Biomaterials Translational ›› 2024, Vol. 5 ›› Issue (3): 314-324.doi: 10.12336/biomatertransl.2024.03.007
• RESEARCH ARTICLE • Previous Articles Next Articles
Zhuangzhuang Li1,2, Yi Luo1,2, Minxun Lu1,2, Yitian Wang1,2, Linsen Zhong3, Yong Zhou1,2, Zhenfeng Duan4, Li Min1,2,*(), Chongqi Tu1,2,*(
)
Received:
2024-07-22
Revised:
2024-08-28
Accepted:
2024-09-13
Online:
2024-09-28
Published:
2024-09-28
Contact:
Li Min,Chongqi Tu
E-mail:minli1204@scu.edu.cn;tucq@scu.edu.cn
About author:
Chongqi Tu, tucq@scu.edu.cn.Li, Z.; Luo, Y.; Lu, M.; Wang, Y.; Zhong, L.; Zhou, Y.; Duan, Z.; Min, L.; Tu, C. Design, characterisation, and clinical evaluation of a novel porous Ti-6Al-4V hemipelvic prosthesis based on Voronoi diagram. Biomater Transl. 2024, 5(3), 314-324.
Case | Sex | Age (year) | Diagnosis | Enneking zone | Operation time (minute) | Blood loss (mL) | Follow-up (month) | MSTS score | Complication | Oncological status |
---|---|---|---|---|---|---|---|---|---|---|
1 | M | 55 | Chondrosarcoma | II+III | 330 | 300 | 24 | 25 | - | NED |
2 | F | 48 | Metastasis | II | 358 | 700 | 22 | 25 | - | AWD |
3 | F | 53 | Metastasis | I+II+III | 195 | 400 | 23 | 24 | - | AWD |
4 | M | 67 | Chondrosarcoma | I+II+III | 295 | 1500 | 18 | 22 | - | NED |
5 | M | 45 | Haemangioma | I+II+III | 316 | 3000 | 20 | 23 | DWH | NED |
6 | F | 61 | Metastasis | I+II+IV | 314 | 5000 | 15 | 20 | - | AWD |
Table 1. Demographics, clinical characteristics, and follow-up outcomes of six patients
Case | Sex | Age (year) | Diagnosis | Enneking zone | Operation time (minute) | Blood loss (mL) | Follow-up (month) | MSTS score | Complication | Oncological status |
---|---|---|---|---|---|---|---|---|---|---|
1 | M | 55 | Chondrosarcoma | II+III | 330 | 300 | 24 | 25 | - | NED |
2 | F | 48 | Metastasis | II | 358 | 700 | 22 | 25 | - | AWD |
3 | F | 53 | Metastasis | I+II+III | 195 | 400 | 23 | 24 | - | AWD |
4 | M | 67 | Chondrosarcoma | I+II+III | 295 | 1500 | 18 | 22 | - | NED |
5 | M | 45 | Haemangioma | I+II+III | 316 | 3000 | 20 | 23 | DWH | NED |
6 | F | 61 | Metastasis | I+II+IV | 314 | 5000 | 15 | 20 | - | AWD |
Figure 1. Workflow of designing the customised hemipelvic prosthesis with ITS. (A-G) Segmentation of the pelvis 3D model (A), determination of the osteotomy planes (B), simulation of the tumour resection (C), design of the guiding plate for bone-cutting (D), prosthesis model by mirroring the contralateral unaffected hemipelvis, followed by modifications (E), distribution of the porous part and solid architecture within the prosthesis model (F), creation of the ITS through the Voronoi diagram (G). 3D: three-dimensional; ITS: imitation of trabecular structure.
Figure 2. (A) Three-dimensional models of the reconstructed pelvis at the anteroposterior, inlet and outlet views. (B) The prosthesis models with delicate-defined solid architecture and porous structure. (C) The distribution of the pore size ranging from 500 to 1400 μm. (D, E) The average pore size (D) and the porosity (E).
Case | Imitation of trabecular structure | Large pore size-imitation of trabecular structure | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution of the pore size (μm) | Average pore size (μm) | Unit cell strut thickness (μm) | Porosity (%) | Distribution of the pore size (μm) | Average pore size (μm) | Unit cell strut thickness (μm) | Porosity (%) | ||
1 | 502–1397 | 917 | 400 | 63.29 | – | – | – | – | |
2 | 508–1395 | 914 | 400 | 62.89 | – | – | – | – | |
3 | 501–1398 | 919 | 400 | 63.19 | 505–1893 | 1256 | 600 | 63.93 | |
4 | 500–1381 | 916 | 400 | 62.65 | 509–1897 | 1285 | 600 | 64.54 | |
5 | 502–1391 | 918 | 400 | 63.43 | 501–1898 | 1248 | 600 | 64.32 | |
6 | 503–1390 | 919 | 400 | 63.31 | 500–1894 | 1251 | 600 | 64.28 |
Table 2. Details of the customised hemipelvic prosthesis models
Case | Imitation of trabecular structure | Large pore size-imitation of trabecular structure | |||||||
---|---|---|---|---|---|---|---|---|---|
Distribution of the pore size (μm) | Average pore size (μm) | Unit cell strut thickness (μm) | Porosity (%) | Distribution of the pore size (μm) | Average pore size (μm) | Unit cell strut thickness (μm) | Porosity (%) | ||
1 | 502–1397 | 917 | 400 | 63.29 | – | – | – | – | |
2 | 508–1395 | 914 | 400 | 62.89 | – | – | – | – | |
3 | 501–1398 | 919 | 400 | 63.19 | 505–1893 | 1256 | 600 | 63.93 | |
4 | 500–1381 | 916 | 400 | 62.65 | 509–1897 | 1285 | 600 | 64.54 | |
5 | 502–1391 | 918 | 400 | 63.43 | 501–1898 | 1248 | 600 | 64.32 | |
6 | 503–1390 | 919 | 400 | 63.31 | 500–1894 | 1251 | 600 | 64.28 |
Figure 3. The characterisation of the Ti-6Al-4V powder utilised in this work. (A) Morphology; (B, C) chemical composition; (D) particle size distribution.
Figure 4. (A, B) SEM images of the cubic ITS and L-ITS samples. (C, D) Micro-CT scans of the cubic ITS and L-ITS samples. (E, F) The stress-strain curves of the as-fabricated ITS and L-ITS samples. ITS: imitation of trabecular structure; L-ITS: large pore size imitation of trabecular structure; Micro-CT: micro-computed tomography; SEM: scanning electron microscopy.
Figure 5. (A) The photographs of prostheses fabricated by EBM. (B, C) Intraoperative photographs of tumour resection and prosthesis implantation. EBM: electron beam melting; ITS: Imitation of trabecular structure; L-ITS: large pore size imitation of trabecular structure.
Figure 6. Post-operative pelvic X-rays confirmed proper matching of the customised prostheses with the bone defect. Tomosynthesis-Shimadzu metal artifact reduction technology images of typical 2 patients two months after surgery indicated close contact between the implant and host bone, alongside favourable bone density and absence of resorption or osteolysis around the implant.
Study | Porous type | Pore size (μm) | Mean follow-up (month) | Osseointegration outcome | Mechanical stability outcome | Patient-reported outcomes (MSTS score) |
---|---|---|---|---|---|---|
Wong et al. | Regular | 720 | 10 | NA | No loosening | NA |
Peng et al. | Honeycomb like | 400–450 | 33 | NA | No loosening | 19.8 |
Xu et al. | Irregular | 600 | 22 | Good | No loosening | 22.0 |
Han et al. | Regular | 400 | 12 | NA | No loosening | 16.0 |
Current study | Voronoi-based | 917 (500–1400) | 20 | Good | No loosening | 23.2 |
Table 3. Previous studies on the application of three-dimensional-printed hemipelvic prosthesis
Study | Porous type | Pore size (μm) | Mean follow-up (month) | Osseointegration outcome | Mechanical stability outcome | Patient-reported outcomes (MSTS score) |
---|---|---|---|---|---|---|
Wong et al. | Regular | 720 | 10 | NA | No loosening | NA |
Peng et al. | Honeycomb like | 400–450 | 33 | NA | No loosening | 19.8 |
Xu et al. | Irregular | 600 | 22 | Good | No loosening | 22.0 |
Han et al. | Regular | 400 | 12 | NA | No loosening | 16.0 |
Current study | Voronoi-based | 917 (500–1400) | 20 | Good | No loosening | 23.2 |
Additional Figure 2. The distribution of the pore size among the L-ITS ranges from 500 to 1900 μm. (A–D) Cases 3–6.L-ITS: large pore size imitation of trabecular structure.
1. | Hu, X.; Chen, Y.; Cai, W.; Cheng, M.; Yan, W.; Huang, W. Computer-aided design and 3D printing of hemipelvic endoprosthesis for personalized limb-salvage reconstruction after periacetabular tumor resection. Bioengineering (Basel). 2022, 9, 400. |
2. |
Du, X.; Wei, H.; Zhang, B.; Gao, S.; Li, Z.; Yao, W. The pedicled sartorius flap and mesh (PSM) technique vs no reconstruction in repairing the defect after type III pelvic bone tumor resection: a retrospective study. World J Surg Oncol. 2023, 21, 14.
doi: 10.1186/s12957-023-02905-1 pmid: 36653790 |
3. |
Li, Z.; Lu, M.; Min, L.; Luo, Y.; Tu, C. Treatment of pelvic giant cell tumor by wide resection with patient-specific bone-cutting guide and reconstruction with 3D-printed personalized implant. J Orthop Surg Res. 2023, 18, 648.
doi: 10.1186/s13018-023-04142-4 pmid: 37658436 |
4. |
Liang, H.; Ji, T.; Zhang, Y.; Wang, Y.; Guo, W. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour. Bone Joint J. 2017, 99-B, 267-275.
doi: 10.1302/0301-620X.99B2.BJJ-2016-0654.R1 pmid: 28148672 |
5. | Jansen, J. A.; van de Sande, M. A.; Dijkstra, P. D. Poor long-term clinical results of saddle prosthesis after resection of periacetabular tumors. Clin Orthop Relat Res. 2013, 471, 324-331. |
6. | Danışman, M.; Mermerkaya, M. U.; Bekmez, Ş.; Ayvaz, M.; Atilla, B.; Tokgözoğlu, A. M. Reconstruction of periacetabular tumours with saddle prosthesis or custom-made prosthesis, functional results and complications. Hip Int. 2016, 26, e14-18. |
7. | Issa, S. P.; Biau, D.; Babinet, A.; Dumaine, V.; Le Hanneur, M.; Anract, P. Pelvic reconstructions following peri-acetabular bone tumour resections using a cementless ice-cream cone prosthesis with dual mobility cup. Int Orthop. 2018, 42, 1987-1997. |
8. | Fisher, N. E.; Patton, J. T.; Grimer, R. J.; Porter, D.; Jeys, L.; Tillman, R. M.; Abudu, A.; Carter, S. R. Ice-cream cone reconstruction of the pelvis: a new type of pelvic replacement: early results. J Bone Joint Surg Br. 2011, 93, 684-688. |
9. | Wang, B.; Xie, X.; Yin, J.; Zou, C.; Wang, J.; Huang, G.; Wang, Y.; Shen, J. Reconstruction with modular hemipelvic endoprosthesis after pelvic tumor resection:a report of 50 consecutive cases. PloS One. 2015, 10, e0127263. |
10. | Guo, W.; Li, D.; Tang, X.; Yang, Y.; Ji, T. Reconstruction with modular hemipelvic prostheses for periacetabular tumor. Clin Orthop Relat Res. 2007, 461, 180-188. |
11. |
Zang, J.; Guo, W.; Yang, Y.; Xie, L. Reconstruction of the hemipelvis with a modular prosthesis after resection of a primary malignant peri-acetabular tumour involving the sacroiliac joint. Bone Joint J. 2014, 96-B, 399-405.
doi: 10.1302/0301-620X.96B3.32387 pmid: 24589799 |
12. | Peng, W.; Zheng, R.; Wang, H.; Huang, X. Reconstruction of bony defects after tumor resection with 3D-printed anatomically conforming pelvic prostheses through a novel treatment strategy. Biomed Res Int. 2020, 2020, 8513070. |
13. |
Hu, X.; Lu, M.; Zhang, Y.; Li, Z.; Wang, J.; Wang, Y.; Xing, Z.; Yang, X.; Tu, C.; Min, L. Pelvic-girdle reconstruction with three-dimensional-printed endoprostheses after limb-salvage surgery for pelvic sarcomas: current landscape. Br J Surg. 2023, 110, 1712-1722.
doi: 10.1093/bjs/znad310 pmid: 37824784 |
14. | Kelly, C. N.; Evans, N. T.; Irvin, C. W.; Chapman, S. C.; Gall, K.; Safranski, D. L. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Mater Sci Eng C Mater Biol Appl. 2019, 98, 726-736. |
15. | Wang, J.; Min, L.; Lu, M.; Zhang, Y.; Wang, Y.; Luo, Y.; Zhou, Y.; Duan, H.; Tu, C. What are the complications of three-dimensionally printed, custom-made, integrative hemipelvic endoprostheses in patients with primary malignancies involving the acetabulum, and what is the function of these patients? Clin Orthop Relat Res. 2020, 478, 2487-2501. |
16. | Paxton, N. C.; Nightingale, R. C.; Woodruff, M. A. Capturing patient anatomy for designing and manufacturing personalized prostheses. Curr Opin Biotechnol. 2022, 73, 282-289. |
17. |
Wang, B.; Hao, Y.; Pu, F.; Jiang, W.; Shao, Z. Computer-aided designed, three dimensional-printed hemipelvic prosthesis for peri-acetabular malignant bone tumour. Int Orthop. 2018, 42, 687-694.
doi: 10.1007/s00264-017-3645-5 pmid: 28956108 |
18. | Xu, S.; Guo, Z.; Shen, Q.; Peng, Y.; Li, J.; Li, S.; He, P.; Jiang, Z.; Que, Y.; Cao, K.; Hu, B.; Hu, Y. Reconstruction of tumor-induced pelvic defects with customized, three-dimensional printed prostheses. Front Oncol. 2022, 12, 935059. |
19. |
Wang, M.; Liu, T.; Xu, C.; Liu, C.; Li, B.; Lian, Q.; Chen, T.; Qiao, S.; Wang, Z. 3D-printed hemipelvic prosthesis combined with a dual mobility bearing in patients with primary malignant neoplasm involving the acetabulum: clinical outcomes and finite element analysis. BMC Surg. 2022, 22, 357.
doi: 10.1186/s12893-022-01804-8 pmid: 36203147 |
20. |
Parthasarathy, J.; Starly, B.; Raman, S.; Christensen, A. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). J Mech Behav Biomed Mater. 2010, 3, 249-259.
doi: 10.1016/j.jmbbm.2009.10.006 pmid: 20142109 |
21. | Aufa, A. N.; Hassan, M. Z.; Ismail, Z. Recent advances in Ti-6Al-4V additively manufactured by selective laser melting for biomedical implants: prospect development. J Alloys Compd. 2022, 896, 163072. |
22. | Wang, Z.; Wang, C.; Li, C.; Qin, Y.; Zhong, L.; Chen, B.; Li, Z.; Liu, H.; Chang, F.; Wang, J. Analysis of factors influencing bone ingrowth into three-dimensional printed porous metal scaffolds: A review. J Alloys Compd. 2017, 717, 271-285. |
23. |
Wang, C.; Xu, D.; Li, S.; Yi, C.; Zhang, X.; He, Y.; Yu, D. Effect of pore size on the physicochemical properties and osteogenesis of Ti6Al4V porous scaffolds with bionic structure. ACS Omega. 2020, 5, 28684-28692.
doi: 10.1021/acsomega.0c03824 pmid: 33195921 |
24. |
Van Bael, S.; Chai, Y. C.; Truscello, S.; Moesen, M.; Kerckhofs, G.; Van Oosterwyck, H.; Kruth, J. P.; Schrooten, J. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 2012, 8, 2824-2834.
doi: 10.1016/j.actbio.2012.04.001 pmid: 22487930 |
25. |
Chen, H.; Han, Q.; Wang, C.; Liu, Y.; Chen, B.; Wang, J. Porous scaffold design for additive manufacturing in orthopedics: a review. Front Bioeng Biotechnol. 2020, 8, 609.
doi: 10.3389/fbioe.2020.00609 pmid: 32626698 |
26. | Lv, Y.; Wang, B.; Liu, G.; Tang, Y.; Lu, E.; Xie, K.; Lan, C.; Liu, J.; Qin, Z.; Wang, L. Metal material, properties and design methods of porous biomedical scaffolds for additive manufacturing: a review. Front Bioeng Biotechnol. 2021, 9, 641130. |
27. |
Gómez, S.; Vlad, M. D.; López, J.; Fernández, E. Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater. 2016, 42, 341-350.
doi: S1742-7061(16)30309-9 pmid: 27370904 |
28. | Chen, H.; Liu, Y.; Wang, C.; Zhang, A.; Chen, B.; Han, Q.; Wang, J. Design and properties of biomimetic irregular scaffolds for bone tissue engineering. Comput Biol Med. 2021, 130, 104241. |
29. | Liang, H.; Chao, L.; Xie, D.; Yang, Y.; Shi, J.; Zhang, Y.; Xue, B.; Shen, L.; Tian, Z.; Li, L.; Jiang, Q. Trabecular-like Ti-6Al-4V scaffold for bone repair: a diversified mechanical stimulation environment for bone regeneration. Compos B Eng. 2022, 241, 110057. |
30. | Liang, H.; Yang, Y.; Xie, D.; Li, L.; Mao, N.; Wang, C.; Tian, Z.; Jiang, Q.; Shen, L. Trabecular-like Ti-6Al-4V scaffolds for orthopedic: fabrication by selective laser melting and in vitro biocompatibility. J Mater Sci Technol. 2019, 35, 1284-1297. |
31. | Zhang, L. C.; Liu, Y.; Li, S.; Hao, Y. Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater. 2018, 20, 1700842. |
32. | Enneking, W. F.; Dunham, W.; Gebhardt, M. C.; Malawar, M.; Pritchard, D. J. A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin Orthop Relat Res. 1993, 241-246. |
33. |
Wong, K. C.; Kumta, S. M.; Geel, N. V.; Demol, J. One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg. 2015, 20, 14-23.
doi: 10.3109/10929088.2015.1076039 pmid: 26290317 |
34. |
Wang, J.; Min, L.; Lu, M.; Zhang, Y.; Wang, Y.; Luo, Y.; Zhou, Y.; Duan, H.; Tu, C. Three-dimensional-printed custom-made hemipelvic endoprosthesis for primary malignancies involving acetabulum: the design solution and surgical techniques. J Orthop Surg Res. 2019, 14, 389.
doi: 10.1186/s13018-019-1455-8 pmid: 31775805 |
35. |
Li, Z.; Luo, Y.; Lu, M.; Wang, Y.; Gong, T.; He, X.; Hu, X.; Long, J.; Zhou, Y.; Min, L.; Tu, C. Biomimetic design and clinical application of Ti-6Al-4V lattice hemipelvis prosthesis for pelvic reconstruction. J Orthop Surg Res. 2024, 19, 210.
doi: 10.1186/s13018-024-04672-5 pmid: 38561755 |
36. | Li, J.; Yang, Y.; Sun, Z.; Peng, K.; Liu, K.; Xu, P.; Li, J.; Wei, X.; He, X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio. 2024, 24, 100934. |
37. | Liu, J.; Wang, R.; Gong, X.; Zhu, Y.; Shen, C.; Zhu, Z.; Li, Y.; Li, Z.; Ren, Z.; Chen, X.; Bian, W.; Wang, D.; Yang, X.; Zhang, Y. Ti6Al4V biomimetic scaffolds for bone tissue engineering: Fabrication, biomechanics and osseointegration. Mater Des. 2023, 234, 112330. |
38. | Wu, Y.; Wang, Y.; Liu, M.; Shi, D.; Hu, N.; Feng, W. Mechanical properties and in vivo assessment of electron beam melted porous structures for orthopedic applications. Metals. 2023, 13, 1034. |
39. | Du, Y.; Liang, H.; Xie, D.; Mao, N.; Zhao, J.; Tian, Z.; Wang, C.; Shen, L. Design and statistical analysis of irregular porous scaffolds for orthopedic reconstruction based on voronoi tessellation and fabricated via selective laser melting (SLM). Mater Chem Phys. 2020, 239, 121968. |
40. | Loh, Q. L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013, 19, 485-502. |
41. | Wang, C.; Xu, D.; Lin, L.; Li, S.; Hou, W.; He, Y.; Sheng, L.; Yi, C.; Zhang, X.; Li, H.; Li, Y.; Zhao, W.; Yu, D. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021, 131, 112499. |
42. |
Yin, B.; Ma, P.; Chen, J.; Wang, H.; Wu, G.; Li, B.; Li, Q.; Huang, Z.; Qiu, G.; Wu, Z. Hybrid macro-porous titanium ornamented by degradable 3D Gel/nHA micro-scaffolds for bone tissue regeneration. Int J Mol Sci. 2016, 17, 575.
doi: 10.3390/ijms17040575 pmid: 27092492 |
43. | Huang, G.; Ceccarelli, M.; Huang, Q.; Zhang, W.; Yu, Z.; Chen, X.; Mai, J. Design and feasibility study of a leg-exoskeleton assistive wheelchair robot with tests on gluteus medius muscles. Sensors (Basel). 2019, 19, 548. |
44. | Chimutengwende-Gordon, M.; Dowling, R.; Pendegrass, C.; Blunn, G. Determining the porous structure for optimal soft-tissue ingrowth: An in vivo histological study. PloS One. 2018, 13, e0206228. |
45. | Almela, T.; Brook, I. M.; Khoshroo, K.; Rasoulianboroujeni, M.; Fahimipour, F.; Tahriri, M.; Dashtimoghadam, E.; El-Awa, A.; Tayebi, L.; Moharamzadeh, K. Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphate-based scaffolds. Bioprinting. 2017, 6, 1-7. |
46. |
Zhang, T.; Wei, Q.; Zhou, H.; Jing, Z.; Liu, X.; Zheng, Y.; Cai, H.; Wei, F.; Jiang, L.; Yu, M.; Cheng, Y.; Fan, D.; Zhou, W.; Lin, X.; Leng, H.; Li, J.; Li, X.; Wang, C.; Tian, Y.; Liu, Z. Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment. Bioact Mater. 2021, 6, 3659-3670.
doi: 10.1016/j.bioactmat.2021.03.030 pmid: 33898870 |
47. |
Song, P.; Hu, C.; Pei, X.; Sun, J.; Sun, H.; Wu, L.; Jiang, Q.; Fan, H.; Yang, B.; Zhou, C.; Fan, Y.; Zhang, X. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B. 2019, 7, 2865-2877.
doi: 10.1039/c9tb00093c pmid: 32255089 |
48. |
Shah, F. A.; Thomsen, P.; Palmquist, A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019, 84, 1-15.
doi: S1742-7061(18)30672-X pmid: 30445157 |
49. | Guo, Z.; Peng, Y.; Shen, Q.; Li, J.; He, P.; Yuan, P.; Liu, Y.; Que, Y.; Guo, W.; Hu, Y.; Xu, S. Reconstruction with 3D-printed prostheses after type I + II + III internal hemipelvectomy: Finite element analysis and preliminary outcomes. Front Bioeng Biotechnol. 2022, 10, 1036882. |
50. | Han, Q.; Zhang, K.; Zhang, Y.; Wang, C.; Yang, K.; Zou, Y.; Chen, B.; Wang, J. Individual resection and reconstruction of pelvic tumor with three-dimensional printed customized hemi-pelvic prosthesis: A case report. Medicine (Baltimore). 2019, 98, e16658. |
[1] | Changning Sun, Jianfeng Kang, Chuncheng Yang, Jibao Zheng, Yanwen Su, Enchun Dong, Yingjie Liu, Siqi Yao, Changquan Shi, Huanhao Pang, Jiankang He, Ling Wang, Chaozong Liu, Jianhua Peng, Liang Liu, Yong Jiang, Dichen Li. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review [J]. Biomaterials Translational, 2022, 3(2): 116-133. |
[2] | Feifei Pu, Wei Wu, Doudou Jing, Yihan Yu, Yizhong Peng, Jianxiang Liu, Qiang Wu, Baichuan Wang, Zhicai Zhang, Zengwu Shao. Three-dimensional-printed titanium prostheses with bone trabeculae enable mechanical-biological reconstruction after resection of bone tumours [J]. Biomaterials Translational, 2022, 3(2): 134-141. |
[3] | Xiaowen Xu, Jie Song. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds [J]. Biomaterials Translational, 2020, 1(1): 33-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||