Biomaterials Translational ›› 2024, Vol. 5 ›› Issue (4): 390-410.doi: 10.12336/biomatertransl.2024.04.005
• REVIEW • Previous Articles Next Articles
Chen Zhang1,2,3#, Yingying Jing1,2#, Jianhua Wang4#, Zhidao Xia5, Yuxiao Lai6,*(), Long Bai1,2,7,*(
), Jiacan Su1,2,4,*(
)
Received:
2024-10-07
Revised:
2024-11-01
Accepted:
2024-11-03
Online:
2024-11-14
Published:
2024-12-28
Contact:
Yuxiao Lai, yx.lai@siat.ac.cn;Long Bai, bailong@shu.edu.cn;Jiacan Su, drsujiacan@163.com
About author:
# Authors equally.
Zhang, C.; Jing, Y.; Wang, J.; Xia, Z.; Lai, Y; Bai, L.; Su, J. Skeletal organoids. Biomater Transl. 2024, 5(4), 390-410.
Figure 2. Comparison across multiple systems. Created with BioRender.com. 2D: two–dimensional; AA: amino acid; BMPs: bone morphogenetic proteins; EGF: epidermal growth factor; ESCs: embryonic stem cells; FGF: fibroblast growth factor; IGF: insulin–like growth factor; iPSCs: induced pluripotent stem cells.
Figure 3. Development of skeletal organoids. Created with BioRender.com. ECM: extracellular matrix; hESCs: human embryonic stem cells; hPSCs: human pluripotent stem cells; iPSCs: induced pluripotent stem cells; mESCs: mouse embryonic stem cells.
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
CD14+ monocytes | HA/β–TCP | Macrophage colony–stimulating factor | Simulate the bone regeneration process | |
BMSCs, human umbilical vein endothelial cells | DNA hydrogels | Apt02, tFNA | Accelerate the repair of critical–sized bone defects | |
MuSCs, BMSCs | β–TCP | BMP–2 | Promote differentiation and mineralisation of cells | |
BMMs | DBP | VD3, PGE2 | Local remodelling of bone tissue | |
hBMSCs, rBMSCs | GelMA | TGF–β3 | Rapidly promote bone regeneration | 45 |
Table 1. Methods for constructing bone organoids
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
CD14+ monocytes | HA/β–TCP | Macrophage colony–stimulating factor | Simulate the bone regeneration process | |
BMSCs, human umbilical vein endothelial cells | DNA hydrogels | Apt02, tFNA | Accelerate the repair of critical–sized bone defects | |
MuSCs, BMSCs | β–TCP | BMP–2 | Promote differentiation and mineralisation of cells | |
BMMs | DBP | VD3, PGE2 | Local remodelling of bone tissue | |
hBMSCs, rBMSCs | GelMA | TGF–β3 | Rapidly promote bone regeneration | 45 |
Figure 4. Construction and application of bone organoids. Created with BioRender.com. BMPs: bone morphogenetic proteins; FGF: fibroblast growth factor; hBMCs: human bone stem cells; iPSCs: induced pluripotent stem cells; MSCs: mesenchymal stem cells; OBs: osteoblasts; PEG: polyethylene glycol.
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
hiPSCs | Matrigel | HGF | Model for studying muscle development and related diseases | |
Matrigel with fibrin | Tamoxifen | Study of muscle pathology, test of gene and cell therapy approaches | ||
Primary muscle cells | Matrigel with fibrin | - | Building disease model | |
Myoblasts | Fibrin hydrogels | CDFDA, NanoLuc | Model for simulating drug metabolism | |
Mouse myoblasts | Matrigel with collagen | IGF-1 | Evaluation of drug effects on muscle disorders |
Table 2. Methods for constructing muscle organoids
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
hiPSCs | Matrigel | HGF | Model for studying muscle development and related diseases | |
Matrigel with fibrin | Tamoxifen | Study of muscle pathology, test of gene and cell therapy approaches | ||
Primary muscle cells | Matrigel with fibrin | - | Building disease model | |
Myoblasts | Fibrin hydrogels | CDFDA, NanoLuc | Model for simulating drug metabolism | |
Mouse myoblasts | Matrigel with collagen | IGF-1 | Evaluation of drug effects on muscle disorders |
Figure 5. Construction and application of muscle organoids. Created with BioRender.com. BMP: bone morphogenetic proteins; FGF: fibroblast growth factor; hPSCs: human pluripotent stem cells; iPSCs: induced pluripotent stem cells; MPCs: muscle progenitor cells; SCs: satellite cells.
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
SMSCs | Agarose microwells | miR-138 | Construction of osteoarthritis model | |
Collagen, fibrin | miR-24 | Cartilage repair and tissue regeneration in osteoarthritis | ||
Chondrocytes | Matrigel, TISSEEL fibrin gel | TNF-α, TGF-β3 | Construction of cartilage inflammation model | |
NCM | Cytokines from NCM | Cartilage regeneration and repair of articular cartilage damage | ||
iPSCs | Agarose microwells | BMP-2, TGF-β1, BMP-6, FGF-2 | Repairment of osteochondral defects |
Table 3. Methods for constructing joint organoids
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
SMSCs | Agarose microwells | miR-138 | Construction of osteoarthritis model | |
Collagen, fibrin | miR-24 | Cartilage repair and tissue regeneration in osteoarthritis | ||
Chondrocytes | Matrigel, TISSEEL fibrin gel | TNF-α, TGF-β3 | Construction of cartilage inflammation model | |
NCM | Cytokines from NCM | Cartilage regeneration and repair of articular cartilage damage | ||
iPSCs | Agarose microwells | BMP-2, TGF-β1, BMP-6, FGF-2 | Repairment of osteochondral defects |
Figure 6. Construction and application of joint organoids. Created with BioRender.com. BMP: bone morphogenetic protein; BMSCs: bone mesenchymal stem cells; dECM: decellularised extracellular matrix; iPSCs: induced pluripotent stem cells; MSCs: mesenchymal stem cells; TGF–β: transforming growth factor–β.
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
SkMDCs, tenocytes | GelMA and PEGDMA | - | Drug development and screening | |
Periodontal ligament cells | BME | FGF-10, EGF | Construction of ligament organoid model | |
Normal adult human dermal fibroblasts | - | TGF-β3 | In vitro studies of tenogenesis |
Table 4. Methods for constructing ligament/tendon organoids
Cell source | Matrix gel | Inducing factor | Application | Reference |
---|---|---|---|---|
SkMDCs, tenocytes | GelMA and PEGDMA | - | Drug development and screening | |
Periodontal ligament cells | BME | FGF-10, EGF | Construction of ligament organoid model | |
Normal adult human dermal fibroblasts | - | TGF-β3 | In vitro studies of tenogenesis |
Figure 7. Construction and application of ligament and tendon organoids. Created with BioRender.com. ADSCs: adipose-derived stem cells; BMCs: bone marrow cells; FGF: fibroblast growth factor; LDSCs: lipoma-derived stem cells; PLA: polylactic acid; TDSCs: tendon‐derived stem cells; TGF-β: transforming growth factor-β.
1. | Abraham, D. M.; Herman, C.; Witek, L.; Cronstein, B. N.; Flores, R. L.; Coelho, P. G. Self-assembling human skeletal organoids for disease modeling and drug testing. J Biomed Mater Res B Appl Biomater. 2022, 110, 871–884. |
2. |
Shahriyari, M.; Islam, M. R.; Sakib, S. M.; Rinn, M.; Rika, A.; Krüger, D.; Kaurani, L.; Gisa, V.; Winterhoff, M.; Anandakumar, H.; Shomroni, O.; Schmidt, M.; Salinas, G.; Unger, A.; Linke, W. A.; Zschüntzsch, J.; Schmidt, J.; Bassel-Duby, R.; Olson, E. N.; Fischer, A.; Zimmermann, W. H.; Tiburcy, M. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. J Cachexia Sarcopenia Muscle. 2022, 13, 3106–3121.
doi: 10.1002/jcsm.13094 pmid: 36254806 |
3. | Davies, J. A. Chapter 1 - Organoids and mini-organs: Introduction, history, and potential. In Organoids and Mini-Organs, Davies, J. A.; Lawrence, M. L., eds.; Academic Press: 2018; pp 3–23. |
4. |
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126, 663–676.
doi: 10.1016/j.cell.2006.07.024 pmid: 16904174 |
5. | Sato, T.; Vries, R. G.; Snippert, H. J.; van de Wetering, M.; Barker, N.; Stange, D. E.; van Es, J. H.; Abo, A.; Kujala, P.; Peters, P. J.; Clevers, H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009, 459, 262–265. |
6. | Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011, 472, 51–56. |
7. | Lancaster, M. A.; Renner, M.; Martin, C. A.; Wenzel, D.; Bicknell, L. S.; Hurles, M. E.; Homfray, T.; Penninger, J. M.; Jackson, A. P.; Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature. 2013, 501, 373–379. |
8. |
Post, Y.; Puschhof, J.; Beumer, J.; Kerkkamp, H. M.; de Bakker, M. A. G.; Slagboom, J.; de Barbanson, B.; Wevers, N. R.; Spijkers, X. M.; Olivier, T.; Kazandjian, T. D.; Ainsworth, S.; Iglesias, C. L.; van de Wetering, W. J.; Heinz, M. C.; van Ineveld, R. L.; van Kleef, R.; Begthel, H.; Korving, J.; Bar-Ephraim, Y. E.; Getreuer, W.; Rios, A. C.; Westerink, R. H. S.; Snippert, H. J. G.; van Oudenaarden, A.; Peters, P. J.; Vonk, F. J.; Kool, J.; Richardson, M. K.; Casewell, N. R.; Clevers, H. Snake venom gland organoids. Cell. 2020, 180, 233–247.e21.
doi: S0092-8674(19)31323-6 pmid: 31978343 |
9. |
Tam, W. L.; Freitas Mendes, L.; Chen, X.; Lesage, R.; Van Hoven, I.; Leysen, E.; Kerckhofs, G.; Bosmans, K.; Chai, Y. C.; Yamashita, A.; Tsumaki, N.; Geris, L.; Roberts, S. J.; Luyten, F. P. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res Ther. 2021, 12, 513.
doi: 10.1186/s13287-021-02580-7 pmid: 34563248 |
10. | Wang, J.; Wu, Y.; Li, G.; Zhou, F.; Wu, X.; Wang, M.; Liu, X.; Tang, H.; Bai, L.; Geng, Z.; Song, P.; Shi, Z.; Ren, X.; Su, J. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024, 36, e2309875 |
11. | Cable, J.; Fuchs, E.; Weissman, I.; Jasper, H.; Glass, D.; Rando, T. A.; Blau, H.; Debnath, S.; Oliva, A.; Park, S.; Passegué, E.; Kim, C.; Krasnow, M. A. Adult stem cells and regenerative medicine-a symposium report. Ann N Y Acad Sci. 2020, 1462, 27–36. |
12. | Doss, M. X.; Sachinidis, A. Current challenges of iPSC-based disease modeling and therapeutic implications. Cells. 2019, 8, 403. |
13. | Omole, A. E.; Fakoya, A. O. J. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ. 2018, 6, e4370 |
14. | Qian, S.; Mao, J.; Liu, Z.; Zhao, B.; Zhao, Q.; Lu, B.; Zhang, L.; Mao, X.; Cheng, L.; Cui, W.; Zhang, Y.; Sun, X. Stem cells for organoids. Smart Med. 2022, 1, e20220007 |
15. |
Wu, S.; Wu, X.; Wang, X.; Su, J. Hydrogels for bone organoid construction: From a materiobiological perspective. J Mater Sci Technol. 2023, 136, 21–31.
doi: 10.1016/j.jmst.2022.07.008 |
16. | Ma, P.; Chen, Y.; Lai, X.; Zheng, J.; Ye, E.; Loh, X. J.; Zhao, Y.; Parikh, B. H.; Su, X.; You, M.; Wu, Y. L.; Li, Z. The translational application of hydrogel for organoid technology: challenges and future perspectives. Macromol Biosci. 2021, 21, e2100191 |
17. | Catoira, M. C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med. 2019, 30, 115. |
18. |
Kozlowski, M. T.; Crook, C. J.; Ku, H. T. Towards organoid culture without Matrigel. Commun Biol. 2021, 4, 1387.
doi: 10.1038/s42003-021-02910-8 pmid: 34893703 |
19. | Jee, J. H.; Lee, D. H.; Ko, J.; Hahn, S.; Jeong, S. Y.; Kim, H. K.; Park, E.; Choi, S. Y.; Jeong, S.; Lee, J. W.; Cho, H. J.; Kwon, M. S.; Yoo, J. Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cells Int. 2019, 2019, 8472712. |
20. |
Ye, W.; Luo, C.; Li, C.; Huang, J.; Liu, F. Organoids to study immune functions, immunological diseases and immunotherapy. Cancer Lett. 2020, 477, 31–40.
doi: S0304-3835(20)30096-3 pmid: 32112908 |
21. | Li, C.; Zhang, Y.; Du, Y.; Hou, Z.; Zhang, Y.; Cui, W.; Chen, W. A review of advanced biomaterials and cells for the production of bone organoid. Small Sci. 2023, 3, 2370015. |
22. | Madduma-Bandarage, U. S. K.; Madihally, S. V. Synthetic hydrogels: synthesis, novel trends, and applications. J Appl Polym Sci. 2021, 138, 50376. |
23. |
Aisenbrey, E. A.; Murphy, W. L. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020, 5, 539–551.
doi: 10.1038/s41578-020-0199-8 pmid: 32953138 |
24. | Wilson, R. L.; Swaminathan, G.; Ettayebi, K.; Bomidi, C.; Zeng, X. L.; Blutt, S. E.; Estes, M. K.; Grande-Allen, K. J. Protein-functionalized poly(ethylene glycol) hydrogels as scaffolds for monolayer organoid culture. Tissue Eng Part C Methods. 2021, 27, 12–23. |
25. |
Jin, S.; Xia, X.; Huang, J.; Yuan, C.; Zuo, Y.; Li, Y.; Li, J. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Acta Biomater. 2021, 127, 56–79.
doi: 10.1016/j.actbio.2021.03.067 pmid: 33831569 |
26. |
Wozney, J. M.; Rosen, V.; Byrne, M.; Celeste, A. J.; Moutsatsos, I.; Wang, E. A. Growth factors influencing bone development. J Cell Sci Suppl. 1990, 13, 149–156.
pmid: 2084114 |
27. | Tortorella, I.; Argentati, C.; Emiliani, C.; Martino, S.; Morena, F. The role of physical cues in the development of stem cell-derived organoids. Eur Biophys J. 2022, 51, 105–117. |
28. | Farokhi, M.; Mottaghitalab, F.; Shokrgozar, M. A.; Ou, K. L.; Mao, C.; Hosseinkhani, H. Importance of dual delivery systems for bone tissue engineering. J Control Release. 2016, 225, 152–169. |
29. | Olszta, M. J.; Cheng, X.; Jee, S. S.; Kumar, R.; Kim, Y. Y.; Kaufman, M. J.; Douglas, E. P.; Gower, L. B. Bone structure and formation: A new perspective. Mater Sci Eng R Rep. 2007, 58, 77–116. |
30. | Buckwalter, J. A.; Glimcher, M. J.; Cooper, R. R.; Recker, R. Bone biology. JBJS. 1995, 77, 1276–1289. |
31. |
Buck, D. W., 2nd; Dumanian, G. A. Bone biology and physiology: Part I. The fundamentals. Plast Reconstr Surg. 2012, 129, 1314–1320.
doi: 10.1097/PRS.0b013e31824eca94 pmid: 22634648 |
32. | Huang, J.; Zhang, L.; Lu, A.; Liang, C. Organoids as innovative models for bone and joint diseases. Cells. 2023, 12, 1590. |
33. | Grabowski, P. Physiology of bone. In Calcium and bone disorders in children and adolescents. Allgrove, J.; Shaw, N., eds. Karger Publishers: 2009; Vol. 16, pp 32–48. |
34. | Porter, J. R.; Ruckh, T. T.; Popat, K. C. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009, 25, 1539–1560. |
35. | Li, B.; Shi, Y.; Liu, M.; Wu, F.; Hu, X.; Yu, F.; Wang, C.; Ye, L. Attenuates of NAD(+) impair BMSC osteogenesis and fracture repair through OXPHOS. Stem Cell Res Ther. 2022, 13, 77. |
36. | Vallmajo-Martin, Q.; Broguiere, N.; Millan, C.; Zenobi-Wong, M.; Ehrbar, M. PEG/HA hybrid hydrogels for biologically and mechanically tailorable bone marrow organoids. Adv Funct Mater. 2020, 30, 1910282. |
37. | Li, M.; Liu, W.; Sun, J.; Xianyu, Y.; Wang, J.; Zhang, W.; Zheng, W.; Huang, D.; Di, S.; Long, Y. Z.; Jiang, X. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2013, 5, 5921–5926. |
38. | Schmidt-Bleek, K.; Willie, B. M.; Schwabe, P.; Seemann, P.; Duda, G. N. BMPs in bone regeneration: less is more effective, a paradigm-shift. Cytokine Growth Factor Rev. 2016, 27, 141–148. |
39. | Akiva, A.; Melke, J.; Ansari, S.; Liv, N.; van der Meijden, R.; van Erp, M.; Zhao, F.; Stout, M.; Nijhuis, W. H.; de Heus, C.; Muñiz Ortera, C.; Fermie, J.; Klumperman, J.; Ito, K.; Sommerdijk, N.; Hofmann, S. An organoid for woven bone. Adv Funct Mater. 2021, 31, 2010524. |
40. |
Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I. T. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017, 35, 217–239.
doi: S0734-9750(16)30171-9 pmid: 28057483 |
41. |
Papadimitropoulos, A.; Scherberich, A.; Güven, S.; Theilgaard, N.; Crooijmans, H. J.; Santini, F.; Scheffler, K.; Zallone, A.; Martin, I. A 3D in vitro bone organ model using human progenitor cells. Eur Cell Mater. 2011, 21, 445–458; discussion 458.
pmid: 21604244 |
42. |
Han, Y.; Wu, Y.; Wang, F.; Li, G.; Wang, J.; Wu, X.; Deng, A.; Ren, X.; Wang, X.; Gao, J.; Shi, Z.; Bai, L.; Su, J. Heterogeneous DNA hydrogel loaded with Apt02 modified tetrahedral framework nucleic acid accelerated critical-size bone defect repair. Bioact Mater. 2024, 35, 1–16.
doi: 10.1016/j.bioactmat.2024.01.009 pmid: 38298451 |
43. | Yuasa, M.; Yamada, T.; Taniyama, T.; Masaoka, T.; Xuetao, W.; Yoshii, T.; Horie, M.; Yasuda, H.; Uemura, T.; Okawa, A.; Sotome, S. Dexamethasone enhances osteogenic differentiation of bone marrow- and muscle-derived stromal cells and augments ectopic bone formation induced by bone morphogenetic protein-2. PLoS One. 2015, 10, e0116462 |
44. | Park, Y.; Cheong, E.; Kwak, J. G.; Carpenter, R.; Shim, J. H.; Lee, J. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci Adv. 2021, 7, eabd6495 |
45. | Xie, C.; Liang, R.; Ye, J.; Peng, Z.; Sun, H.; Zhu, Q.; Shen, X.; Hong, Y.; Wu, H.; Sun, W.; Yao, X.; Li, J.; Zhang, S.; Zhang, X.; Ouyang, H. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022, 288, 121741. |
46. | Visconti, R. J.; Kolaja, K.; Cottrell, J. A. A functional three-dimensional microphysiological human model of myeloma bone disease. J Bone Miner Res. 2021, 36, 1914–1930. |
47. |
Iordachescu, A.; Hughes, E. A. B.; Joseph, S.; Hill, E. J.; Grover, L. M.; Metcalfe, A. D. Trabecular bone organoids: a micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity. 2021, 7, 17.
doi: 10.1038/s41526-021-00146-8 pmid: 34021163 |
48. |
Gupta, N.; Liu, J. R.; Patel, B.; Solomon, D. E.; Vaidya, B.; Gupta, V. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng Transl Med. 2016, 1, 63–81.
doi: 10.1002/btm2.10013 pmid: 29313007 |
49. | Frontera, W. R.; Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015, 96, 183–195. |
50. |
Au, Y. The muscle ultrastructure: a structural perspective of the sarcomere. Cell Mol Life Sci. 2004, 61, 3016–3033.
pmid: 15583864 |
51. |
Vandenburgh, H.; Shansky, J.; Del Tatto, M.; Chromiak, J. Organogenesis of skeletal muscle in tissue culture. Methods Mol Med. 1999, 18, 217–225.
doi: 10.1385/0-89603-516-6:217 pmid: 21370179 |
52. |
Sinacore, D. R.; Gulve, E. A. The role of skeletal muscle in glucose transport, glucose homeostasis, and insulin resistance: implications for physical therapy. Phys Ther. 1993, 73, 878–891.
pmid: 8248296 |
53. | Powell, C. A.; Smiley, B. L.; Mills, J.; Vandenburgh, H. H. Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol. 2002, 283, C1557–1565. |
54. | Kindler, U.; Zaehres, H.; Mavrommatis, L. Generation of skeletal muscle organoids from human pluripotent stem cells. Bio Protoc. 2024, 14, e4984 |
55. |
Otto, A.; Schmidt, C.; Luke, G.; Allen, S.; Valasek, P.; Muntoni, F.; Lawrence-Watt, D.; Patel, K. Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. J Cell Sci. 2008, 121, 2939–2950.
doi: 10.1242/jcs.026534 pmid: 18697834 |
56. |
Vandenburgh, H.; Del Tatto, M.; Shansky, J.; Lemaire, J.; Chang, A.; Payumo, F.; Lee, P.; Goodyear, A.; Raven, L. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum Gene Ther. 1996, 7, 2195–2200.
doi: 10.1089/hum.1996.7.17-2195 pmid: 8934233 |
57. | Shin, M. K.; Bang, J. S.; Lee, J. E.; Tran, H. D.; Park, G.; Lee, D. R.; Jo, J. Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration. Int J Mol Sci. 2022, 23, 5108. |
58. | Shahriyari, M.; Rinn, M.; Hofemeier, A. D.; Babych, A.; Zimmermann, W. H.; Tiburcy, M. Protocol to develop force-generating human skeletal muscle organoids. STAR Protoc. 2024, 5, 102794. |
59. | Borok, M. J.; Mademtzoglou, D.; Relaix, F. Bu-M-P-ing iron: how BMP signaling regulates muscle growth and regeneration. J Dev Biol. 2020, 8, 4. |
60. |
Sartori, R.; Schirwis, E.; Blaauw, B.; Bortolanza, S.; Zhao, J.; Enzo, E.; Stantzou, A.; Mouisel, E.; Toniolo, L.; Ferry, A.; Stricker, S.; Goldberg, A. L.; Dupont, S.; Piccolo, S.; Amthor, H.; Sandri, M. BMP signaling controls muscle mass. Nat Genet. 2013, 45, 1309–1318.
doi: 10.1038/ng.2772 pmid: 24076600 |
61. | Pawlikowski, B.; Vogler, T. O.; Gadek, K.; Olwin, B. B. Regulation of skeletal muscle stem cells by fibroblast growth factors. Dev Dyn. 2017, 246, 359–367. |
62. | Mavrommatis, L.; Jeong, H. W.; Kindler, U.; Gomez-Giro, G.; Kienitz, M. C.; Stehling, M.; Psathaki, O. E.; Zeuschner, D.; Bixel, M. G.; Han, D.; Morosan-Puopolo, G.; Gerovska, D.; Yang, J. H.; Kim, J. B.; Arauzo-Bravo, M. J.; Schwamborn, J. C.; Hahn, S. A.; Adams, R. H.; Schöler, H. R.; Vorgerd, M.; Brand-Saberi, B.; Zaehres, H. Human skeletal muscle organoids model fetal myogenesis and sustain uncommitted PAX7 myogenic progenitors. Elife. 2023, 12, RP87081 |
63. |
Pinton, L.; Khedr, M.; Lionello, V. M.; Sarcar, S.; Maffioletti, S. M.; Dastidar, S.; Negroni, E.; Choi, S.; Khokhar, N.; Bigot, A.; Counsell, J. R.; Bernardo, A. S.; Zammit, P. S.; Tedesco, F. S. 3D human induced pluripotent stem cell-derived bioengineered skeletal muscles for tissue, disease and therapy modeling. Nat Protoc. 2023, 18, 1337–1376.
doi: 10.1038/s41596-022-00790-8 pmid: 36792780 |
64. |
Wang, J.; Zhou, C. J.; Khodabukus, A.; Tran, S.; Han, S. O.; Carlson, A. L.; Madden, L.; Kishnani, P. S.; Koeberl, D. D.; Bursac, N. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol. 2021, 4, 524.
doi: 10.1038/s42003-021-02059-4 pmid: 33953320 |
65. |
Gholobova, D.; Gerard, M.; Decroix, L.; Desender, L.; Callewaert, N.; Annaert, P.; Thorrez, L. Human tissue-engineered skeletal muscle: a novel 3D in vitro model for drug disposition and toxicity after intramuscular injection. Sci Rep. 2018, 8, 12206.
doi: 10.1038/s41598-018-30123-3 pmid: 30111779 |
66. |
Vandenburgh, H.; Shansky, J.; Benesch-Lee, F.; Barbata, V.; Reid, J.; Thorrez, L.; Valentini, R.; Crawford, G. Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve. 2008, 37, 438–447.
doi: 10.1002/mus.20931 pmid: 18236465 |
67. |
Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne muscular dystrophy. Nat Rev Dis Primers. 2021, 7, 13.
doi: 10.1038/s41572-021-00248-3 pmid: 33602943 |
68. |
Kiernan, M. C.; Vucic, S.; Cheah, B. C.; Turner, M. R.; Eisen, A.; Hardiman, O.; Burrell, J. R.; Zoing, M. C. Amyotrophic lateral sclerosis. Lancet. 2011, 377, 942–955.
doi: 10.1016/S0140-6736(10)61156-7 pmid: 21296405 |
69. | Bombieri, C.; Corsi, A.; Trabetti, E.; Ruggiero, A.; Marchetto, G.; Vattemi, G.; Valenti, M. T.; Zipeto, D.; Romanelli, M. G. Advanced cellular models for rare disease study: exploring neural, muscle and skeletal organoids. Int J Mol Sci. 2024, 25, 1014. |
70. | Osaki, T.; Uzel, S. G. M.; Kamm, R. D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv. 2018, 4, eaat5847 |
71. | Chen, Z.; Li, B.; Zhan, R. Z.; Rao, L.; Bursac, N. Exercise mimetics and JAK inhibition attenuate IFN-γ-induced wasting in engineered human skeletal muscle. Sci Adv. 2021, 7, eabd9502 |
72. |
Makris, E. A.; Gomoll, A. H.; Malizos, K. N.; Hu, J. C.; Athanasiou, K. A. Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol. 2015, 11, 21–34.
doi: 10.1038/nrrheum.2014.157 pmid: 25247412 |
73. | Zhu, J.; Lun, W.; Feng, Q.; Cao, X.; Li, Q. Mesenchymal stromal cells modulate YAP by verteporfin to mimic cartilage development and construct cartilage organoids based on decellularized matrix scaffolds. J Mater Chem B. 2023, 11, 7442–7453. |
74. | Zhang, Y.; Li, G.; Wang, J.; Zhou, F.; Ren, X.; Su, J. Small joint organoids 3D bioprinting: construction strategy and application. Small. 2024, 20, e2302506 |
75. |
Ralphs, J. R.; Benjamin, M. The joint capsule: structure, composition, ageing and disease. J Anat. 1994, 184 ( Pt 3), 503–509.
pmid: 7928639 |
76. |
Sophia Fox, A. J.; Bedi, A.; Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009, 1, 461–468.
doi: 10.1177/1941738109350438 pmid: 23015907 |
77. | Forrester, D. M. Diagnosis of Bone and Joint Disorders. Donald Resnick, MD and Gen Niwayama, MD. 3 Volumes. Philadelphia, W. B. Saunders, 1981. 3277 pages, 2670 illustrations, $295. Arthritis Rheum. 1982, 25, 480. |
78. | O’Connor, S. K.; Katz, D. B.; Oswald, S. J.; Groneck, L.; Guilak, F. Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Eng Part A. 2021, 27, 1099–1109. |
79. | Lin, W.; Wang, M.; Xu, L.; Tortorella, M.; Li, G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol. 2023, 11, 1125405. |
80. | Sun, Y.; Wu, Q.; Dai, K.; You, Y.; Jiang, W. Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease. Signal Transduct Target Ther. 2021, 6, 380. |
81. |
Sun, Y.; You, Y.; Wu, Q.; Hu, R.; Dai, K. Senescence-targeted MicroRNA/Organoid composite hydrogel repair cartilage defect and prevention joint degeneration via improved chondrocyte homeostasis. Bioact Mater. 2024, 39, 427–442.
doi: 10.1016/j.bioactmat.2024.05.036 pmid: 38855061 |
82. |
Rothbauer, M.; Byrne, R. A.; Schobesberger, S.; Olmos Calvo, I.; Fischer, A.; Reihs, E. I.; Spitz, S.; Bachmann, B.; Sevelda, F.; Holinka, J.; Holnthoner, W.; Redl, H.; Toegel, S.; Windhager, R.; Kiener, H. P.; Ertl, P. Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab Chip. 2021, 21, 4128–4143.
doi: 10.1039/d1lc00130b pmid: 34505620 |
83. | Kleuskens, M. W. A.; Crispim, J. F.; van Doeselaar, M.; van Donkelaar, C. C.; Janssen, R. P. A.; Ito, K. Neo-cartilage formation using human nondegenerate versus osteoarthritic chondrocyte-derived cartilage organoids in a viscoelastic hydrogel. J Orthop Res. 2023, 41, 1902–1915. |
84. | Hall, G. N.; Tam, W. L.; Andrikopoulos, K. S.; Casas-Fraile, L.; Voyiatzis, G. A.; Geris, L.; Luyten, F. P.; Papantoniou, I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials. 2021, 273, 120820. |
85. |
Giobbe, G. G.; Crowley, C.; Luni, C.; Campinoti, S.; Khedr, M.; Kretzschmar, K.; De Santis, M. M.; Zambaiti, E.; Michielin, F.; Meran, L.; Hu, Q.; van Son, G.; Urbani, L.; Manfredi, A.; Giomo, M.; Eaton, S.; Cacchiarelli, D.; Li, V. S. W.; Clevers, H.; Bonfanti, P.; Elvassore, N.; De Coppi, P. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat Commun. 2019, 10, 5658.
doi: 10.1038/s41467-019-13605-4 pmid: 31827102 |
86. |
Deng, Y.; Lei, G.; Lin, Z.; Yang, Y.; Lin, H.; Tuan, R. S. Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathway. Biomaterials. 2019, 192, 569–578.
doi: S0142-9612(18)30821-4 pmid: 30544046 |
87. | Li, Z. A.; Sant, S.; Cho, S. K.; Goodman, S. B.; Bunnell, B. A.; Tuan, R. S.; Gold, M. S.; Lin, H. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol. 2023, 41, 511–527. |
88. |
Wieland, H. A.; Michaelis, M.; Kirschbaum, B. J.; Rudolphi, K. A. Osteoarthritis - an untreatable disease? Nat Rev Drug Discov. 2005, 4, 331–344.
doi: 10.1038/nrd1693 pmid: 15803196 |
89. | Richard, M. J.; Driban, J. B.; McAlindon, T. E. Pharmaceutical treatment of osteoarthritis. Osteoarthritis Cartilage. 2023, 31, 458–466. |
90. | Li, Z. A.; Shang, J.; Xiang, S.; Li, E. N.; Yagi, H.; Riewruja, K.; Lin, H.; Tuan, R. S. Articular tissue-mimicking organoids derived from mesenchymal stem cells and induced pluripotent stem cells. Organoids. 2022, 1, 135–148. |
91. |
Lim, W. L.; Liau, L. L.; Ng, M. H.; Chowdhury, S. R.; Law, J. X. Current progress in tendon and ligament tissue engineering. Tissue Eng Regen Med. 2019, 16, 549–571.
doi: 10.1007/s13770-019-00196-w pmid: 31824819 |
92. | Kannus, P. Structure of the tendon connective tissue. Scand J Med Sci Sports. 2000, 10, 312–320. |
93. |
Amiel, D.; Frank, C.; Harwood, F.; Fronek, J.; Akeson, W. Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1984, 1, 257–265.
doi: 10.1002/jor.1100010305 pmid: 6481509 |
94. | Koski, J. A.; Ibarra, C.; Rodeo, S. A. Tissue-engineered ligament: cells, matrix, and growth factors. Orthop Clin North Am. 2000, 31, 437–452. |
95. | Xu, B.; Chow, M. J.; Zhang, Y. Experimental and modeling study of collagen scaffolds with the effects of crosslinking and fiber alignment. Int J Biomater. 2011, 2011, 172389. |
96. |
Randelli, P.; Spennacchio, P.; Ragone, V.; Arrigoni, P.; Casella, A.; Cabitza, P. Complications associated with arthroscopic rotator cuff repair: a literature review. Musculoskelet Surg. 2012, 96, 9–16.
doi: 10.1007/s12306-011-0175-y pmid: 22205384 |
97. |
Laternser, S.; Keller, H.; Leupin, O.; Rausch, M.; Graf-Hausner, U.; Rimann, M. A novel microplate 3D bioprinting platform for the engineering of muscle and tendon tissues. SLAS Technol. 2018, 23, 599–613.
doi: 10.1177/2472630318776594 pmid: 29895208 |
98. | Hsieh, M. S.; Chen, M. Y.; Chang, Y. S.; Huang, C. S.; Hsu, T. N.; Huang, M. S.; Yeh, C. T.; Tzeng, Y. M. Targeting the Neuropilin-1 receptor with Ovatodiolide and progress in using periodontal ligament organoids for COVID-19 research and therapy. Life Sci. 2024, 351, 122764. |
99. | Graça, A. L.; Kroner-Weigl, N.; Reyes Alcaraz, V.; Müller-Deubert, S.; Rudert, M.; Docheva, D. Demonstration of self-assembled cell sheet culture and manual generation of a 3d tendon/ligament-like organoid by using human dermal fibroblasts. J Vis Exp. 2024, e66047. |
100. | Donderwinkel, I.; Tuan, R. S.; Cameron, N. R.; Frith, J. E. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater. 2022, 145, 25–42. |
101. | Kirkendall, D. T.; Garrett, W. E. Function and biomechanics of tendons. Scand J Med Sci Sports. 1997, 7, 62–66. |
102. | Petrigliano, F. A.; Arom, G. A.; Nazemi, A. N.; Yeranosian, M. G.; Wu, B. M.; McAllister, D. R. In vivo evaluation of electrospun polycaprolactone graft for anterior cruciate ligament engineering. Tissue Eng Part A. 2015, 21, 1228–1236. |
103. | Chainani, A.; Hippensteel, K. J.; Kishan, A.; Garrigues, N. W.; Ruch, D. S.; Guilak, F.; Little, D. Multilayered electrospun scaffolds for tendon tissue engineering. Tissue Eng Part A. 2013, 19, 2594–2604. |
104. | Yang, G.; Rothrauff, B. B.; Lin, H.; Yu, S.; Tuan, R. S. Tendon-derived extracellular matrix enhances transforming growth factor-β3-induced tenogenic differentiation of human adipose-derived stem cells. Tissue Eng Part A. 2017, 23, 166–176. |
105. | Ker, D. F. E.; Tan, C.; Cartmell, S. Editorial: Tendons and ligaments: development, pathogenesis, tissue engineering, and regenerative medicine. Front Bioeng Biotechnol. 2024, 12, 1489256. |
106. |
Lejard, V.; Blais, F.; Guerquin, M. J.; Bonnet, A.; Bonnin, M. A.; Havis, E.; Malbouyres, M.; Bidaud, C. B.; Maro, G.; Gilardi-Hebenstreit, P.; Rossert, J.; Ruggiero, F.; Duprez, D. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem. 2011, 286, 5855–5867.
doi: 10.1074/jbc.M110.153106 pmid: 21173153 |
107. | Bourdón-Santoyo, M.; Quiñones-Uriostegui, I.; Martínez-López, V.; Sánchez-Arévalo, F.; Alessi-Montero, A.; Velasquillo, C.; Ibarra-Ponce de León, C. Preliminary study of an in vitro development of new tissue applying mechanical stimulation with a bioreactor as an alternative for ligament reconstruction. Rev Invest Clin. 2014, 66 Suppl 1, S100–110. |
108. | Zhang, Y.; Lei, T.; Tang, C.; Chen, Y.; Liao, Y.; Ju, W.; Zhang, H.; Zhou, B.; Liang, R.; Zhang, T.; Fan, C.; Chen, X.; Zhao, Y.; Xie, Y.; Ye, J.; Heng, B. C.; Chen, X.; Hong, Y.; Shen, W.; Yin, Z. 3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials. 2021, 271, 120722. |
109. |
Qiu, Y.; Lei, J.; Koob, T. J.; Temenoff, J. S. Cyclic tension promotes fibroblastic differentiation of human MSCs cultured on collagen-fibre scaffolds. J Tissue Eng Regen Med. 2016, 10, 989–999.
doi: 10.1002/term.1880 pmid: 24515660 |
110. |
Yan, Z.; Yin, H.; Brochhausen, C.; Pfeifer, C. G.; Alt, V.; Docheva, D. Aged tendon stem/progenitor cells are less competent to form 3D tendon organoids due to cell autonomous and matrix production deficits. Front Bioeng Biotechnol. 2020, 8, 406.
doi: 10.3389/fbioe.2020.00406 pmid: 32432103 |
111. | Fang, G.; Chen, Y. C.; Lu, H.; Jin, D. Advances in spheroids and organoids on a chip. Adv Funct Mater. 2023, 33, 2215043. |
112. | Mansoorifar, A.; Gordon, R.; Bergan, R.; Bertassoni, L. E. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. Adv Funct Mater. 2021, 31, 2006796. |
113. |
Perkhofer, L.; Frappart, P. O.; Müller, M.; Kleger, A. Importance of organoids for personalized medicine. Per Med. 2018, 15, 461–465.
doi: 10.2217/pme-2018-0071 pmid: 30418092 |
114. | Driehuis, E.; van Hoeck, A.; Moore, K.; Kolders, S.; Francies, H. E.; Gulersonmez, M. C.; Stigter, E. C. A.; Burgering, B.; Geurts, V.; Gracanin, A.; Bounova, G.; Morsink, F. H.; Vries, R.; Boj, S.; van Es, J.; Offerhaus, G. J. A.; Kranenburg, O.; Garnett, M. J.; Wessels, L.; Cuppen, E.; Brosens, L. A. A.; Clevers, H. Pancreatic cancer organoids recapitulate disease and allow personalized drug screening. Proc Natl Acad Sci U S A. 2019, 116, 26580–26590. |
115. | Zhu, Y.; Tang, S.; Yuan, Q.; Fu, J.; He, J.; Liu, Z.; Zhao, X.; Li, Y.; Zhao, Y.; Zhang, Y.; Zhang, X.; Zhang, Y.; Zhu, Y.; Wang, W.; Zheng, B.; Wu, R.; Wu, T.; Yang, S.; Qiu, X.; Shen, S.; Hu, J.; Chen, L.; Wang, Y.; Wang, H.; Gao, D.; Chen, L. Integrated characterization of hepatobiliary tumor organoids provides a potential landscape of pharmacogenomic interactions. Cell Rep Med. 2024, 5, 101375. |
116. | Wang, Y.; You, Y.; Chen, H.; Liu, J.; Wu, Q.; Dai, K.; Sun, Y. 3D-bioprinted anti-senescence organoid scaffolds repair cartilage defect and prevent joint degeneration via miR-23b/ELOVL5-mediated metabolic rewiring. Chem Eng J. 2024, 491, 152049. |
117. |
Shen, C.; Wang, J.; Li, G.; Hao, S.; Wu, Y.; Song, P.; Han, Y.; Li, M.; Wang, G.; Xu, K.; Zhang, H.; Ren, X.; Jing, Y.; Yang, R.; Geng, Z.; Su, J. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024, 35, 429–444.
doi: 10.1016/j.bioactmat.2024.02.016 pmid: 38390528 |
[1] | Yongtao Wang, Yan Hou, Tian Hao, Marta Garcia-Contreras, Guoping Li, Dragos Cretoiu, Junjie Xiao. Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases [J]. Biomaterials Translational, 2024, 5(4): 337-354. |
[2] | Ruiqi Huang, Yanjing Zhu, Haokun Chen, Liqun Yu, Zhibo Liu, Yuchen Liu, Zhaojie Wang, Xiaolie He, Li Yang, Xu Xu, Yuxin Bai, Bairu Chen, Rongrong Zhu. Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine [J]. Biomaterials Translational, 2024, 5(4): 355-371. |
[3] | Jiawei Yang, Nicholas G. Fischer, Zhou Ye. Revolutionising oral organoids with artificial intelligence [J]. Biomaterials Translational, 2024, 5(4): 372-389. |
[4] | Jingtao Huang, Aikang Li, Rongji Liang, Xiaohao Wu, Shicheng Jia, Jiayou Chen, Zilu Jiao, Canfeng Li, Xintao Zhang, Jianjing Lin. Future perspectives: advances in bone/cartilage organoid technology and clinical potential [J]. Biomaterials Translational, 2024, 5(4): 425-443. |
[5] | Zhangjie Li, Dingyuan Yu, Chenyang Zhou, Feifan Wang, Kangyi Lu, Yijun Liu, Jiaqi Xu, Lian Xuan, Xiaolin Wang. Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives [J]. Biomaterials Translational, 2024, 5(1): 21-32. |
[6] | Chen-Hui Mi, Xin-Ya Qi, Yan-Wen Ding, Jing Zhou, Jin-Wei Dao, Dai-Xu Wei. Recent advances of medical polyhydroxyalkanoates in musculoskeletal system [J]. Biomaterials Translational, 2023, 4(4): 234-247. |
[7] | Monchupa Kingsak, Thongpon Meethong, Jinnawat Jongkhumkrong, Li Cai, Qian Wang. Therapeutic potential of oncolytic viruses in the era of precision oncology [J]. Biomaterials Translational, 2023, 4(2): 67-84. |
[8] | Hongtao Yang, Wenjiao Lin, Yufeng Zheng. Advances and perspective on the translational medicine of biodegradable metals [J]. Biomaterials Translational, 2021, 2(3): 177-187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||