Biomaterials Translational ›› 2024, Vol. 5 ›› Issue (3): 257-273.doi: 10.12336/biomatertransl.2024.03.004
• REVIEW • Previous Articles Next Articles
Congyang Xue1,2,#, Liping Chen1,3,#, Nan Wang1, Heng Chen1, Wenqiang Xu1,3, Zhipeng Xi1,3, Qing Sun4, Ran Kang1,3,*(), Lin Xie1,3,*(
), Xin Liu1,2,3,*(
)
Received:
2024-06-14
Revised:
2024-07-22
Accepted:
2024-08-30
Online:
2024-09-28
Published:
2024-09-28
Contact:
Xin Liu, liuxin@njucm.edu.cn; Lin Xie, xielin@njucm.edu.cn; Ran Kang, kangran126@126.com.
About author:
#Author equally.
Xue, C.; Chen, L.; Wang, N.; Chen, H.; Xu, W.; Xi, Z.; Sun, Q.; Kang, R.; Xie, L.; Liu, X. Stimuli-responsive hydrogels for bone tissue engineering. Biomater Transl. 2024, 5(3), 257-273.
Source of hydrogel | Response factor | Application |
---|---|---|
Chitosan | Temperature | The hydrogel encapsulates adipose-derived stromal cells and maintains their viability, promoting their cartilage formation for the repair of articular cartilage injuries. |
pH | Excellent antibacterial, antioxidant, low cytotoxicity and angiogenic activity. Destroys bacteria, reduces inflammation and promotes angiogenesis to facilitate regeneration and healing of infected wound tissues. | |
Hyaluronic acid | Light | Provides a supportive environment to support cartilage differentiation and also adapts to the irregular shape of cartilage lesions. |
Sodium alginate | Temperature | Slow degradation enables use for long-term release of therapeutic DNA nanoparticles. |
Promoting bone regeneration in a rat cranial defect model, demonstrating the promising application of this hydrogel in unloaded bone regeneration. | ||
Dextran | pH | The hydrogel was able to well encapsulate adriamycin hydrochloride and exhibited a good slow release, while its release showed better behaviour at pH = 4.5 than at neutral pH. The hydrogel can be used as a drug delivery vehicle for the treatment of bone cancer and the promotion of bone repair. |
Gelatine | Temperature | Encapsulation of adipose stem cells maintains their viability while continuous release of adipose stem cells due to degradation of gelatine to promote angiogenesis. |
Its hydrophilic properties useful for growth, cell embedding and extracellular matrix secretion can be used as an ideal strategy to promote cartilage tissue formation. | ||
Silk fibronectin | Multiple factors (e.g. pH, temperature and light) | Hydrogel shows excellent stimuli responsive drug release ability and may be used in bone tissue engineering in the future. |
Temperature | It has some osteogenic capacity and can be used for bone repair and in regeneration. |
Table 1. The use of stimuli-responsive hydrogel-derived from natural materials for bone tissue engineering
Source of hydrogel | Response factor | Application |
---|---|---|
Chitosan | Temperature | The hydrogel encapsulates adipose-derived stromal cells and maintains their viability, promoting their cartilage formation for the repair of articular cartilage injuries. |
pH | Excellent antibacterial, antioxidant, low cytotoxicity and angiogenic activity. Destroys bacteria, reduces inflammation and promotes angiogenesis to facilitate regeneration and healing of infected wound tissues. | |
Hyaluronic acid | Light | Provides a supportive environment to support cartilage differentiation and also adapts to the irregular shape of cartilage lesions. |
Sodium alginate | Temperature | Slow degradation enables use for long-term release of therapeutic DNA nanoparticles. |
Promoting bone regeneration in a rat cranial defect model, demonstrating the promising application of this hydrogel in unloaded bone regeneration. | ||
Dextran | pH | The hydrogel was able to well encapsulate adriamycin hydrochloride and exhibited a good slow release, while its release showed better behaviour at pH = 4.5 than at neutral pH. The hydrogel can be used as a drug delivery vehicle for the treatment of bone cancer and the promotion of bone repair. |
Gelatine | Temperature | Encapsulation of adipose stem cells maintains their viability while continuous release of adipose stem cells due to degradation of gelatine to promote angiogenesis. |
Its hydrophilic properties useful for growth, cell embedding and extracellular matrix secretion can be used as an ideal strategy to promote cartilage tissue formation. | ||
Silk fibronectin | Multiple factors (e.g. pH, temperature and light) | Hydrogel shows excellent stimuli responsive drug release ability and may be used in bone tissue engineering in the future. |
Temperature | It has some osteogenic capacity and can be used for bone repair and in regeneration. |
Source of hydrogel | Response factor | Application |
---|---|---|
Poly(ethylene glycol) | Temperature | It has excellent in vitro osteogenic properties and has a positive effect on bone repair. It also significantly improves the injectability, washout resistance and in vitro degradability of the bone cement. |
pH | The ability to adapt to bone defects in an acidic environment caused by trauma, thus promoting bone repair and regeneration. | |
Poly(vinyl alcohol) | Activated oxygen levels | Releases diclofenac sodium encapsulated in a hydrogel to reduce oxidative stress, reduce post-traumatic inflammation, and promote cartilage regeneration. |
Poly(γ-glutamic acid) | pH | Due to the pH sensitivity, flexible, highly absorbent and smoother hydrogels are produced to serve as useful bone substitutes for repairing bone defects. |
Table 2. The use of stimuli-responsive hydrogel-derived from synthetic materials for bone tissue engineering
Source of hydrogel | Response factor | Application |
---|---|---|
Poly(ethylene glycol) | Temperature | It has excellent in vitro osteogenic properties and has a positive effect on bone repair. It also significantly improves the injectability, washout resistance and in vitro degradability of the bone cement. |
pH | The ability to adapt to bone defects in an acidic environment caused by trauma, thus promoting bone repair and regeneration. | |
Poly(vinyl alcohol) | Activated oxygen levels | Releases diclofenac sodium encapsulated in a hydrogel to reduce oxidative stress, reduce post-traumatic inflammation, and promote cartilage regeneration. |
Poly(γ-glutamic acid) | pH | Due to the pH sensitivity, flexible, highly absorbent and smoother hydrogels are produced to serve as useful bone substitutes for repairing bone defects. |
Study | Year | Source of hydrogel | Classification | Stem cells | Application model | Mechanisms |
---|---|---|---|---|---|---|
Bi et al. | 2023 | Living active glass/gellan hydrogel | Temperature-sensitive hydrogels | Bone marrow mesenchymal stem cell | Porcine cartilage defect model | Promote the proliferation of bone marrow mesenchymal stem cells |
Filippi et al. | 2019 | Poly(ethylene glycol)/magnetic nanoparticles | Magneto-responsive hydrogels | Adipose-derived stromal vascular fraction cells | Mice | Alkaline phosphatase activity, expression of osteogenic markers (Runx2, and collagen I) and deposition of mineralised matrix were enhanced. It has the potential to promote osteogenesis and angiogenesis. |
Islam et al. | 2023 | Gelatine | Magnetic-responsive | Adipose-derived mesenchymal stem cells | No | Magnetic fields can control the differentiation of adipose stem cells into different lineages and promote their differentiation into adipose or osteoblasts |
Wang et al. | 2024 | Hyaluronic acid and poly(ethylene glycol) | Environmental stimulus response | Bone marrow mesenchymal stem cells | Rat femoral condylar defect model | Effectively reduces inflammation, accelerates haemoreduction and promotes tissue mineralisation. |
Table 3. Hydrogel loaded with stem cells for bone tissue engineering
Study | Year | Source of hydrogel | Classification | Stem cells | Application model | Mechanisms |
---|---|---|---|---|---|---|
Bi et al. | 2023 | Living active glass/gellan hydrogel | Temperature-sensitive hydrogels | Bone marrow mesenchymal stem cell | Porcine cartilage defect model | Promote the proliferation of bone marrow mesenchymal stem cells |
Filippi et al. | 2019 | Poly(ethylene glycol)/magnetic nanoparticles | Magneto-responsive hydrogels | Adipose-derived stromal vascular fraction cells | Mice | Alkaline phosphatase activity, expression of osteogenic markers (Runx2, and collagen I) and deposition of mineralised matrix were enhanced. It has the potential to promote osteogenesis and angiogenesis. |
Islam et al. | 2023 | Gelatine | Magnetic-responsive | Adipose-derived mesenchymal stem cells | No | Magnetic fields can control the differentiation of adipose stem cells into different lineages and promote their differentiation into adipose or osteoblasts |
Wang et al. | 2024 | Hyaluronic acid and poly(ethylene glycol) | Environmental stimulus response | Bone marrow mesenchymal stem cells | Rat femoral condylar defect model | Effectively reduces inflammation, accelerates haemoreduction and promotes tissue mineralisation. |
Study | Year | Source of hydrogel | Classification | Bioactive factors or drugs | Application model | Mechanisms |
---|---|---|---|---|---|---|
Madani et al. | 2020 | Alginate iron hydrogel | Magneto-responsive hydrogels | Bone morphogenetic protein 2 | No | Promote the aggregation of osteoprogenitor cells to the defect site, proliferation, and differentiation into osteoblasts |
Yao et al. | 2021 | Gelatine methacryloyl -oxidised sodium alginate hydrogel | pH-sensitive hydrogels | Gentamycin sulfate and phenamil | Mouse calvarial defect model | Promote the repair of large bone defects by enhancing antibacterial activity |
Chauhan et al. | 2021 | Amylopectin - poly(ethylene glycol) hydrogel | pH-sensitive hydrogels | Dexamethasone | Mouse osteoblasts | Enhance cell viability and proliferation, and induce osteoblast differentiation. |
Liu et al. | 2022 | Photocrosslinked chitosan hydrogel | Glucose-sensitive hydrogels | Tannic acid | No | Inhibit the production of NO, IL-6, and TNF-α in stimulated macrophages and exhibits potent antibacterial and anti-inflammatory activities. |
Feng et al. | 2024 | Sodium alginate/chitosan | Glucose-sensitive hydrogels | Epigallocatechin-3-gallate | No | Good antioxidant and anti-inflammatory properties; modulatory effect on macrophage phenotype, providing a favourable immune microenvironment. |
Table 4. Hydrogel loaded with bioactive factors or drugs for bone tissue engineering
Study | Year | Source of hydrogel | Classification | Bioactive factors or drugs | Application model | Mechanisms |
---|---|---|---|---|---|---|
Madani et al. | 2020 | Alginate iron hydrogel | Magneto-responsive hydrogels | Bone morphogenetic protein 2 | No | Promote the aggregation of osteoprogenitor cells to the defect site, proliferation, and differentiation into osteoblasts |
Yao et al. | 2021 | Gelatine methacryloyl -oxidised sodium alginate hydrogel | pH-sensitive hydrogels | Gentamycin sulfate and phenamil | Mouse calvarial defect model | Promote the repair of large bone defects by enhancing antibacterial activity |
Chauhan et al. | 2021 | Amylopectin - poly(ethylene glycol) hydrogel | pH-sensitive hydrogels | Dexamethasone | Mouse osteoblasts | Enhance cell viability and proliferation, and induce osteoblast differentiation. |
Liu et al. | 2022 | Photocrosslinked chitosan hydrogel | Glucose-sensitive hydrogels | Tannic acid | No | Inhibit the production of NO, IL-6, and TNF-α in stimulated macrophages and exhibits potent antibacterial and anti-inflammatory activities. |
Feng et al. | 2024 | Sodium alginate/chitosan | Glucose-sensitive hydrogels | Epigallocatechin-3-gallate | No | Good antioxidant and anti-inflammatory properties; modulatory effect on macrophage phenotype, providing a favourable immune microenvironment. |
Figure 2. Schematic representation of magneto-responsive hydrogel preparation and cross-linking chemistry. Magnetic manipulation of low concentrations of cellulose nanocrystals decorated with magnetic nanoparticles in enzyme cross-linked gelatine-based hydrogels can be achieved by applying a low intensity magnetic field. Reprinted with permission from Araújo-Custódio et al.85 Copyright 2019, American Chemical Society. N: north; S: south.
Figure 3. Temperature-sensitive hydrogel for bone tissue engineering cases. (A) Simvastatin was loaded into a 3DTi using a thermosensitive PLGA-PEG-PLGA hydrogel. Reprinted from Jing et al.89 (B) Bifunctional thermosensitive hydrogel for reducing infection and promoting bone regeneration in infected bone defects. Reprinted from Tian et al.30 BMP-2: bone morphogenetic protein 2; CS: chitosan; NOX2: reduced nicotinamide adenine dinucleotide phosphate oxidase 2; PEG: poly(ethylene glycol); PLGA: poly(lactic-co-glycolic) acid; QCS: quaternised chitosan; TF: transferrin.
Figure 4. Preparation and application of photosensitive hydrogels. (A) Absorption wavelength distribution of different photosensitizers. (B) Structural formulae of representative photosensitizers. A and B were reprinted from Zhu et al.91 Copyright WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (C) Schematic for the preparation of customizable BTHs and their application in bionic tissue engineering. Reprinted from Wei et al.92 Copyright 2022 American Chemical Society. AAm: acrylamide; BTH: biomineralised tough hydrogels; CaP: calcium phosphate; I2959: 2‐hydroxy‐1‐[4‐(hydroxy ethoxy)phenyl]‐2‐methyl‐1‐propanone; MBA: methylene diacrylamide; Nd: neodymium; P2CK: sodium 3,3′-((((1E,1′E)-(2-oxocyclopentane-1,3-diylidene)-bis(methaneylylidene))-bis(4,1-phenylene))-bis(methylazanediyl))-dipropionate; PAAm: polyacrylamide; PPD: phosphonodiol; UCNP: upconversion nanoparticles; Yb: ytterbium.
Figure 5. Preparation and application of pH-sensitive hydrogels and ion-sensitive hydrogels. (A) Mechanism of pH-sensitive GelMA OSA hydrogel for dual release of GS and benzylamine (Phe) to enhance antimicrobial activity and promote repair of large bone defects figure. Reprinted from Yao et al.74 Copyright 2021 Published by Elsevier Inc. (B) Preparation of biomineralised surface hydrogels based on the binding of chondroitin sulphate to charged ions such as calcium and phosphate for bone tissue engineering figure. Reprinted from Kim et al.99 Copyright 2017 American Chemical Society. E. coli: Escherichia coli; GelMA: gelatine methacryloyl; GS: gentamicin sulfate; hTMSCs: human mesenchymal stem cells; MeCS: methacrylated chondroitin sulfate; MSN: mesoporous silica nanoparticles; OSA: oxidised sodium alginate; PEGDA: poly(ethylene glycol) diacrylate; S. aureus: Staphylococcus aureus; UV: ultraviolet.
Figure 6. Glucose-sensitive hydrogels and enzyme-sensitive hydrogels. (A) The mechanism of chitosan-PEO hydrogel’s glucose sensitivity and controlled drug release process. Reprinted from Xiao et al.100 Copyright 2015 Elsevier Ltd. (B) Schematic diagram showing the fabrication procedures of a MMP‐responsive phosphatidylserine (PS)‐encapsulated injectable hydrogel (PEG‐pp‐PS) for rat calvaria bone defect regeneration. Reprinted from Zhang et al.104 Arg-1: arginase-1; BMP2: bone morphogenetic protein 2; IL-1β: interleukin-1β; iNOS: inducible nitric oxide synthase; MMP: matrix‐metalloproteinase; MSCs: mesenchymal stem cells; PEO: polyethylene oxide; pp: peptide; RUNX2: Runt-related transcription factor 2; SG: succinimidyl glutarate.
1. | Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018, 3, 278-314. |
2. | Wei, H.; Cui, J.; Lin, K.; Xie, J.; Wang, X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022, 10, 17. |
3. | Peng, Z.; Zhao, T.; Zhou, Y.; Li, S.; Li, J.; Leblanc, R. M. Bone tissue engineering via carbon-based nanomaterials. Adv Healthc Mater. 2020, 9, e1901495. |
4. | Sasso, R. C.; Williams, J. I.; Dimasi, N.; Meyer, P. R., Jr. Postoperative drains at the donor sites of iliac-crest bone grafts. A prospective, randomized study of morbidity at the donor site in patients who had a traumatic injury of the spine. J Bone Joint Surg Am. 1998, 80, 631-635. |
5. | Kageyama, T.; Akieda, H.; Sonoyama, Y.; Sato, K.; Yoshikawa, H.; Isono, H.; Hirota, M.; Kitajima, H.; Chun, Y. S.; Maruo, S.; Fukuda, J. Bone beads enveloped with vascular endothelial cells for bone regenerative medicine. Acta Biomater. 2023, 165, 168-179. |
6. | Liu, X.; Sun, S.; Wang, N.; Kang, R.; Xie, L.; Liu, X. Therapeutic application of hydrogels for bone-related diseases. Front Bioeng Biotechnol. 2022, 10, 998988. |
7. | Sordi, M. B.; Cruz, A.; Fredel, M. C.; Magini, R.; Sharpe, P. T. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C Mater Biol Appl. 2021, 124, 112055. |
8. | Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001, 53, 321-339. |
9. | Zhang, K.; Liu, Y.; Shi, X.; Zhang, R.; He, Y.; Zhang, H.; Wang, W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol. 2023, 242, 125192. |
10. | Qiu, H.; Deng, J.; Wei, R.; Wu, X.; Chen, S.; Yang, Y.; Gong, C.; Cui, L.; Si, Z.; Zhu, Y.; Wang, R.; Xiong, D. A lubricant and adhesive hydrogel cross-linked from hyaluronic acid and chitosan for articular cartilage regeneration. Int J Biol Macromol. 2023, 243, 125249. |
11. | Wang, N.; Yu, K. K.; Li, K.; Yu, X. Q. A biocompatible polyethylene glycol/alginate composite hydrogel with significant reactive oxygen species consumption for promoting wound healing. J Mater Chem B. 2023, 11, 6934-6942. |
12. | Nikpour, P.; Salimi-Kenari, H.; Rabiee, S. M. Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration. Prog Biomater. 2021, 10, 271-280. |
13. | Shehzad, A.; Mukasheva, F.; Moazzam, M.; Sultanova, D.; Abdikhan, B.; Trifonov, A.; Akilbekova, D. Dual-crosslinking of gelatin-based hydrogels: promising compositions for a 3D printed organotypic bone model. Bioengineering (Basel). 2023, 10, 704. |
14. | Tan, Y.; Xu, C.; Liu, Y.; Bai, Y.; Li, X.; Wang, X. Sprayable and self-healing chitosan-based hydrogels for promoting healing of infected wound via anti-bacteria, anti-inflammation and angiogenesis. Carbohydr Polym. 2024, 337, 122147. |
15. | Li, M.; You, J.; Qin, Q.; Liu, M.; Yang, Y.; Jia, K.; Zhang, Y.; Zhou, Y. A comprehensive review on silk fibroin as a persuasive biomaterial for bone tissue engineering. Int J Mol Sci. 2023, 24, 2660. |
16. | Wang, L.; Wei, X.; He, X.; Xiao, S.; Shi, Q.; Chen, P.; Lee, J.; Guo, X.; Liu, H.; Fan, Y. Osteoinductive dental pulp stem cell-derived extracellular vesicle-loaded multifunctional hydrogel for bone regeneration. ACS Nano. 2024, 18, 8777-8797. |
17. | Seifi, S.; Shamloo, A.; Barzoki, A. K.; Bakhtiari, M. A.; Zare, S.; Cheraghi, F.; Peyrovan, A. Engineering biomimetic scaffolds for bone regeneration: Chitosan/alginate/polyvinyl alcohol-based double-network hydrogels with carbon nanomaterials. Carbohydr Polym. 2024, 339, 122232. |
18. | Ekapakul, N.; Sinthuvanich, C.; Ajiro, H.; Choochottiros, C. Bioactivity of star-shaped polycaprolactone/chitosan composite hydrogels for biomaterials. Int J Biol Macromol. 2022, 212, 420-431. |
19. | Sá-Lima, H.; Caridade, S. G.; Mano, J. F.; Reis, R. L. Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter. 2010, 6, 5184-5195. |
20. | Gao, L.; Beninatto, R.; Oláh, T.; Goebel, L.; Tao, K.; Roels, R.; Schrenker, S.; Glomm, J.; Venkatesan, J. K.; Schmitt, G.; Sahin, E.; Dahhan, O.; Pavan, M.; Barbera, C.; Lucia, A. D.; Menger, M. D.; Laschke, M. W.; Cucchiarini, M.; Galesso, D.; Madry, H. A photopolymerizable biocompatible hyaluronic acid hydrogel promotes early articular cartilage repair in a minipig model in vivo. Adv Healthc Mater. 2023, 12, e2300931. |
21. | Chalanqui, M. J.; Pentlavalli, S.; McCrudden, C.; Chambers, P.; Ziminska, M.; Dunne, N.; McCarthy, H. O. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Mater Sci Eng C Mater Biol Appl. 2019, 95, 409-421. |
22. | Shi, Z.; Yang, F.; Pang, Q.; Hu, Y.; Wu, H.; Yu, X.; Chen, X.; Shi, L.; Wen, B.; Xu, R.; Hou, R.; Liu, D.; Pang, Q.; Zhu, Y. The osteogenesis and the biologic mechanism of thermo-responsive injectable hydrogel containing carboxymethyl chitosan/sodium alginate nanoparticles towards promoting osteal wound healing. Int J Biol Macromol. 2023, 224, 533-543. |
23. | Angelopoulou, A.; Efthimiadou, E. K.; Kordas, G. Dextran modified pH sensitive silica hydro-xerogels as promising drug delivery scaffolds. Mater Lett. 2012, 74, 50-53. |
24. | Han, X.; He, J.; Wang, Z.; Bai, Z.; Qu, P.; Song, Z.; Wang, W. Fabrication of silver nanoparticles/gelatin hydrogel system for bone regeneration and fracture treatment. Drug Deliv. 2021, 28, 319-324. |
25. | Saghebasl, S.; Davaran, S.; Rahbarghazi, R.; Montaseri, A.; Salehi, R.; Ramazani, A. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. J Biomater Sci Polym Ed. 2018, 29, 1185-1206. |
26. | Gou, S.; Xie, D.; Ma, Y.; Huang, Y.; Dai, F.; Wang, C.; Xiao, B. Injectable, thixotropic, and multiresponsive silk fibroin hydrogel for localized and synergistic tumor therapy. ACS Biomater Sci Eng. 2020, 6, 1052-1063. |
27. | Yu, Y.; Yu, X.; Tian, D.; Yu, A.; Wan, Y. Thermo-responsive chitosan/silk fibroin/amino-functionalized mesoporous silica hydrogels with strong and elastic characteristics for bone tissue engineering. Int J Biol Macromol. 2021, 182, 1746-1758. |
28. | Liang, Y.; Wu, Z.; Wei, Y.; Ding, Q.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nanomicro Lett. 2022, 14, 52. |
29. | Bi, G.; Liu, S.; Zhong, X.; Peng, Y.; Song, W.; Yang, J.; Ren, L. Thermosensitive injectable gradient hydrogel-induced bidirectional differentiation of BMSCs. Macromol Biosci. 2023, 23, e2200250. |
30. | Tian, Y.; Cui, Y.; Ren, G.; Fan, Y.; Dou, M.; Li, S.; Wang, G.; Wang, Y.; Peng, C.; Wu, D. Dual-functional thermosensitive hydrogel for reducing infection and enhancing bone regeneration in infected bone defects. Mater Today Bio. 2024, 25, 100972. |
31. | Zhu, D.; Wang, H.; Trinh, P.; Heilshorn, S. C.; Yang, F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials. 2017, 127, 132-140. |
32. | Zheng, J.; Wang, Y.; Wang, Y.; Duan, R.; Liu, L. Gelatin/hyaluronic acid photocrosslinked double network hydrogel with nano-hydroxyapatite composite for potential application in bone repair. Gels. 2023, 9, 742. |
33. | Chen, K.; He, W.; Gao, W.; Wu, Y.; Zhang, Z.; Liu, M.; Hu, Y.; Xiao, X.; Li, F.; Feng, Q. A dual reversible cross-linked hydrogel with enhanced mechanical property and capable of proangiogenic and osteogenic activities for bone defect repair. Macromol Biosci. 2024, 24, e2300325. |
34. | Xue, Y.; Chen, H.; Xu, C.; Yu, D.; Xu, H.; Hu, Y. Synthesis of hyaluronic acid hydrogels by crosslinking the mixture of high-molecular-weight hyaluronic acid and low-molecular-weight hyaluronic acid with 1,4-butanediol diglycidyl ether. RSC Adv. 2020, 10, 7206-7213. |
35. | Hwang, H. S.; Lee, C. S. Recent progress in hyaluronic-acid-based hydrogels for bone tissue engineering. Gels. 2023, 9, 588. |
36. | Hernández-González, A. C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L. M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr Polym. 2020, 229, 115514. |
37. | Motasadizadeh, H.; Tavakoli, M.; Damoogh, S.; Mottaghitalab, F.; Gholami, M.; Atyabi, F.; Farokhi, M.; Dinarvand, R. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater Adv. 2022, 139, 213032. |
38. | Alves, P.; Simão, A. F.; Graça, M. F. P.; Mariz, M. J.; Correia, I. J.; Ferreira, P. Dextran-based injectable hydrogel composites for bone regeneration. Polymers (Basel). 2023, 15, 4501. |
39. | Ma, W.; Yang, M.; Wu, C.; Wang, S.; Du, M. Bioinspired self-healing injectable nanocomposite hydrogels based on oxidized dextran and gelatin for growth-factor-free bone regeneration. Int J Biol Macromol. 2023, 251, 126145. |
40. | Cheng, N. C.; Lin, W. J.; Ling, T. Y.; Young, T. H. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis. Acta Biomater. 2017, 51, 258-267. |
41. | Ren, Z.; Wang, Y.; Ma, S.; Duan, S.; Yang, X.; Gao, P.; Zhang, X.; Cai, Q. Effective bone regeneration using thermosensitive poly(N-isopropylacrylamide) grafted gelatin as injectable carrier for bone mesenchymal stem cells. ACS Appl Mater Interfaces. 2015, 7, 19006-19015. |
42. | Huang, C.; Zhang, X.; Luo, H.; Pan, J.; Cui, W.; Cheng, B.; Zhao, S.; Chen, G. Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair. J Shoulder Elbow Surg. 2021, 30, 544-553. |
43. | Wang, H.; Hu, B.; Li, H.; Feng, G.; Pan, S.; Chen, Z.; Li, B.; Song, J. Biomimetic mineralized hydroxyapatite nanofiber-incorporated methacrylated gelatin hydrogel with improved mechanical and osteoinductive performances for bone regeneration. Int J Nanomedicine. 2022, 17, 1511-1529. |
44. | Miao, F.; Liu, T.; Zhang, X.; Wang, X.; Wei, Y.; Hu, Y.; Lian, X.; Zhao, L.; Chen, W.; Huang, D. Engineered bone tissues using biomineralized gelatin methacryloyl/sodium alginate hydrogels. J Biomater Sci Polym Ed. 2022, 33, 137-154. |
45. | Yan, Y.; Cheng, B.; Chen, K.; Cui, W.; Qi, J.; Li, X.; Deng, L. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair. Adv Healthc Mater. 2019, 8, e1801043. |
46. | Mirahmadi, F.; Tafazzoli-Shadpour, M.; Shokrgozar, M. A.; Bonakdar, S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013, 33, 4786-4794. |
47. | Guo, C.; Qi, J.; Liu, J.; Wang, H.; Liu, Y.; Feng, Y.; Xu, G. The ability of biodegradable thermosensitive hydrogel composite calcium-silicon-based bioactive bone cement in promoting osteogenesis and repairing rabbit distal femoral defects. Polymers (Basel). 2022, 14, 3852. |
48. | Ghorpade, V. S.; Yadav, A. V.; Dias, R. J.; Mali, K. K.; Pargaonkar, S. S.; Shinde, P. V.; Dhane, N. S. Citric acid crosslinked carboxymethylcellulose-poly(ethylene glycol) hydrogel films for delivery of poorly soluble drugs. Int J Biol Macromol. 2018, 118, 783-791. |
49. | Lu, X.; Dai, S.; Huang, B.; Li, S.; Wang, P.; Zhao, Z.; Li, X.; Li, N.; Wen, J.; Sun, Y.; Man, Z.; Liu, B.; Li, W. Exosomes loaded a smart bilayer-hydrogel scaffold with ROS-scavenging and macrophage-reprogramming properties for repairing cartilage defect. Bioact Mater. 2024, 38, 137-153. |
50. | Chan, W. P.; Kung, F. C.; Kuo, Y. L.; Yang, M. C.; Lai, W. F. Alginate/poly(γ-glutamic acid) base biocompatible gel for bone tissue engineering. Biomed Res Int. 2015, 2015, 185841. |
51. | Schweikle, M.; Bjørnøy, S. H.; van Helvoort, A. T. J.; Haugen, H. J.; Sikorski, P.; Tiainen, H. Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels. Acta Biomater. 2019, 90, 132-145. |
52. | Zhang, N.; Lock, J.; Sallee, A.; Liu, H. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl Mater Interfaces. 2015, 7, 20987-20998. |
53. | Ganapathi, M.; Jayaseelan, D.; Guhanathan, S. Microwave assisted efficient synthesis of diphenyl substituted pyrazoles using PEG-600 as solvent - A green approach. Ecotoxicol Environ Saf. 2015, 121, 87-92. |
54. | Sun, S.; Cui, Y.; Yuan, B.; Dou, M.; Wang, G.; Xu, H.; Wang, J.; Yin, W.; Wu, D.; Peng, C. Drug delivery systems based on polyethylene glycol hydrogels for enhanced bone regeneration. Front Bioeng Biotechnol. 2023, 11, 1117647. |
55. | Biglari, L.; Naghdi, M.; Poursamar, S. A.; Nilforoushan, M. R.; Bigham, A.; Rafienia, M. A route toward fabrication of 3D printed bone scaffolds based on poly(vinyl alcohol)-chitosan/bioactive glass by sol-gel chemistry. Int J Biol Macromol. 2024, 258, 128716. |
56. | He, L.; Zhang, H.; Zhao, N.; Liao, L. A novel approach in biomedical engineering: the use of polyvinyl alcohol hydrogel encapsulating human umbilical cord mesenchymal stem cell-derived exosomes for enhanced osteogenic differentiation and angiogenesis in bone regeneration. Int J Biol Macromol. 2024, 270, 132116. |
57. | Zhang, W.; Lu, H.; Zhang, W.; Hu, J.; Zeng, Y.; Hu, H.; Shi, L.; Xia, J.; Xu, F. Inflammatory microenvironment-responsive hydrogels enclosed with quorum sensing inhibitor for treating post-traumatic osteomyelitis. Adv Sci (Weinh). 2024, 11, e2307969. |
58. | Yang, R.; Wang, X.; Liu, S.; Zhang, W.; Wang, P.; Liu, X.; Ren, Y.; Tan, X.; Chi, B. Bioinspired poly (γ-glutamic acid) hydrogels for enhanced chondrogenesis of bone marrow-derived mesenchymal stem cells. Int J Biol Macromol. 2020, 142, 332-344. |
59. | Taymouri, S.; Hashemi, S.; Varshosaz, J.; Minaiyan, M.; Talebi, A. Fabrication and evaluation of hesperidin loaded polyacrylonitrile/polyethylene oxide nanofibers for wound dressing application. J Biomater Sci Polym Ed. 2021, 32, 1944-1965. |
60. | Liu, H.; Liu, J.; Qi, C.; Fang, Y.; Zhang, L.; Zhuo, R.; Jiang, X. Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomater. 2016, 35, 228-237. |
61. | Mizuguchi, Y.; Mashimo, Y.; Mie, M.; Kobatake, E. Temperature-responsive multifunctional protein hydrogels with elastin-like polypeptides for 3-D angiogenesis. Biomacromolecules. 2020, 21, 1126-1135. |
62. | Erikci, S.; Mundinger, P.; Boehm, H. Small physical cross-linker facilitates hyaluronan hydrogels. Molecules. 2020, 25, 4166. |
63. | Vu, T. T.; Gulfam, M.; Jo, S. H.; Park, S. H.; Lim, K. T. Injectable and biocompatible alginate-derived porous hydrogels cross-linked by IEDDA click chemistry for reduction-responsive drug release application. Carbohydr Polym. 2022, 278, 118964. |
64. | Chai, W.; Chen, X.; Liu, J.; Zhang, L.; Liu, C.; Li, L.; Honiball, J. R.; Pan, H.; Cui, X.; Wang, D. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater. 2024, 11, rbad115. |
65. | Mazini, L.; Rochette, L.; Admou, B.; Amal, S.; Malka, G. Hopes and limits of adipose-derived stem cells (ADSCs) and mesenchymal stem cells (MSCs) in wound healing. Int J Mol Sci. 2020, 21, 1306. |
66. | Arthur, A.; Gronthos, S. Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue. Int J Mol Sci. 2020, 21, 9759. |
67. | Weickert, M. T.; Hecker, J. S.; Buck, M. C.; Schreck, C.; Rivière, J.; Schiemann, M.; Schallmoser, K.; Bassermann, F.; Strunk, D.; Oostendorp, R. A. J.; Götze, K. S. Bone marrow stromal cells from MDS and AML patients show increased adipogenic potential with reduced Delta-like-1 expression. Sci Rep. 2021, 11, 5944. |
68. | Al-Ghadban, S.; Bunnell, B. A. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 2020, 35, 125-133. |
69. | Filippi, M.; Dasen, B.; Guerrero, J.; Garello, F.; Isu, G.; Born, G.; Ehrbar, M.; Martin, I.; Scherberich, A. Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials. 2019, 223, 119468. |
70. | Islam, M. S.; Molley, T. G.; Hung, T. T.; Sathish, C. I.; Putra, V. D. L.; Jalandhra, G. K.; Ireland, J.; Li, Y.; Yi, J.; Kruzic, J. J.; Kilian, K. A. Magnetic nanofibrous hydrogels for dynamic control of stem cell differentiation. ACS Appl Mater Interfaces. 2023. doi: 10.1021/acsami.3c07021. |
71. | Wang, C. Y.; Hong, P. D.; Wang, D. H.; Cherng, J. H.; Chang, S. J.; Liu, C. C.; Fang, T. J.; Wang, Y. W. Polymeric gelatin scaffolds affect mesenchymal stem cell differentiation and its diverse applications in tissue engineering. Int J Mol Sci. 2020, 21, 8632. |
72. | Ren, Y.; Zhang, H.; Wang, Y.; Du, B.; Yang, J.; Liu, L.; Zhang, Q. Hyaluronic acid hydrogel with adjustable stiffness for mesenchymal stem cell 3D culture via related molecular mechanisms to maintain stemness and induce cartilage differentiation. ACS Appl Bio Mater. 2021, 4, 2601-2613. |
73. | Madani, S. Z. M.; Reisch, A.; Roxbury, D.; Kennedy, S. M. A magnetically responsive hydrogel system for controlling the timing of bone progenitor recruitment and differentiation factor deliveries. ACS Biomater Sci Eng. 2020, 6, 1522-1534. |
74. | Yao, Q.; Liu, Y.; Pan, Y.; Li, Y.; Xu, L.; Zhong, Y.; Wang, W.; Zuo, J.; Yu, H.; Lv, Z.; Chen, H.; Zhang, L.; Wang, B.; Yao, H.; Meng, Y. Long-term induction of endogenous BMPs growth factor from antibacterial dual network hydrogels for fast large bone defect repair. J Colloid Interface Sci. 2022, 607, 1500-1515. |
75. | Chauhan, N.; Gupta, P.; Arora, L.; Pal, D.; Singh, Y. Dexamethasone-loaded, injectable pullulan-poly(ethylene glycol) hydrogels for bone tissue regeneration in chronic inflammatory conditions. Mater Sci Eng C Mater Biol Appl. 2021, 130, 112463. |
76. | Liu, J.; Liu, H.; Jia, Y.; Tan, Z.; Hou, R.; Lu, J.; Luo, D.; Fu, X.; Wang, L.; Wang, X. Glucose-sensitive delivery of tannic acid by a photo-crosslinked chitosan hydrogel film for antibacterial and anti-inflammatory therapy. J Biomater Sci Polym Ed. 2022, 33, 1644-1663. |
77. | Feng, Q.; Zhang, M.; Zhang, G.; Mei, H.; Su, C.; Liu, L.; Wang, X.; Wan, Z.; Xu, Z.; Hu, L.; Nie, Y.; Li, J. A whole-course-repair system based on ROS/glucose stimuli-responsive EGCG release and tunable mechanical property for efficient treatment of chronic periodontitis in diabetic rats. J Mater Chem B. 2024, 12, 3719-3740. |
78. | Xiong, A.; He, Y.; Gao, L.; Li, G.; Liu, S.; Weng, J.; Wang, D.; Zeng, H. The fabrication of a highly efficient hydrogel based on a functionalized double network loaded with magnesium ion and BMP2 for bone defect synergistic treatment. Mater Sci Eng C Mater Biol Appl. 2021, 128, 112347. |
79. | Kawaguchi, H.; Oka, H.; Jingushi, S.; Izumi, T.; Fukunaga, M.; Sato, K.; Matsushita, T.; Nakamura, K. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: a randomized, placebo-controlled trial. J Bone Miner Res. 2010, 25, 2735-2743. |
80. | Zou, Z.; Wang, L.; Zhou, Z.; Sun, Q.; Liu, D.; Chen, Y.; Hu, H.; Cai, Y.; Lin, S.; Yu, Z.; Tan, B.; Guo, W.; Ling, Z.; Zou, X. Simultaneous incorporation of PTH(1-34) and nano-hydroxyapatite into Chitosan/Alginate Hydrogels for efficient bone regeneration. Bioact Mater. 2021, 6, 1839-1851. |
81. | Giraudo, M. V.; Di Francesco, D.; Catoira, M. C.; Cotella, D.; Fusaro, L.; Boccafoschi, F. Angiogenic potential in biological hydrogels. Biomedicines. 2020, 8, 436. |
82. | Yue, S.; He, H.; Li, B.; Hou, T. Hydrogel as a biomaterial for bone tissue engineering: a review. Nanomaterials (Basel). 2020, 10, 1511. |
83. | Anada, T.; Pan, C. C.; Stahl, A. M.; Mori, S.; Fukuda, J.; Suzuki, O.; Yang, Y. Vascularized bone-mimetic hydrogel constructs by 3D bioprinting to promote osteogenesis and angiogenesis. Int J Mol Sci. 2019, 20, 1096. |
84. | Liu, X.; Wang, N.; Liu, X.; Deng, R.; Kang, R.; Xie, L. Vascular repair by grafting based on magnetic nanoparticles. Pharmaceutics. 2022, 14, 1433. |
85. | Araújo-Custódio, S.; Gomez-Florit, M.; Tomás, A. R.; Mendes, B. B.; Babo, P. S.; Mithieux, S. M.; Weiss, A.; Domingues, R. M. A.; Reis, R. L.; Gomes, M. E. Injectable and magnetic responsive hydrogels with bioinspired ordered structures. ACS Biomater Sci Eng. 2019, 5, 1392-1404. |
86. | Zhang, Y.; Li, J.; Habibovic, P. Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact Mater. 2022, 15, 372-381. |
87. | Wu, S. W.; Liu, X.; Miller, A. L.,2nd; Cheng, Y. S.; Yeh, M. L.; Lu, L. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr Polym. 2018, 192, 308-316. |
88. | Atoufi, Z.; Kamrava, S. K.; Davachi, S. M.; Hassanabadi, M.; Saeedi Garakani, S.; Alizadeh, R.; Farhadi, M.; Tavakol, S.; Bagher, Z.; Hashemi Motlagh, G. Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: synthesis, characterization, drug release and cell culture study. Int J Biol Macromol. 2019, 139, 1168-1181. |
89. | Jing, Z.; Yuan, W.; Wang, J.; Ni, R.; Qin, Y.; Mao, Z.; Wei, F.; Song, C.; Zheng, Y.; Cai, H.; Liu, Z. Simvastatin/hydrogel-loaded 3D-printed titanium alloy scaffolds suppress osteosarcoma via TF/NOX2-associated ferroptosis while repairing bone defects. Bioact Mater. 2024, 33, 223-241. |
90. | Sakudo, A. Near-infrared spectroscopy for medical applications: current status and future perspectives. Clin Chim Acta. 2016, 455, 181-188. |
91. | Zhu, H.; Yang, H.; Ma, Y.; Lu, T. J.; Xu, F.; Genin, G. M.; Lin, M. Spatiotemporally controlled photoresponsive hydrogels: design and predictive modeling from processing through application. Adv Funct Mater. 2020, 30, 2000639. |
92. | Wei, H.; Zhang, B.; Lei, M.; Lu, Z.; Liu, J.; Guo, B.; Yu, Y. Visible-light-mediated nano-biomineralization of customizable tough hydrogels for biomimetic tissue engineering. ACS Nano. 2022, 16, 4734-4745. |
93. | Feng, L.; Chen, Q.; Cheng, H.; Yu, Q.; Zhao, W.; Zhao, C. Dually-thermoresponsive hydrogel with shape adaptability and synergetic bacterial elimination in the full course of wound healing. Adv Healthc Mater. 2022, 11, e2201049. |
94. | Lv, X.; Xu, Y.; Ruan, X.; Yang, D.; Shao, J.; Hu, Y.; Wang, W.; Cai, Y.; Tu, Y.; Dong, X. An injectable and biodegradable hydrogel incorporated with photoregulated NO generators to heal MRSA-infected wounds. Acta Biomater. 2022, 146, 107-118. |
95. | Liang, B.; Burley, G.; Lin, S.; Shi, Y. C. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett. 2022, 27, 72. |
96. | Lee, I. N.; Dobre, O.; Richards, D.; Ballestrem, C.; Curran, J. M.; Hunt, J. A.; Richardson, S. M.; Swift, J.; Wong, L. S. Photoresponsive hydrogels with photoswitchable mechanical properties allow time-resolved analysis of cellular responses to matrix stiffening. ACS Appl Mater Interfaces. 2018, 10, 7765-7776. |
97. | Guo, L.; Chen, H.; Ding, J.; Rong, P.; Sun, M.; Zhou, W. Surface engineering Salmonella with pH-responsive polyserotonin and self-activated DNAzyme for better microbial therapy of tumor. Exploration (Beijing). 2023, 3, 20230017. |
98. | Liang, X.; Wang, X.; Xu, Q.; Lu, Y.; Zhang, Y.; Xia, H.; Lu, A.; Zhang, L. Rubbery chitosan/carrageenan hydrogels constructed through an electroneutrality system and their potential application as cartilage scaffolds. Biomacromolecules. 2018, 19, 340-352. |
99. | Kim, H. D.; Lee, E. A.; An, Y. H.; Kim, S. L.; Lee, S. S.; Yu, S. J.; Jang, H. L.; Nam, K. T.; Im, S. G.; Hwang, N. S. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering. ACS Appl Mater Interfaces. 2017, 9, 21639-21650. |
100. | Xiao, Y.; Gong, T.; Jiang, Y.; Wang, Y.; Wen, Z. T.; Zhou, S.; Bao, C.; Xu, X. Fabrication and characterization of a glucose-sensitive antibacterial chitosan-polyethylene oxide hydrogel. Polymer (Guildf). 2016, 82, 1-10. |
101. | Tseng, T. C.; Hsieh, F. Y.; Theato, P.; Wei, Y.; Hsu, S. H. Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials. 2017, 133, 20-28. |
102. | Amer, L. D.; Bryant, S. J. The in vitro and in vivo response to MMP-sensitive poly(ethylene glycol) hydrogels. Ann Biomed Eng. 2016, 44, 1959-1969. |
103. | Schneider, M. C.; Lalitha Sridhar, S.; Vernerey, F. J.; Bryant, S. J. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach. J Mater Chem B. 2020, 8, 2775-2791. |
104. | Zhang, M.; Yu, T.; Li, J.; Yan, H.; Lyu, L.; Yu, Y.; Yang, G.; Zhang, T.; Zhou, Y.; Wang, X.; Liu, D. Matrix Metalloproteinase-responsive hydrogel with on-demand release of phosphatidylserine promotes bone regeneration through immunomodulation. Adv Sci (Weinh). 2024, 11, e2306924. |
[1] | Pengrui Zhang, Qiwei Qin, Xinna Cao, Honglin Xiang, Dechao Feng, Dilinaer Wusiman, Yuling Li. Hydrogel microspheres for bone regeneration through regulation of the regenerative microenvironment [J]. Biomaterials Translational, 2024, 5(3): 205-235. |
[2] | Shuhao Yang, Haoming Wu, Chao Peng, Jian He, Zhengguang Pu, Zhidong Lin, Jun Wang, Yingkun Hu, Qiao Su, Bingnan Zhou, Xin Yong, Hai Lan, Ning Hu, Xulin Hu. From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications [J]. Biomaterials Translational, 2024, 5(3): 274-299. |
[3] | Yuqi Gai, Huaijuan Zhou, Yingting Yang, Jiatian Chen, Bowen Chi, Pei Li, Yue Yin, Yilong Wang, Jinhua Li. Injectable body temperature responsive hydrogel for encephalitis treatment via sustained release of nano-anti-inflammatory agents [J]. Biomaterials Translational, 2024, 5(3): 300-313. |
[4] | Wan-Ying Guo, Wei-Huang Wang, Pei-Yao Xu, Ranjith Kumar Kankala, Ai-Zheng Chen. Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications [J]. Biomaterials Translational, 2024, 5(2): 114-128. |
[5] | Haohan Wang, Yonglin Guo, Yiwen Jiang, Yingyu Ge, Hanyi Wang, Dingyi Shi, Guoyang Zhang, Jinzhong Zhao, Yuhao Kang, Liren Wang. Exosome-loaded biomaterials for tendon/ligament repair [J]. Biomaterials Translational, 2024, 5(2): 129-143. |
[6] | Xiaowen Xu, Jie Song. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds [J]. Biomaterials Translational, 2020, 1(1): 33-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||