). (E) Semi-quantitative analysis of the relative number of OCN-positive cells in the control, HMs and BMSC/HMs groups. Reprinted from Teng et al.83 BMSCs: bone marrow mesenchymal stem cells; GelMA: gelatin methacrylate; HE: hematoxylin-eosin; HMs: hydrogel microspheres; OCN: osteocalcin; UV: ultraviolet.
Figure 3. Schematic diagram of the fabrication process of GelMA-BP-Mg microspheres and their results of micromorphometric analysis and biocompatibility. (A) GelMA-BP microspheres were prepared by a microfluidic device and Mg was captured by Schiff alkali reactivity. GelMA-BP-Mg microspheres were then constructed by metal ion coordination ligands and delivered by injection. (B) Regeneration efficacy of the distal femur of rats with osteoporotic bone defects at 4 and 8 weeks after injection. Microcomputed tomography images show the results for control, GelMA, GelMA-BP, and GelMA-BP-Mg groups. (C, D) Proliferation of BMSCs on GelMA, GelMA-BP, and GelMA-BP-Mg microspheres after 2, 5, and 7 days. Scale bars: 50 μm. Red shows the skeleton; blue shows the nucleus. Reprinted with permission from Zhao et al.92 Copyright 2AAA021, American Chemical Society. BMSC: bone marrow mesenchymal stem cells; BP: bisphosphonate; GelMA: gelatin methacrylate.
Figure 4. Schematic diagram of the fabrication process producing hydrogel microspheres with growth factor and chondrogenic differentiation results of hMSCs used for cartilage regeneration. (A) Fabrication of the PEG/PLGA microspheres containing TGF-β3 or ghrelin. (B) Results of the chondrogenic differentiation results of hMSCs with different concentrations of TGF-β3 and ghrelin after 21 days. (B1–7) The qRT-PCR analyses are done for SOX9, COL II, ACAN, COL I, COL X, COL II/COL I, and GAG. Reprinted from Lin et al.103 ACAN: aggrecan; COL I: type I collagen; COL II: type II collagen; COL X: type X collagen; GAG: glycosaminoglycan; hMSCs: human bone marrow mesenchymal stem cells; PEG: poly(ethylene glycol); PLGA: poly(lactic-co-glycolic acid); PVA: poly(vinyl alcohol); qRT-PCR: quantitative reserve transcription-polymerase chain reaction; SOX 9: Sry-type high-mobility-group box 9; TGF: transforming growth factor)
Figure 5. Schematic diagram of the fabrication process producing GMPs/GMPBs and results of in vivo and in vitro tests. (A) Microspheres were prepared by microfluidic method and loaded with PDGF-BB and BMSCs. (B) X-ray images of the knee joints of rats in the control group, GMs group, GMPs group, GMBs group, GMPBs group and Sham group at AP and LAT angles. (C) Cell migration images of control, GMs, GMPs, GMPBs groups at 0, 24 and 48 hours. Scale bars: 800 μm. Reprinted from Li et al.123 Copyright 2023 Wiley‐VCH GmbH. AP: anteroposterior; BMSCs: bone marrow mesenchymal stem cells; GelMA: gelatin methacrylate; GMs: GelMA microspheres; GMBs: BMSCs loaded GelMA microspheres; GMPs: PDGF-BB-loaded GelMA microspheres; GMPBs: BMSCs+PDGF-BB-loaded GelMA microspheres; LAT: lateral; MA: methacrylate; PDGF-BB: platelet-derived growth factors-BB; UV: ultraviolet.
Figure 6. Schematic diagram of the fabrication process of hydrogel microspheres with NSCs and results of using it on SCI. (A) PDGF-MPHM was formed using an electrospray device and implanted into the T10 SCI site of rats 1 day after SCI. (B) Representative fluorescence images of stained NSC cultured with basic medium, PDGF-MPH, and PDGF-MPHM. Green shows the phosphorylated platelet-derived growth factor receptor beta, and blue shows the nucleus. Scale bars: 50 μm. (C) Representative immunofluorescence images of cross-sections of the spinal cord of rats in the SCI group, NSCs grafting group, and PDGF-MPHM + NSCs group. Red shows the apoptosis cells, blue shows the nucleus, and green shows the grafted cells. Scale bars: 250 μm. (D) Representative immunofluorescence images of the SCI, NSCs graft, and PDGF-MPHM + NSCs groups 8 weeks after SCI. Scale bars: 1 mm (upper), 250 μm (lower). Reprinted with the permission from Wu et al.137 Copyright 2AAA023, American Chemical Society. DAPI: 4′6-diamidino-2-phenylindole; GFAP: glial fibrillary acidic protein; GFP: green fluorescent protein; Nap-FFG: naphthalene acetic acid-phenylalanine-phenylalanine-glycine; NSCs: neural stem cells; PDGF-MPH: platelet-derived growth factor mimetic peptide hydrogel; PDGF-MPHM: platelet-derived growth factor mimetic peptide hydrogel microspheres; PDGFRβ: platelet-derived growth factor receptor β; SCI: spinal cord injury; Tuj1: beta tubulin III.
Figure 7. Schematic diagram of the synthesis process of mPDA-PEI@GelMA and wound healing results in diabetic mice in vivo. (A) The mixture of mPDA-PEI and GelMA was crosslinked under UV light after exiting the microfluidic device. (B) Representative images of wound healing in control, GelMA, mPDA@GelMA, and mPDA-PEI@GelMA groups. (C) Wound healing rate in four treatment groups on days 0, 3, 7 and 12. Reprinted from Xiao et al.148 GelMA: gelatin methacrylate; MA: methacrylate; mPDA: mesoporous polydopamine; mPDA NP: mesoporous polydopamine nanoparticle; PEI: polyethyleneimine; UV: ultraviolet.
Figure 8. Schematic diagram of the fabrication process of mECM@IL-4 + PM@IGF-1 composites and their muscle regeneration potential. (A) PLCL microspheres fabricated by microfluidics were modified with PDA-conjugated IGF-1 and complexed with mECM and IL-4 to form a composite material injected into the damaged area. (B) The representative images show the differentiation-promoting effects of control, composite, BMDMs and BMDMs/composite groups on injured muscle satellite cells. Green shows phalloidin staining area, red shows desmin staining area, grey shows the CD206 cells, and blue shows the nucleus. (C) Immunofluorescence images showing muscle regeneration at 2 and 8 weeks in a rat VML model. Green shows phalloidin staining area, and blue shows the nucleus. Scale bars: 50 μm. P represents the microspheres, and the white dashed line represents the border between the microspheres and the tissue. Reprinted from Li et al.151 BMDMs: bone marrow-derived macrophages; CTX: cardiotoxin; DAPI: 4′6-diamidino-2-phenylindole; dECM: decellularised extracellular matrix; IGF-1: growth factor-1; IL-4: interleukin-4; mECM: muscle-derived extracellular matrix; PDA: polydopamine; PLCL: poly(l-lactide-caprolactone); PVA: polyvinyl alcohol; PM: PLCL microsphere; VML: volumetric muscle loss.
1. |
Ye, J.; Xie, C.; Wang, C.; Huang, J.; Yin, Z.; Heng, B. C.; Chen, X.; Shen, W. Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization. Bioact Mater. 2021, 6, 4096-4109.
doi: 10.1016/j.bioactmat.2021.04.017 pmid: 33997496 |
2. |
Xiong, Y.; Mi, B. B.; Lin, Z.; Hu, Y. Q.; Yu, L.; Zha, K. K.; Panayi, A. C.; Yu, T.; Chen, L.; Liu, Z. P.; Patel, A.; Feng, Q.; Zhou, S. H.; Liu, G. H. The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Mil Med Res. 2022, 9, 65.
doi: 10.1186/s40779-022-00426-8 pmid: 36401295 |
3. |
Yu, L.; Cavelier, S.; Hannon, B.; Wei, M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater. 2023, 25, 122-159.
doi: 10.1016/j.bioactmat.2023.01.012 pmid: 36817819 |
4. | Nair, A.; Thevenot, P.; Dey, J.; Shen, J.; Sun, M. W.; Yang, J.; Tang, L. Novel polymeric scaffolds using protein microbubbles as porogen and growth factor carriers. Tissue Eng Part C Methods. 2010, 16, 23-32. |
5. | Li, Y.; Liu, W.; Liu, F.; Zeng, Y.; Zuo, S.; Feng, S.; Qi, C.; Wang, B.; Yan, X.; Khademhosseini, A.; Bai, J.; Du, Y. Primed 3D injectable microniches enabling low-dosage cell therapy for critical limb ischemia. Proc Natl Acad Sci U S A. 2014, 111, 13511-13516. |
6. | Wu, J.; Li, G.; Ye, T.; Lu, G.; Li, R.; Deng, L.; Wang, L.; Cai, M.; Cui, W. Stem cell-laden injectable hydrogel microspheres for cancellous bone regeneration. Chem Eng J. 2020, 393, 124715. |
7. | Zhang, G.; Suggs, L. J. Matrices and scaffolds for drug delivery in vascular tissue engineering. Adv Drug Deliv Rev. 2007, 59, 360-373. |
8. | Liu, X.; Liu, J.; Lin, S.; Zhao, X. Hydrogel machines. Mater Today. 2020, 36, 102-124. |
9. | Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science. 2017, 356, eaaf3627. |
10. | Hong, W.; Zhao, X.; Zhou, J.; Suo, Z. A theory of coupled diffusion and large deformation in polymeric gels. J Mech Phys Solids. 2008, 56, 1779-1793. |
11. | Li, J.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016, 1, 16071. |
12. | Wichterle, O.; LÍM, D. Hydrophilic gels for biological use. Nature. 1960, 185, 117-118. |
13. |
Fuchs, S.; Ernst, A. U.; Wang, L. H.; Shariati, K.; Wang, X.; Liu, Q.; Ma, M. Hydrogels in emerging technologies for type 1 diabetes. Chem Rev. 2021, 121, 11458-11526.
doi: 10.1021/acs.chemrev.0c01062 pmid: 33370102 |
14. | Chao, Y.; Chen, Q.; Liu, Z. Smart injectable hydrogels for cancer immunotherapy. Adv Funct Mater. 2020, 30, 1902785. |
15. |
Lin, W.; Kluzek, M.; Iuster, N.; Shimoni, E.; Kampf, N.; Goldberg, R.; Klein, J. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science. 2020, 370, 335-338.
doi: 10.1126/science.aay8276 pmid: 33060358 |
16. |
Lee, A.; Hudson, A. R.; Shiwarski, D. J.; Tashman, J. W.; Hinton, T. J.; Yerneni, S.; Bliley, J. M.; Campbell, P. G.; Feinberg, A. W. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019, 365, 482-487.
doi: 10.1126/science.aav9051 pmid: 31371612 |
17. | Jin, S.; Choi, H.; Seong, D.; You, C. L.; Kang, J. S.; Rho, S.; Lee, W. B.; Son, D.; Shin, M. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation. Nature. 2023, 623, 58-65. |
18. |
Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020, 5, 20-43.
doi: 10.1038/s41578-019-0148-6 pmid: 34123409 |
19. | Zhao, X.; Zhou, Y.; Li, J.; Zhang, C.; Wang, J. Opportunities and challenges of hydrogel microspheres for tendon-bone healing after anterior cruciate ligament reconstruction. J Biomed Mater Res B Appl Biomater. 2022, 110, 289-301. |
20. | Suzuki, D.; Horigome, K.; Kureha, T.; Matsui, S.; Watanabe, T. Polymeric hydrogel microspheres: design, synthesis, characterization, assembly and applications. Polym J. 2017, 49, 695-702. |
21. |
Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007, 2, 249-255.
doi: 10.1038/nnano.2007.70 pmid: 18654271 |
22. | Lin, J.; Chen, L.; Yang, J.; Li, X.; Wang, J.; Zhu, Y.; Xu, X.; Cui, W. Injectable double positively charged hydrogel microspheres for targeting-penetration-phagocytosis. Small. 2022, 18, e2202156. |
23. |
Han, Y.; Yang, J.; Zhao, W.; Wang, H.; Sun, Y.; Chen, Y.; Luo, J.; Deng, L.; Xu, X.; Cui, W.; Zhang, H. Biomimetic injectable hydrogel microspheres with enhanced lubrication and controllable drug release for the treatment of osteoarthritis. Bioact Mater. 2021, 6, 3596-3607.
doi: 10.1016/j.bioactmat.2021.03.022 pmid: 33869900 |
24. | Zhang, S.; Lin, A.; Tao, Z.; Fu, Y.; Xiao, L.; Ruan, G.; Li, Y. Microsphere-containing hydrogel scaffolds for tissue engineering. Chem Asian J. 2022, 17, e202200630. |
25. | Zhao, Z.; Wang, Z.; Li, G.; Cai, Z.; Wu, J.; Wang, L.; Deng, L.; Cai, M.; Cui, W. Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv Funct Mater. 2021, 31, 2103339. |
26. |
Velasco, D.; Tumarkin, E.; Kumacheva, E. Microfluidic encapsulation of cells in polymer microgels. Small. 2012, 8, 1633-1642.
doi: 10.1002/smll.201102464 pmid: 22467645 |
27. | Mealy, J. E.; Chung, J. J.; Jeong, H. H.; Issadore, D.; Lee, D.; Atluri, P.; Burdick, J. A. Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv Mater. 2018, 30, e1705912. |
28. | Helgeson, M. E.; Chapin, S. C.; Doyle, P. S. Hydrogel microparticles from lithographic processes: novel materials for fundamental and applied colloid science. Curr Opin Colloid Interface Sci. 2011, 16, 106-117. |
29. |
Martinez, C. J.; Kim, J. W.; Ye, C.; Ortiz, I.; Rowat, A. C.; Marquez, M.; Weitz, D. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol Biosci. 2012, 12, 946-951.
doi: 10.1002/mabi.201100351 pmid: 22311460 |
30. | Yu, L.; Sun, Q.; Hui, Y.; Seth, A.; Petrovsky, N.; Zhao, C. X. Microfluidic formation of core-shell alginate microparticles for protein encapsulation and controlled release. J Colloid Interface Sci. 2019, 539, 497-503. |
31. |
Madrigal, J. L.; Sharma, S. N.; Campbell, K. T.; Stilhano, R. S.; Gijsbers, R.; Silva, E. A. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors. Acta Biomater. 2018, 69, 265-276.
doi: S1742-7061(18)30024-2 pmid: 29398644 |
32. | Shi, M.; Zhang, H.; Song, T.; Liu, X.; Gao, Y.; Zhou, J.; Li, Y. Sustainable dual release of antibiotic and growth factor from ph-responsive uniform alginate composite microparticles to enhance wound healing. ACS Appl Mater Interfaces. 2019, 11, 22730-22744. |
33. | Zhang, L.; Chen, K.; Zhang, H.; Pang, B.; Choi, C. H.; Mao, A. S.; Liao, H.; Utech, S.; Mooney, D. J.; Wang, H.; Weitz, D. A. Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small. 2018, 14, 1702955. |
34. |
Mao, A. S.; Shin, J. W.; Utech, S.; Wang, H.; Uzun, O.; Li, W.; Cooper, M.; Hu, Y.; Zhang, L.; Weitz, D. A.; Mooney, D. J. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat Mater. 2017, 16, 236-243.
doi: 10.1038/nmat4781 pmid: 27798621 |
35. |
Sheikhi, A.; de Rutte, J.; Haghniaz, R.; Akouissi, O.; Sohrabi, A.; Di Carlo, D.; Khademhosseini, A. Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials. 2019, 192, 560-568.
doi: S0142-9612(18)30762-2 pmid: 30530245 |
36. | Chen, J.; Huang, D.; Wang, L.; Hou, J.; Zhang, H.; Li, Y.; Zhong, S.; Wang, Y.; Wu, Y.; Huang, W. 3D bioprinted multiscale composite scaffolds based on gelatin methacryloyl (GelMA)/chitosan microspheres as a modular bioink for enhancing 3D neurite outgrowth and elongation. J Colloid Interface Sci. 2020, 574, 162-173. |
37. |
Cai, Y.; Wu, F.; Yu, Y.; Liu, Y.; Shao, C.; Gu, H.; Li, M.; Zhao, Y. Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomater. 2019, 84, 222-230.
doi: S1742-7061(18)30670-6 pmid: 30476581 |
38. | Yang, J.; Han, Y.; Lin, J.; Zhu, Y.; Wang, F.; Deng, L.; Zhang, H.; Xu, X.; Cui, W. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small. 2020, 16, e2004519. |
39. |
Cha, C.; Oh, J.; Kim, K.; Qiu, Y.; Joh, M.; Shin, S. R.; Wang, X.; Camci-Unal, G.; Wan, K. T.; Liao, R.; Khademhosseini, A. Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs. Biomacromolecules. 2014, 15, 283-290.
doi: 10.1021/bm401533y pmid: 24344625 |
40. | Wang, H.; Liu, H.; Liu, H.; Su, W.; Chen, W.; Qin, J. One-step generation of core-shell gelatin methacrylate (GelMA) microgels using a droplet microfluidic system. Adv Mater Technol. 2019, 4, 1800632. |
41. |
Bian, J.; Cai, F.; Chen, H.; Tang, Z.; Xi, K.; Tang, J.; Wu, L.; Xu, Y.; Deng, L.; Gu, Y.; Cui, W.; Chen, L. Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 2021, 21, 2690-2698.
doi: 10.1021/acs.nanolett.0c04713 pmid: 33543616 |
42. | Zheng, D.; Chen, W.; Chen, T.; Chen, X.; Liang, J.; Chen, H.; Shen, H.; Deng, L.; Ruan, H.; Cui, W. Hydrogen ion capturing hydrogel microspheres for reversing inflammaging. Adv Mater. 2024, 36, e2306105. |
43. | Chen, Z.; Lv, Z.; Zhuang, Y.; Saiding, Q.; Yang, W.; Xiong, W.; Zhang, Z.; Chen, H.; Cui, W.; Zhang, Y. Mechanical signal-tailored hydrogel microspheres recruit and train stem cells for precise differentiation. Adv Mater. 2023, 35, e2300180. |
44. | Yao, Y.; Wei, G.; Deng, L.; Cui, W. Visualizable and lubricating hydrogel microspheres via nanoPOSS for cartilage regeneration. Adv Sci (Weinh). 2023, 10, e2207438. |
45. |
Muir, V. G.; Qazi, T. H.; Shan, J.; Groll, J.; Burdick, J. A. Influence of microgel fabrication technique on granular hydrogel properties. ACS Biomater Sci Eng. 2021, 7, 4269-4281.
doi: 10.1021/acsbiomaterials.0c01612 pmid: 33591726 |
46. | Chen, J.; Huang, K.; Chen, Q.; Deng, C.; Zhang, J.; Zhong, Z. Tailor-making fluorescent hyaluronic acid microgels via combining microfluidics and photoclick chemistry for sustained and localized delivery of herceptin in tumors. ACS Appl Mater Interfaces. 2018, 10, 3929-3937. |
47. |
Griffin, D. R.; Weaver, W. M.; Scumpia, P. O.; Di Carlo, D.; Segura, T. Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat Mater. 2015, 14, 737-744.
doi: 10.1038/nmat4294 pmid: 26030305 |
48. |
Allazetta, S.; Hausherr, T. C.; Lutolf, M. P. Microfluidic synthesis of cell-type-specific artificial extracellular matrix hydrogels. Biomacromolecules. 2013, 14, 1122-1131.
doi: 10.1021/bm4000162 pmid: 23439131 |
49. |
Allazetta, S.; Kolb, L.; Zerbib, S.; Bardy, J.; Lutolf, M. P. Cell-instructive microgels with tailor-made physicochemical properties. Small. 2015, 11, 5647-5656.
doi: 10.1002/smll.201501001 pmid: 26349486 |
50. |
Foster, G. A.; Headen, D. M.; González-García, C.; Salmerón-Sánchez, M.; Shirwan, H.; García, A. J. Protease-degradable microgels for protein delivery for vascularization. Biomaterials. 2017, 113, 170-175.
doi: S0142-9612(16)30595-6 pmid: 27816000 |
51. | Headen, D. M.; Aubry, G.; Lu, H.; García, A. J. Microfluidic-based generation of size-controlled, biofunctionalized synthetic polymer microgels for cell encapsulation. Adv Mater. 2014, 26, 3003-3008. |
52. |
Jha, A. K.; Malik, M. S.; Farach-Carson, M. C.; Duncan, R. L.; Jia, X. Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter. 2010, 6, 5045-5055.
doi: 10.1039/C0SM00101E pmid: 20936090 |
53. |
Jia, X.; Yeo, Y.; Clifton, R. J.; Jiao, T.; Kohane, D. S.; Kobler, J. B.; Zeitels, S. M.; Langer, R. Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules. 2006, 7, 3336-3344.
pmid: 17154461 |
54. |
Sonnet, C.; Simpson, C. L.; Olabisi, R. M.; Sullivan, K.; Lazard, Z.; Gugala, Z.; Peroni, J. F.; Weh, J. M.; Davis, A. R.; West, J. L.; Olmsted-Davis, E. A. Rapid healing of femoral defects in rats with low dose sustained BMP2 expression from PEGDA hydrogel microspheres. J Orthop Res. 2013, 31, 1597-1604.
doi: 10.1002/jor.22407 pmid: 23832813 |
55. |
Ryu, S.; Kim, H. H.; Park, Y. H.; Lin, C. C.; Um, I. C.; Ki, C. S. Dual mode gelation behavior of silk fibroin microgel embedded poly(ethylene glycol) hydrogels. J Mater Chem B. 2016, 4, 4574-4584.
doi: 10.1039/c6tb00896h pmid: 32263400 |
56. | Gansau, J.; Kelly, L.; Buckley, C. T. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying. Biofabrication. 2018, 10, 035011. |
57. | Kim, P. H.; Yim, H. G.; Choi, Y. J.; Kang, B. J.; Kim, J.; Kwon, S. M.; Kim, B. S.; Hwang, N. S.; Cho, J. Y. Injectable multifunctional microgel encapsulating outgrowth endothelial cells and growth factors for enhanced neovascularization. J Control Release. 2014, 187, 1-13. |
58. | Xin, S.; Wyman, O. M.; Alge, D. L. Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Adv Healthc Mater. 2018, 7, e1800160. |
59. | Qayyum, A. S.; Jain, E.; Kolar, G.; Kim, Y.; Sell, S. A.; Zustiak, S. P. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication. 2017, 9, 025019. |
60. |
Nichol, J. W.; Koshy, S. T.; Bae, H.; Hwang, C. M.; Yamanlar, S.; Khademhosseini, A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 2010, 31, 5536-5544.
doi: 10.1016/j.biomaterials.2010.03.064 pmid: 20417964 |
61. |
Khademhosseini, A.; Eng, G.; Yeh, J.; Fukuda, J.; Blumling, J.,3rd; Langer, R.; Burdick, J. A. Micromolding of photocrosslinkable hyaluronic acid for cell encapsulation and entrapment. J Biomed Mater Res A. 2006, 79, 522-532.
pmid: 16788972 |
62. |
Loebel, C.; Broguiere, N.; Alini, M.; Zenobi-Wong, M.; Eglin, D. Microfabrication of photo-cross-linked hyaluronan hydrogels by single- and two-photon tyramine oxidation. Biomacromolecules. 2015, 16, 2624-2630.
doi: 10.1021/acs.biomac.5b00363 pmid: 26222128 |
63. | Qin, X.-H.; Gruber, P.; Markovic, M.; Plochberger, B.; Klotzsch, E.; Stampfl, J.; Ovsianikov, A.; Liska, R. Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs. Polym Chem. 2014, 5, 6523-6533. |
64. |
Panda, P.; Ali, S.; Lo, E.; Chung, B. G.; Hatton, T. A.; Khademhosseini, A.; Doyle, P. S. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip. 2008, 8, 1056-1061.
doi: 10.1039/b804234a pmid: 18584079 |
65. |
Lee, S. A.; Chung, S. E.; Park, W.; Lee, S. H.; Kwon, S. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. Lab Chip. 2009, 9, 1670-1675.
doi: 10.1039/b819999j pmid: 19495448 |
66. |
Chung, S. E.; Park, W.; Shin, S.; Lee, S. A.; Kwon, S. Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater. 2008, 7, 581-587.
doi: 10.1038/nmat2208 pmid: 18552850 |
67. |
Dendukuri, D.; Pregibon, D. C.; Collins, J.; Hatton, T. A.; Doyle, P. S. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater. 2006, 5, 365-369.
pmid: 16604080 |
68. | Laza, S. C.; Polo, M.; Neves, A. A.; Cingolani, R.; Camposeo, A.; Pisignano, D. Two-photon continuous flow lithography. Adv Mater. 2012, 24, 1304-1308. |
69. | Widener, A. E.; Duraivel, S.; Angelini, T. E.; Phelps, E. A. Injectable microporous annealed particle hydrogel based on guest-host-interlinked polyethylene glycol maleimide microgels. Adv Nanobiomed Res. 2022, 2, 2200030. |
70. | Sinclair, A.; O’Kelly, M. B.; Bai, T.; Hung, H. C.; Jain, P.; Jiang, S. Self-healing zwitterionic microgels as a versatile platform for malleable cell constructs and injectable therapies. Adv Mater. 2018, 30, e1803087. |
71. | Sheen, J. R.; Mabrouk, A.; Garla, V. V. Fracture healing overview. In StatPearls, StatPearls Publishing: Treasure Island (FL), 2024. |
72. | Lee, D. H.; Kim, S. J.; Kim, S. A.; Ju, G. I. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee Surg Relat Res. 2022, 34, 1. |
73. | Yu, L.; Bennett, C. J.; Lin, C. H.; Yan, S.; Yang, J. Scaffold design considerations for peripheral nerve regeneration. J Neural Eng. 2024, 21, 041001. |
74. | Lin, F.; Li, Y.; Cui, W. Injectable hydrogel microspheres in cartilage repair. Biomed Technol. 2023, 1, 18-29. |
75. | Yu, L.; Martin, I. J.; Kasi, R. M.; Wei, M. Enhanced intrafibrillar mineralization of collagen fibrils induced by brushlike polymers. ACS Appl Mater Interfaces. 2018, 10, 28440-28449. |
76. | Pérez, L. A.; Hernández, R.; Alonso, J. M.; Pérez-González, R.; Sáez-Martínez, V. Hyaluronic acid hydrogels crosslinked in physiological conditions: synthesis and biomedical applications. Biomedicines. 2021, 9, 1113. |
77. | Khalili, M. H.; Afsar, A.; Zhang, R.; Wilson, S.; Dossi, E.; Goel, S.; Impey, S. A.; Aria, A. I. Thermal response of multi-layer UV crosslinked PEGDA hydrogels. Polym Degrad Stab. 2022, 195, 109805. |
78. | Zhou, C.; Cao, Y.; Liu, C.; Guo, W. Microparticles by microfluidic lithography. Mater Today. 2023, 67, 178-202. |
79. |
Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano. 2013, 7, 6758-6766.
doi: 10.1021/nn401617u pmid: 23834678 |
80. | Ruan, L.; Su, M.; Qin, X.; Ruan, Q.; Lang, W.; Wu, M.; Chen, Y.; Lv, Q. Progress in the application of sustained-release drug microspheres in tissue engineering. Mater Today Bio. 2022, 16, 100394. |
81. | Cai, Z.; Jiang, H.; Lin, T.; Wang, C.; Ma, J.; Gao, R.; Jiang, Y.; Zhou, X. Microspheres in bone regeneration: fabrication, properties and applications. Materials Today Advances. 2022, 16, 100315. |
82. | Hayrapetyan, A.; Jansen, J. A.; van den Beucken, J. J. Signaling pathways involved in osteogenesis and their application for bone regenerative medicine. Tissue Eng Part B Rev. 2015, 21, 75-87. |
83. | Teng, C.; Tong, Z.; He, Q.; Zhu, H.; Wang, L.; Zhang, X.; Wei, W. Mesenchymal stem cells-hydrogel microspheres system for bone regeneration in calvarial defects. Gels. 2022, 8, 275. |
84. | Yu, L.; Rowe, D. W.; Perera, I. P.; Zhang, J.; Suib, S. L.; Xin, X.; Wei, M. Intrafibrillar mineralized collagen-hydroxyapatite-based scaffolds for bone regeneration. ACS Appl Mater Interfaces. 2020, 12, 18235-18249. |
85. | Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R.; Wang, H.; Cui, W.; Weitz, D. Injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv Funct Mater. 2016, 26, 2809-2819. |
86. |
Kanafi, M. M.; Ramesh, A.; Gupta, P. K.; Bhonde, R. R. Dental pulp stem cells immobilized in alginate microspheres for applications in bone tissue engineering. Int Endod J. 2014, 47, 687-697.
doi: 10.1111/iej.12205 pmid: 24127887 |
87. |
Alipour, M.; Firouzi, N.; Aghazadeh, Z.; Samiei, M.; Montazersaheb, S.; Khoshfetrat, A. B.; Aghazadeh, M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021, 21, 6.
doi: 10.1186/s12896-020-00666-3 pmid: 33430842 |
88. | Park, Y.; Lin, S.; Bai, Y.; Moeinzadeh, S.; Kim, S.; Huang, J.; Lee, U.; Huang, N. F.; Yang, Y. P. Dual delivery of BMP2 and IGF1 through injectable hydrogel promotes cranial bone defect healing. Tissue Eng Part A. 2022, 28, 760-769. |
89. | Deng, M.; Tan, J.; Hu, C.; Hou, T.; Peng, W.; Liu, J.; Yu, B.; Dai, Q.; Zhou, J.; Yang, Y.; Dong, R.; Ruan, C.; Dong, S.; Xu, J. Modification of PLGA scaffold by MSC-derived extracellular matrix combats macrophage inflammation to initiate bone regeneration via TGF-β-induced protein. Adv Healthc Mater. 2020, 9, e2000353. |
90. | Zhang, C.; Wang, J.; Xie, Y.; Wang, L.; Yang, L.; Yu, J.; Miyamoto, A.; Sun, F. Development of FGF-2-loaded electrospun waterborne polyurethane fibrous membranes for bone regeneration. Regen Biomater. 2021, 8, rbaa046. |
91. | Amirthalingam, S.; Lee, S. S.; Pandian, M.; Ramu, J.; Iyer, S.; Hwang, N. S.; Jayakumar, R. Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater Sci. 2021, 9, 2439-2453. |
92. | Zhao, Z.; Li, G.; Ruan, H.; Chen, K.; Cai, Z.; Lu, G.; Li, R.; Deng, L.; Cai, M.; Cui, W. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancellous bone regeneration. ACS Nano. 2021, 15, 13041-13054. |
93. | Lu, X.; Shi, S.; Li, H.; Gerhard, E.; Lu, Z.; Tan, X.; Li, W.; Rahn, K. M.; Xie, D.; Xu, G.; Zou, F.; Bai, X.; Guo, J.; Yang, J. Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials. 2020, 232, 119719. |
94. | Yu, L.; Tian, Y.; Qiao, Y.; Liu, X. Mn-containing titanium surface with favorable osteogenic and antimicrobial functions synthesized by PIII&D. Colloids Surf B Biointerfaces. 2017, 152, 376-384. |
95. |
Zhong, Z.; Wu, X.; Wang, Y.; Li, M.; Li, Y.; Liu, X.; Zhang, X.; Lan, Z.; Wang, J.; Du, Y.; Zhang, S. Zn/Sr dual ions-collagen co-assembly hydroxyapatite enhances bone regeneration through procedural osteo-immunomodulation and osteogenesis. Bioact Mater. 2022, 10, 195-206.
doi: 10.1016/j.bioactmat.2021.09.013 pmid: 34901539 |
96. | Yu, L.; Jin, G.; Ouyang, L.; Wang, D.; Qiao, Y.; Liu, X. Antibacterial activity, osteogenic and angiogenic behaviors of copper-bearing titanium synthesized by PIII&D. J Mater Chem B. 2016, 4, 1296-1309. |
97. | Dai, M.; Lin, X.; Hua, P.; Wang, S.; Sun, X.; Tang, C.; Zhang, C.; Liu, L. Antibacterial sequential growth factor delivery from alginate/gelatin methacryloyl microspheres for bone regeneration. Int J Biol Macromol. 2024, 275, 133557. |
98. | Clearfield, D. S.; Xin, X.; Yadav, S.; Rowe, D. W.; Wei, M. Osteochondral differentiation of fluorescent multireporter cells on zonally-organized biomaterials. Tissue Eng Part A. 2019, 25, 468-486. |
99. | Platas, J.; Guillén, M. I.; Gomar, F.; Castejón, M. A.; Esbrit, P.; Alcaraz, M. J. Anti-senescence and anti-inflammatory effects of the C-terminal Moiety of PTHrP peptides in OA osteoblasts. J Gerontol A Biol Sci Med Sci. 2017, 72, 624-631. |
100. |
Cibere, J.; Thorne, A.; Kopec, J. A.; Singer, J.; Canvin, J.; Robinson, D. B.; Pope, J.; Hong, P.; Grant, E.; Lobanok, T.; Ionescu, M.; Poole, A. R.; Esdaile, J. M. Glucosamine sulfate and cartilage type II collagen degradation in patients with knee osteoarthritis: randomized discontinuation trial results employing biomarkers. J Rheumatol. 2005, 32, 896-902.
pmid: 15868627 |
101. |
Korotkyi, O.; Huet, A.; Dvorshchenko, K.; Kobyliak, N.; Falalyeyeva, T.; Ostapchenko, L. Probiotic composition and chondroitin sulfate regulate TLR-2/4-mediated NF-κB inflammatory pathway and cartilage metabolism in experimental osteoarthritis. Probiotics Antimicrob Proteins. 2021, 13, 1018-1032.
doi: 10.1007/s12602-020-09735-7 pmid: 33459997 |
102. |
Reyes, R.; Delgado, A.; Sánchez, E.; Fernández, A.; Hernández, A.; Evora, C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med. 2014, 8, 521-533.
doi: 10.1002/term.1549 pmid: 22733683 |
103. | Lin, J.; Wang, L.; Lin, J.; Liu, Q. Dual delivery of TGF-β3 and ghrelin in microsphere/hydrogel systems for cartilage regeneration. Molecules. 2021, 26, 5732. |
104. | Cho, H.; Kim, J.; Kim, S.; Jung, Y. C.; Wang, Y.; Kang, B. J.; Kim, K. Dual delivery of stem cells and insulin-like growth factor-1 in coacervate-embedded composite hydrogels for enhanced cartilage regeneration in osteochondral defects. J Control Release. 2020, 327, 284-295. |
105. |
Yang, W.; Cao, Y.; Zhang, Z.; Du, F.; Shi, Y.; Li, X.; Zhang, Q. Targeted delivery of FGF2 to subchondral bone enhanced the repair of articular cartilage defect. Acta Biomater. 2018, 69, 170-182.
doi: S1742-7061(18)30050-3 pmid: 29408545 |
106. |
Sakata, R.; Kokubu, T.; Nagura, I.; Toyokawa, N.; Inui, A.; Fujioka, H.; Kurosaka, M. Localization of vascular endothelial growth factor during the early stages of osteochondral regeneration using a bioabsorbable synthetic polymer scaffold. J Orthop Res. 2012, 30, 252-259.
doi: 10.1002/jor.21502 pmid: 21809378 |
107. | Vadalà G.; Russo, F.; Musumeci, M.; Giacalone, A.; Papalia, R.; Denaro, V. Targeting VEGF-A in cartilage repair and regeneration: state of the art and perspectives. J Biol Regul Homeost Agents. 2018, 32, 217-224. |
108. |
Zhu, P.; Wang, Z.; Sun, Z.; Liao, B.; Cai, Y. Recombinant platelet-derived growth factor-BB alleviates osteoarthritis in a rat model by decreasing chondrocyte apoptosis in vitro and in vivo. J Cell Mol Med. 2021, 25, 7472-7484.
doi: 10.1111/jcmm.16779 pmid: 34250725 |
109. | Utsunomiya, H.; Gao, X.; Cheng, H.; Deng, Z.; Nakama, G.; Mascarenhas, R.; Goldman, J. L.; Ravuri, S. K.; Arner, J. W.; Ruzbarsky, J. J.; Lowe, W. R.; Philippon, M. J.; Huard, J. Intra-articular injection of bevacizumab enhances bone marrow stimulation-mediated cartilage repair in a rabbit osteochondral defect model. Am J Sports Med. 2021, 49, 1871-1882. |
110. |
Tangtrongsup, S.; Kisiday, J. D. Effects of dexamethasone concentration and timing of exposure on chondrogenesis of equine bone marrow-derived mesenchymal stem cells. Cartilage. 2016, 7, 92-103.
doi: 10.1177/1947603515595263 pmid: 26958321 |
111. | Liu, Y.; Peng, L.; Li, L.; Huang, C.; Shi, K.; Meng, X.; Wang, P.; Wu, M.; Li, L.; Cao, H.; Wu, K.; Zeng, Q.; Pan, H.; Lu, W. W.; Qin, L.; Ruan, C.; Wang, X. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials. 2021, 279, 121216. |
112. | Kulchar, R. J.; Denzer, B. R.; Chavre, B. M.; Takegami, M.; Patterson, J. A review of the use of microparticles for cartilage tissue engineering. Int J Mol Sci. 2021, 22, 10292. |
113. |
Shyng, Y. C.; Chi, C. Y.; Devlin, H.; Sloan, P. Healing of tooth extraction sockets in the streptozotocin diabetic rat model: Induction of cartilage by BMP-6. Growth Factors. 2010, 28, 447-451.
doi: 10.3109/08977194.2010.527966 pmid: 20969540 |
114. |
García-Fernández, L. Osteochondral angiogenesis and promoted vascularization: new therapeutic target. Adv Exp Med Biol. 2018, 1059, 315-330.
doi: 10.1007/978-3-319-76735-2_14 pmid: 29736580 |
115. | Fransès, R. E.; McWilliams, D. F.; Mapp, P. I.; Walsh, D. A. Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthritis Cartilage. 2010, 18, 563-571. |
116. |
Jeong, S. Y.; Kim, D. H.; Ha, J.; Jin, H. J.; Kwon, S. J.; Chang, J. W.; Choi, S. J.; Oh, W.; Yang, Y. S.; Kim, G.; Kim, J. S.; Yoon, J. R.; Cho, D. H.; Jeon, H. B. Thrombospondin-2 secreted by human umbilical cord blood-derived mesenchymal stem cells promotes chondrogenic differentiation. Stem Cells. 2013, 31, 2136-2148.
doi: 10.1002/stem.1471 pmid: 23843355 |
117. | Andrés Sastre, E.; Maly, K.; Zhu, M.; Witte-Bouma, J.; Trompet, D.; Böhm, A. M.; Brachvogel, B.; van Nieuwenhoven, C. A.; Maes, C.; van Osch, G.; Zaucke, F.; Farrell, E. Spatiotemporal distribution of thrombospondin-4 and -5 in cartilage during endochondral bone formation and repair. Bone. 2021, 150, 115999. |
118. |
Helgeland, E.; Pedersen, T. O.; Rashad, A.; Johannessen, A. C.; Mustafa, K.; Rosén, A. Angiostatin-functionalized collagen scaffolds suppress angiogenesis but do not induce chondrogenesis by mesenchymal stromal cells in vivo. J Oral Sci. 2020, 62, 371-376.
doi: 10.2334/josnusd.19-0327 pmid: 32684573 |
119. |
Dehghan-Baniani, D.; Mehrjou, B.; Wang, D.; Bagheri, R.; Solouk, A.; Chu, P. K.; Wu, H. A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering. Int J Biol Macromol. 2022, 205, 638-650.
doi: 10.1016/j.ijbiomac.2022.02.115 pmid: 35217083 |
120. |
Blaney Davidson, E. N.; Vitters, E. L.; van der Kraan, P. M.; van den Berg, W. B. Expression of transforming growth factor-beta (TGFbeta) and the TGFbeta signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann Rheum Dis. 2006, 65, 1414-1421.
pmid: 16439443 |
121. |
Yu, C.; Liu, J.; Lu, G.; Xie, Y.; Sun, Y.; Wang, Q.; Liang, J.; Fan, Y.; Zhang, X. Repair of osteochondral defects in a rabbit model with artificial cartilage particulates derived from cultured collagen-chondrocyte microspheres. J Mater Chem B. 2018, 6, 5164-5173.
doi: 10.1039/c8tb01185k pmid: 32254543 |
122. |
Li, F.; Truong, V. X.; Fisch, P.; Levinson, C.; Glattauer, V.; Zenobi-Wong, M.; Thissen, H.; Forsythe, J. S.; Frith, J. E. Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 2018, 77, 48-62.
doi: S1742-7061(18)30409-4 pmid: 30006317 |
123. | Li, X.; Li, X.; Yang, J.; Lin, J.; Zhu, Y.; Xu, X.; Cui, W. Living and injectable porous hydrogel microsphere with paracrine activity for cartilage regeneration. Small. 2023, 19, e2207211. |
124. |
Huebner, E. A.; Strittmatter, S. M. Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ. 2009, 48, 339-351.
doi: 10.1007/400_2009_19 pmid: 19582408 |
125. | Qian, Y.; Lin, H.; Yan, Z.; Shi, J.; Fan, C. Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. Mater Today. 2021, 51, 165-187. |
126. | Martínez de Albornoz, P.; Delgado, P. J.; Forriol, F.; Maffulli, N. Non-surgical therapies for peripheral nerve injury. Br Med Bull. 2011, 100, 73-100. |
127. |
Hu, Y.; Wu, Y.; Gou, Z.; Tao, J.; Zhang, J.; Liu, Q.; Kang, T.; Jiang, S.; Huang, S.; He, J.; Chen, S.; Du, Y.; Gou, M. 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci Rep. 2016, 6, 32184.
doi: 10.1038/srep32184 pmid: 27572698 |
128. |
Bellamkonda, R. V. Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials. 2006, 27, 3515-3518.
doi: 10.1016/j.biomaterials.2006.02.030 pmid: 16533522 |
129. | Kim, Y. T.; Haftel, V. K.; Kumar, S.; Bellamkonda, R. V. The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials. 2008, 29, 3117-3127. |
130. | Panzer, K. V.; Burrell, J. C.; Helm, K. V. T.; Purvis, E. M.; Zhang, Q.; Le, A. D.; O’Donnell, J. C.; Cullen, D. K. Tissue engineered bands of büngner for accelerated motor and sensory axonal outgrowth. Front Bioeng Biotechnol. 2020, 8, 580654. |
131. |
Lee, A. C.; Yu, V. M.; Lowe, J. B.,3rd; Brenner, M. J.; Hunter, D. A.; Mackinnon, S. E.; Sakiyama-Elbert, S. E. Controlled release of nerve growth factor enhances sciatic nerve regeneration. Exp Neurol. 2003, 184, 295-303.
pmid: 14637100 |
132. |
Fine, E. G.; Decosterd, I.; Papaloïzos, M.; Zurn, A. D.; Aebischer, P. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur J Neurosci. 2002, 15, 589-601.
pmid: 11886440 |
133. |
Vögelin, E.; Baker, J. M.; Gates, J.; Dixit, V.; Constantinescu, M. A.; Jones, N. F. Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Exp Neurol. 2006, 199, 348-353.
pmid: 16487516 |
134. |
Saffari, T. M.; Chan, K.; Saffari, S.; Zuo, K. J.; McGovern, R. M.; Reid, J. M.; Borschel, G. H.; Shin, A. Y. Combined local delivery of tacrolimus and stem cells in hydrogel for enhancing peripheral nerve regeneration. Biotechnol Bioeng. 2021, 118, 2804-2814.
doi: 10.1002/bit.27799 pmid: 33913523 |
135. | Zolfagharzadeh, V.; Ai, J.; Soltani, H.; Hassanzadeh, S.; Khanmohammadi, M. Sustain release of loaded insulin within biomimetic hydrogel microsphere for sciatic tissue engineering in vivo. Int J Biol Macromol. 2023, 225, 687-700. |
136. |
Kim, G. B.; Chen, Y.; Kang, W.; Guo, J.; Payne, R.; Li, H.; Wei, Q.; Baker, J.; Dong, C.; Zhang, S.; Wong, P. K.; Rizk, E. B.; Yan, J.; Yang, J. The critical chemical and mechanical regulation of folic acid on neural engineering. Biomaterials. 2018, 178, 504-516.
doi: S0142-9612(18)30236-9 pmid: 29657092 |
137. |
Wu, W.; Jia, S.; Xu, H.; Gao, Z.; Wang, Z.; Lu, B.; Ai, Y.; Liu, Y.; Liu, R.; Yang, T.; Luo, R.; Hu, C.; Kong, L.; Huang, D.; Yan, L.; Yang, Z.; Zhu, L.; Hao, D. Supramolecular hydrogel microspheres of platelet-derived growth factor mimetic peptide promote recovery from spinal cord injury. ACS Nano. 2023, 17, 3818-3837.
doi: 10.1021/acsnano.2c12017 pmid: 36787636 |
138. |
Huang, F.; Chen, T.; Chang, J.; Zhang, C.; Liao, F.; Wu, L.; Wang, W.; Yin, Z. A conductive dual-network hydrogel composed of oxidized dextran and hyaluronic-hydrazide as BDNF delivery systems for potential spinal cord injury repair. Int J Biol Macromol. 2021, 167, 434-445.
doi: 10.1016/j.ijbiomac.2020.11.206 pmid: 33278434 |
139. | Blanpain, C. Stem cells: Skin regeneration and repair. Nature. 2010, 464, 686-687. |
140. | Chouhan, D.; Dey, N.; Bhardwaj, N.; Mandal, B. B. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances. Biomaterials. 2019, 216, 119267. |
141. |
Clark, R. A.; Ghosh, K.; Tonnesen, M. G. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007, 127, 1018-1029.
doi: 10.1038/sj.jid.5700715 pmid: 17435787 |
142. | Herndon, D. N.; Barrow, R. E.; Rutan, R. L.; Rutan, T. C.; Desai, M. H.; Abston, S. A comparison of conservative versus early excision. Therapies in severely burned patients. Ann Surg. 1989, 209, 547-552; discussion 552-553. |
143. | Vig, K.; Chaudhari, A.; Tripathi, S.; Dixit, S.; Sahu, R.; Pillai, S.; Dennis, V. A.; Singh, S. R. Advances in skin regeneration using tissue engineering. Int J Mol Sci. 2017, 18, 789. |
144. |
Zhang, D.; Ouyang, Q.; Hu, Z.; Lu, S.; Quan, W.; Li, P.; Chen, Y.; Li, S. Catechol functionalized chitosan/active peptide microsphere hydrogel for skin wound healing. Int J Biol Macromol. 2021, 173, 591-606.
doi: 10.1016/j.ijbiomac.2021.01.157 pmid: 33508359 |
145. | Shamloo, A.; Sarmadi, M.; Aghababaie, Z.; Vossoughi, M. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. Int J Pharm. 2018, 537, 278-289. |
146. |
Liu, Q.; Huang, Y.; Lan, Y.; Zuo, Q.; Li, C.; Zhang, Y.; Guo, R.; Xue, W. Acceleration of skin regeneration in full-thickness burns by incorporation of bFGF-loaded alginate microspheres into a CMCS-PVA hydrogel. J Tissue Eng Regen Med. 2017, 11, 1562-1573.
doi: 10.1002/term.2057 pmid: 26118827 |
147. |
Kong, X.; Fu, J.; Shao, K.; Wang, L.; Lan, X.; Shi, J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019, 100, 255-269.
doi: S1742-7061(19)30687-7 pmid: 31606531 |
148. | Xiao, Y.; Ding, T.; Fang, H.; Lin, J.; Chen, L.; Ma, D.; Zhang, T.; Cui, W.; Ma, J. Innovative bio-based hydrogel microspheres micro-cage for neutrophil extracellular traps scavenging in diabetic wound healing. Adv Sci (Weinh). 2024, 11, e2401195. |
149. |
Ansari, S.; Chen, C.; Xu, X.; Annabi, N.; Zadeh, H. H.; Wu, B. M.; Khademhosseini, A.; Shi, S.; Moshaverinia, A. Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. Ann Biomed Eng. 2016, 44, 1908-1920.
doi: 10.1007/s10439-016-1594-6 pmid: 27009085 |
150. | Fischer, K. M.; Scott, T. E.; Browe, D. P.; McGaughey, T. A.; Wood, C.; Wolyniak, M. J.; Freeman, J. W. Hydrogels for skeletal muscle regeneration. Regen Eng Transl Med. 2021, 7, 353-361. |
151. |
Li, Y.; Liu, S.; Zhang, J.; Wang, Y.; Lu, H.; Zhang, Y.; Song, G.; Niu, F.; Shen, Y.; Midgley, A. C.; Li, W.; Kong, D.; Zhu, M. Elastic porous microspheres/extracellular matrix hydrogel injectable composites releasing dual bio-factors enable tissue regeneration. Nat Commun. 2024, 15, 1377.
doi: 10.1038/s41467-024-45764-4 pmid: 38355941 |
152. |
Wang, R.; Wang, F.; Lu, S.; Gao, B.; Kan, Y.; Yuan, T.; Xu, Y.; Yuan, C.; Guo, D.; Fu, W.; Yu, X.; Si, Y. Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact Mater. 2023, 27, 394-408.
doi: 10.1016/j.bioactmat.2023.04.006 pmid: 37122899 |
153. |
Jiao, Y.; Gyawali, D.; Stark, J. M.; Akcora, P.; Nair, P.; Tran, R. T.; Yang, J. A rheological study of biodegradable injectable PEGMC/HA composite scaffolds. Soft Matter. 2012, 8, 1499-1507.
doi: 10.1039/C1SM05786C pmid: 25309615 |
154. |
Van Den Bulcke, A. I.; Bogdanov, B.; De Rooze, N.; Schacht, E. H.; Cornelissen, M.; Berghmans, H. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules. 2000, 1, 31-38.
doi: 10.1021/bm990017d pmid: 11709840 |
155. | Lee, H.; Stoffey, D. Polyethylene glycol diacrylate. US3769336A. 1973. |
156. |
Bao, B.; Zeng, Q.; Li, K.; Wen, J.; Zhang, Y.; Zheng, Y.; Zhou, R.; Shi, C.; Chen, T.; Xiao, C.; Chen, B.; Wang, T.; Yu, K.; Sun, Y.; Lin, Q.; He, Y.; Tu, S.; Zhu, L. Rapid fabrication of physically robust hydrogels. Nat Mater. 2023, 22, 1253-1260.
doi: 10.1038/s41563-023-01648-4 pmid: 37604908 |
157. | Xu, H.; Yan, S.; Gerhard, E.; Xie, D.; Liu, X.; Zhang, B.; Shi, D.; Ameer, G. A.; Yang, J. Citric acid: a nexus between cellular mechanisms and biomaterial innovations. Adv Mater. 2024, 36, e2402871. |
158. | Wang, H.; Huddleston, S.; Yang, J.; Ameer, G. A. Enabling proregenerative medical devices via citrate-based biomaterials: transitioning from inert to regenerative biomaterials. Adv Mater. 2024, 36, e2306326. |
159. | Ma, C.; Tian, X.; Kim, J. P.; Xie, D.; Ao, X.; Shan, D.; Lin, Q.; Hudock, M. R.; Bai, X.; Yang, J. Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A. 2018, 115, E11741-E11750. |
160. |
Xie, D.; Guo, J.; Mehdizadeh, M.; Tran, R. T.; Chen, R.; Sun, D.; Qian, G.; Jin, D.; Bai, X.; Yang, J. Development of injectable citrate-based bioadhesive bone implants. J Mater Chem B. 2015, 3, 387-398.
pmid: 25580247 |
161. | Shan, D.; Hsieh, J. T.; Bai, X.; Yang, J. Citrate-based fluorescent biomaterials. Adv Healthc Mater. 2018, 7, e1800532. |
162. | Chen, Y. R.; Yan, X.; Yuan, F. Z.; Lin, L.; Wang, S. J.; Ye, J.; Zhang, J. Y.; Yang, M.; Wu, D. C.; Wang, X.; Yu, J. K. Kartogenin-conjugated double-network hydrogel combined with stem cell transplantation and tracing for cartilage repair. Adv Sci (Weinh). 2022, 9, e2105571. |
163. | Ren, E.; Chen, H.; Qin, Z.; Guan, S.; Jiang, L.; Pang, X.; He, Y.; Zhang, Y.; Gao, X.; Chu, C.; Zheng, L.; Liu, G. Harnessing bifunctional ferritin with kartogenin loading for mesenchymal stem cell capture and enhancing chondrogenesis in cartilage regeneration. Adv Healthc Mater. 2022, 11, e2101715. |
164. | Madrid, A.; Alisch, R. S.; Rizk, E.; Papale, L. A.; Hogan, K. J.; Iskandar, B. J. Transgenerational epigenetic inheritance of axonal regeneration after spinal cord injury. Environ Epigenet. 2023, 9, dvad002. |
165. | Bigham, A.; Rahimkhoei, V.; Abasian, P.; Delfi, M.; Naderi, J.; Ghomi, M.; Dabbagh Moghaddam, F.; Waqar, T.; Nuri Ertas, Y.; Sharifi, S.; Rabiee, N.; Ersoy, S.; Maleki, A.; Nazarzadeh Zare, E.; Sharifi, E.; Jabbari, E.; Makvandi, P.; Akbari, A. Advances in tannic acid-incorporated biomaterials: infection treatment, regenerative medicine, cancer therapy, and biosensing. Chem Eng J. 2022, 432, 134146. |
166. | Sathishkumar, G.; Gopinath, K.; Zhang, K.; Kang, E. T.; Xu, L.; Yu, Y. Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies. J Mater Chem B. 2022, 10, 2296-2315. |
167. | Zhang, W.; Ling, C.; Liu, H.; Zhang, A.; Mao, L.; Wang, J.; Chao, J.; Backman, L. J.; Yao, Q.; Chen, J. Tannic acid-mediated dual peptide-functionalized scaffolds to direct stem cell behavior and osteochondral regeneration. Chem Eng J. 2020, 396, 125232. |
168. | Guo, J.; Tian, X.; Xie, D.; Rahn, K.; Gerhard, E.; Kuzma, M. L.; Zhou, D.; Dong, C.; Bai, X.; Lu, Z.; Yang, J. Citrate-based tannin-bridged bone composites for lumbar fusion. Adv Funct Mater. 2020, 30, 2002438. |
169. |
Zhang, W.; Fang, X. X.; Li, Q. C.; Pi, W.; Han, N. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res. 2023, 18, 200-206.
doi: 10.4103/ pmid: 35799543 |
170. | Xia, B.; Gao, X.; Qian, J.; Li, S.; Yu, B.; Hao, Y.; Wei, B.; Ma, T.; Wu, H.; Yang, S.; Zheng, Y.; Gao, X.; Guo, L.; Gao, J.; Yang, Y.; Zhang, Y.; Wei, Y.; Xue, B.; Jin, Y.; Luo, Z.; Zhang, J.; Huang, J. A novel superparamagnetic multifunctional nerve scaffold: a remote actuation strategy to boost in situ extracellular vesicles production for enhanced peripheral nerve repair. Adv Mater. 2024, 36, e2305374. |
171. | Hao, R.; Hu, S.; Zhang, H.; Chen, X.; Yu, Z.; Ren, J.; Guo, H.; Yang, H. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells. Mater Today Bio. 2023, 18, 100527. |
172. | Zeng, J.; Gu, C.; Zhuang, Y.; Lin, K.; Xie, Y.; Chen, X. Injectable hydrogel microspheres encapsulating extracellular vesicles derived from melatonin-stimulated NSCs promote neurogenesis and alleviate inflammation in spinal cord injury. Chem Eng J. 2023, 470, 144121. |
173. |
Yu, M.; Gu, G.; Cong, M.; Du, M.; Wang, W.; Shen, M.; Zhang, Q.; Shi, H.; Gu, X.; Ding, F. Repair of peripheral nerve defects by nerve grafts incorporated with extracellular vesicles from skin-derived precursor Schwann cells. Acta Biomater. 2021, 134, 190-203.
doi: 10.1016/j.actbio.2021.07.026 pmid: 34289422 |
174. |
Wang, C.; Wang, M.; Xia, K.; Wang, J.; Cheng, F.; Shi, K.; Ying, L.; Yu, C.; Xu, H.; Xiao, S.; Liang, C.; Li, F.; Lei, B.; Chen, Q. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater. 2021, 6, 2523-2534.
doi: 10.1016/j.bioactmat.2021.01.029 pmid: 33615043 |
175. |
Yanatori, I.; Richardson, D. R.; Dhekne, H. S.; Toyokuni, S.; Kishi, F. CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles. Blood. 2021, 138, 1490-1503.
doi: 10.1182/blood.2021010995 pmid: 34265052 |
[1] | Pengrui Zhang, Qiwei Qin, Xinna Cao, Honglin Xiang, Dechao Feng, Dilinaer Wusiman, Yuling Li. Hydrogel microspheres for bone regeneration through regulation of the regenerative microenvironment [J]. Biomaterials Translational, 2024, 5(3): 205-235. |
[2] | Haohan Wang, Yonglin Guo, Yiwen Jiang, Yingyu Ge, Hanyi Wang, Dingyi Shi, Guoyang Zhang, Jinzhong Zhao, Yuhao Kang, Liren Wang. Exosome-loaded biomaterials for tendon/ligament repair [J]. Biomaterials Translational, 2024, 5(2): 129-143. |
[3] | Yanwen Ai, Yuan Tian, Jiaming Qiao, Changnan Wang, Huafei Li. “Yin-Yang philosophy” for the design of anticancer drug delivery nanoparticles [J]. Biomaterials Translational, 2024, 5(2): 144-156. |
[4] | Kaihua Liu, Meiqi Cheng, Hao Huang, Hui Yu, Shiyao Zhao, Jinnuo Zhou, Dan Tie, Jianhua Wang, Panpan Pan, Jingdi Chen. Abalone shell-derived Mg-doped mesoporous hydroxyapatite microsphere drug delivery system loaded with icariin for inducing apoptosis of osteosarcoma cells [J]. Biomaterials Translational, 2024, 5(2): 185-196. |
[5] | Chen-Hui Mi, Xin-Ya Qi, Yan-Wen Ding, Jing Zhou, Jin-Wei Dao, Dai-Xu Wei. Recent advances of medical polyhydroxyalkanoates in musculoskeletal system [J]. Biomaterials Translational, 2023, 4(4): 234-247. |
[6] | Qiao Sun, Yicun Li, Ping Luo, Hong He. Animal models for testing biomaterials in periodontal regeneration [J]. Biomaterials Translational, 2023, 4(3): 142-150. |
[7] | Hanyu Chu, Kexin Zhang, Zilong Rao, Panpan Song, Zudong Lin, Jing Zhou, Liqun Yang, Daping Quan, Ying Bai. Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusion-based bioprinting with good printability and high post-printing cell viability [J]. Biomaterials Translational, 2023, 4(2): 115-127. |
[8] | Xin Huang, Haoyu Guo, Lutong Wang, Zengwu Shao. Engineered microorganism–based delivery systems for targeted cancer therapy: a narrative review [J]. Biomaterials Translational, 2022, 3(3): 201-212. |
[9] | Panita Maturavongsadit, Weiwei Wu, Jingyu Fan, Igor B. Roninson, Taixing Cui, Qian Wang. Graphene-incorporated hyaluronic acid-based hydrogel as a controlled Senexin A delivery system [J]. Biomaterials Translational, 2022, 3(2): 152-161. |
[10] | Shuqin Cao, Quan Yuan. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review [J]. Biomaterials Translational, 2022, 3(1): 55-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||