Biomaterials Translational ›› 2024, Vol. 5 ›› Issue (4): 425-443.doi: 10.12336/biomatertransl.2024.04.007
• REVIEW • Previous Articles Next Articles
Jingtao Huang1,2#, Aikang Li2,3#, Rongji Liang1,2#, Xiaohao Wu4, Shicheng Jia1,2, Jiayou Chen1,2, Zilu Jiao1, Canfeng Li1,*(), Xintao Zhang1,*(
), Jianjing Lin1,*(
)
Received:
2024-09-28
Revised:
2024-10-15
Accepted:
2024-10-21
Online:
2024-11-14
Published:
2024-12-28
Contact:
Jianjing Lin, linjianjing@bjmu.edu.cn;Xintao Zhang, zhangxintao@sina.com;Canfeng Li, licanfeng87@163.com.
About author:
# Authors equally.
Huang, J.; Li, A.; Liang, R.; Wu, X.; Jia, S.; Chen, J.; Jiao, Z.; Li, C.; Zhang, X.; Lin, J. Future perspectives: advances in bone/cartilage organoid technology and clinical potential. Biomater Transl. 2024, 5(4), 425-443.
Figure 1. Organoids constructed from mesenchymal stem cells. (A) Schematic diagram of osteochondral organoid formation and repair process by inducing differentiation and regeneration of MSCs. Reprinted from Yang et al.25 (B) The gelatin sponge loaded with BMP–2 was implanted into the inner muscle pocket near the femurs of mice to generate bone organoids. The bone organoids formed mature, exhibiting a balance between osteogenic and resorptive activity, and a stable proportion of endothelial cells and MSCs. Reprinted from Dai et al.26 (C) In vivo repair of mouse skull defect with hydrogel scaffold and schematic diagram of treatment. The hydrogel recruits many BMSCs for bone formation, further promoting the growth of new bone. Reprinted from Han et al.38 (D) LGR5–joint progenitors–based cartilage organoids for realisation of novel drug discovery, and personalised regenerative therapy of cartilage repair. Reprinted from Lin et al.39BM: bone marrow; BMP–2: bone morphogenetic protein–2; CCl4: carbon tetrachloride; CH: chondrogenic differentiation; EC: endothelial cell; GFP: green fluorescent protein; HSPC: haematopoietic stem/progenitor cell; LGR5: leucine rich repeat containing g protein–coupled receptor 5; MSC: mesenchymal stem cell; OS: chondrogenic differentiation.
Figure 2. Organoids constructed from pluripotent stem cells. (A) Bioengineering process starting with iPSCs cellular aggregation, condensation, and differentiation followed by callus organoid assembly and implantation in ectopic and orthotopic environments. Reprinted from Nilsson Hall et al.53 (B) Transplantation of cyiPS–Cart into primate knee joints. (B1) Two types of articular cartilage injuries: The left panel shows chondral lesions that reach but do not penetrate the subchondral bone. The right panel displays osteochondral lesions that extend into the subchondral bone. (B2) Experimental setup for cyiPS–Cart transplantation in primates. In cynomolgus monkeys, chondral lesions were induced on the femoral trochlear ridge of the right knee. The experimental group received cyiPS–Cart transplants, while the control group was left untreated. Reprinted from Abe et al.52 (C) IL–1β promotes bone regeneration in callus–like organoids derived from human PSCs. In summary, our research suggests that IL–1β enhances bone healing, possibly by boosting the breakdown of cartilage matrix via matrix metalloproteinase 13). Reprinted from Tam et al.49 BMP: bone morphogenetic protein; cyiPS–Cart: cynomolgus monkey iPSC–derived cartilage organoid; GAG: glycosaminoglycan; IL–1β: interleukin–1β; iPSC: induced PSC; PSC: pluripotent stem cell; TH: tyrosine hydroxylase.
Figure 3. Organoids constructed from other cells. (A) A comprehensive illustration of the 3D mcBOM matrix creation process is outlined as (A1) A comprehensive view of the in vitro model is presented, encapsulating the key developmental points and interventions. (A2) A dorsal cartoon diagram is provided, depicting the 3D bone culture setup. (A3) A lateral cartoon diagram is included, offering another perspective on the 3D bone culture. Reprinted from Fuller et al.60 (B) Human osteocyte constructs demonstrate mineralisation and maintain high viability over 20 weeks. (B1) When human osteoblasts are seeded into fibrin/thrombin gels, they cause the gel to contract between the posts, resulting in a noticeable thickening over time. (B2) Representative micro–CT reconstructions from two different donors are shown after a 20–week differentiation period in osteogenic media. Reprinted from Knowles et al.63 (C) The micro–trabeculae, which are naturally highly electrostatic (left), were utilised for their ability to be integrated into liquid cell suspension droplets (right), thereby creating miniaturised bone avatars. (C1, 2) A hanging–drop culture system was employed to suspend the trabeculae along with primary female bone effector cells, guiding their attachment to the trabecular surface via gravitational sedimentation. (C3) The cultures were maintained for 48 hours to optimize cell surface colonisation and self–organisation. In scenarios devoid of bone scaffolds, osteoblasts interact directly to form spheroids (left). However, when a trabecula is present, these cells effectively colonize the surface and exhibit osteogenic characteristics (right). (C4) Furthermore, primary female osteoclast precursors can individually adhere and when co–cultured with osteoblasts, they form a comprehensive remodelling unit. Their presence on the trabeculae can be discerned, as the nuclei of osteoblasts are larger compared to those of osteoclasts. Reprinted from Iordachescu et al.61 3D: three–dimensional; ALP: alkaline phosphatase; CT: computed tomography; CTX1: type 1 collagen cross–linked C telopeptide; H. Osteoclast prec.: human osteoclast precursors; mcBOM: murine–cell–derived bone organoid model; OB: osteoblast; OC: osteoclast; PBS: phosphate–buffered saline.
Figure 4. Organoids constructed from natural materials. (A) Fabrication of 3D printed Alg/Gel/GelMA–based cell–laden scaffolds. Reprinted from Shehzad et al.77 (B) A schematic overview of the process for collecting and evaluating HSPCs from osteo–organoids in mice, induced by implanting freeze–dried gelatin scaffolds loaded with BMP–2 alone or in combination with SCS or SCOS, involves implanting these scaffolds into the muscle of the lower limbs, allowing them to incubate for three weeks, and then explanted the resulting osteo–organoids for further analysis. Reprinted from Dai et al.84 (C) Microscopic observation and cytocompatibility analysis of control microcryogels, CH–microcryogels, and OS–microcryogels. (C1) Schematic of fabricating customised microcryogels. (C2) Gross observation of self–assembled osteochondral organoids. The self–assembled osteochondral organoid was incised in the axial position to allow separate analysis of the chondrogenic and osteogenic components. Reprinted from Yang et al.25 (D) Biocompatibility of bioprinted BMSCs–laden GelMA, GelMA/AlgMA bioprinted scaffolds, and GelMA/AlgMA/HYP scaffolds. Reprinted from Wang et al.88 Copyright 2024 Wiley‐VCH GmbH. (E) Generating miR–24 transfected SMSC organoids for anti–senescence and pro–chondrogenesis. Fabrication of senescence–targeted miR–24 μS/SMSC organoid hydrogel for potential applications in chondrogenesis and further cartilage repair treatment. (F) Schematic illustration of the study design with 3D cultured SMSC organoids for cartilage damage treatment by intra–articular injection in rats. Reprinted from Sun et al.89 3D: three–dimensional; Alg: alginate; AlgMA: Alg methacrylate; BMP–2: bone morphogenetic protein–2; BMSC: bone marrow mesenchymal stem cell; CH: chondrogenic differentiation; CM: collagen microbead; DMSO: dimethyl sulfoxide; EC: endothelial cell; EDC: 1–ethyl–3–(3–dimethylaminopropyl) carbodiimide; GA: glutaraldehyde; Gel gelatin; GelMA: Gel methacrylate; HA: hyaluronic acid; HSC: haematopoietic stem cell; HSPC: haematopoietic stem/progenitor cell; HYP: hydroxyapatite; MSOH: miR–24 PLGA μS/SMSC organoid hydrogel; OS: chondrogenic differentiation; PLGA: poly (lactic–co–glycolic acid); SCOS: sulfonated chito–oligosaccharide; SCS: sulfonated chitosan; SMSC: synovial mesenchymal stem cell; UV: ultraviolet; μCT: micro–computed tomography; μS: microspheres.
Figure 5. Organoids constructed by artificial materials. (A) Fabrication and function of hydrogel with tubular pores. Reprinted from Xiahou et al.24 Copyright 2020 American Chemical Society. (B) A schematic depiction of the dual siRNA–loaded cell membrane–coated scaffolds showcases their role in enhancing bone regeneration through the concurrent stimulation of angiogenesis and neurogenesis. These gene–regulating matrices can modulate the expression of genes associated with blood vessels and nerves, and they enhance the paracrine activity of both vascular and nerve growth factors in vitro. By leveraging the synergistic effects of angiogenesis and neurogenesis, the bone repair scaffold not only ameliorates the microenvironment of bone defects but also facilitates the restoration and integration of bone tissue. Reprinted from Qiao et al.79 Copyright 2023 Wiley‐VCH GmbH(C) Fabrication of a highly intricate bone ECM analog using a novel bioink composed of GelMA/AlgMA/HYP. Reprinted from Wang et al.88 Copyright 2024 Wiley–VCH GmbH. (D) (D1) 3D bioprinting processes. (D2) Ca2+ crosslinking post–bioprinting. (D) Section view to show the position of the 3D cell–laden construct in the compression bioreactor. Adapted from Zhang et al.110 3D: three–dimensional; AlgMA: alginate methacrylate; ASC: adult stem cell; BDNF: brain–derived neurotrophic factor; ECM: extracellular matrix; FGF: fibroblast growth factor: GelMA: gelatin methacrylate; GFAP: glial fibrillary acidic protein; GO: graphene oxide; hMSC: human mesenchymal stem cell; HYP: hydroxyapatite; MM: membrane; OC: osteoclast; OPN: osteopontin; p75NTR: p75 neurotrophic factor receptor; PCL: polycaprolactone; PLA: polylactic acid; sFlt–1: soluble fms–like tyrosine kinase–1; siRNA: small interfering RNA; TGF: transforming growth factor; Tuj1: neuron–specific class III beta–tubulin; UV: ultraviolet; VEGF: vascular endothelial growth factor; β–NGF: β–nerve growth factor.
Figure 6. Cartilage–on chip design, operation, and characterisation. (A) A diagrammatic representation of the knee joint is provided. (B) The design of the cartilage–on–chip device is outlined, emphasising its key components. (C) A top–down view of the cartilage–on–chip device, utilising food dyes for clarity – the actuation unit is coloured blue, the cell–hydrogel chamber is red, and the perfusion channel is yellow. (D) A side view of the joint in motion, illustrating the creation of multi directional mechanical stimulation (shear strain indicated by green arrows and compression by blue arrows). (E1–3) A top–down view of the cartilage–on–chip device filled with human chondrocytes in agarose and subjected to a sequence that induces multi–directional mechanical stimulation. Red Arrows indicate the deposition of a thin extracellular matrix shell (1–5 μm) and intercellular matrix around three–dimensional–cultured chondrocytes under multi–directional mechanical stimulation. Blue arrows represent compression, while green arrows indicate shear strain. Adapted from Paggi et al.128
1. |
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018, 392, 1789–1858.
doi: S0140-6736(18)32279-7 pmid: 30496104 |
2. | Li, M.; Yin, H.; Yan, Z.; Li, H.; Wu, J.; Wang, Y.; Wei, F.; Tian, G.; Ning, C.; Li, H.; Gao, C.; Fu, L.; Jiang, S.; Chen, M.; Sui, X.; Liu, S.; Chen, Z.; Guo, Q. The immune microenvironment in cartilage injury and repair. Acta Biomater. 2022, 140, 23–42. |
3. | GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet Rheumatology. 2023, 5, e508–e522 |
4. | Li, H.; Kong, W.; Liang, Y.; Sun, H. Burden of osteoarthritis in China, 1990-2019: findings from the Global Burden of Disease Study 2019. Clin Rheumatol. 2024, 43, 1189–1197. |
5. | von Mentzer, U.; Corciulo, C.; Stubelius, A. Biomaterial integration in the joint: pathological considerations, immunomodulation, and the extracellular matrix. Macromol Biosci. 2022, 22, e2200037 |
6. |
Lin, A.; Sved Skottvoll, F.; Rayner, S.; Pedersen-Bjergaard, S.; Sullivan, G.; Krauss, S.; Ray Wilson, S.; Harrison, S. 3D cell culture models and organ-on-a-chip: meet separation science and mass spectrometry. Electrophoresis. 2020, 41, 56–64.
doi: 10.1002/elps.201900170 pmid: 31544246 |
7. | Ballard, D. H.; Boyer, C. J.; Alexander, J. S. Organoids - preclinical models of human disease. N Engl J Med. 2019, 380, 1981–1982. |
8. | Zhang, Y.; Li, G.; Wang, J.; Zhou, F.; Ren, X.; Su, J. Small joint organoids 3D bioprinting: construction strategy and application. Small. 2024, 20, e2302506 |
9. | Wu, M.; Zheng, K.; Li, W.; He, W.; Qian, C.; Lin, Z.; Xiao, H.; Yang, H.; Xu, Y.; Wei, M.; Bai, J.; Geng, D. Nature-inspired strategies for the treatment of osteoarthritis. Adv Funct Mater. 2024, 34, 2305603. |
10. | Abraham, D. M.; Herman, C.; Witek, L.; Cronstein, B. N.; Flores, R. L.; Coelho, P. G. Self-assembling human skeletal organoids for disease modeling and drug testing. J Biomed Mater Res B Appl Biomater. 2022, 110, 871–884. |
11. | Sánchez-Porras, D.; Durand-Herrera, D.; Paes, A. B.; Chato-Astrain, J.; Verplancke, R.; Vanfleteren, J.; Sánchez-López, J. D.; García-García Ó, D.; Campos, F.; Carriel, V. Ex vivo generation and characterization of human hyaline and elastic cartilaginous microtissues for tissue engineering applications. Biomedicines. 2021, 9, 292. |
12. | Manjula-Basavanna, A.; Duraj-Thatte, A. M.; Joshi, N. S. Robust self-regeneratable stiff living materials fabricated from microbial cells. Adv Funct Mater. 2021, 31, 2010784. |
13. |
Kim, I. L.; Mauck, R. L.; Burdick, J. A. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011, 32, 8771–8782.
doi: 10.1016/j.biomaterials.2011.08.073 pmid: 21903262 |
14. | Wang, X. H.; Liu, N.; Zhang, H.; Yin, Z. S.; Zha, Z. G. From cells to organs: progress and potential in cartilaginous organoids research. J Transl Med. 2023, 21, 926. |
15. | Zhao, D.; Saiding, Q.; Li, Y.; Tang, Y.; Cui, W. Bone organoids: recent advances and future challenges. Adv Healthc Mater. 2024, 13, e2302088. |
16. | Huang, J.; Zhang, L.; Lu, A.; Liang, C. Organoids as innovative models for bone and joint diseases. Cells. 2023, 12, 1590. |
17. | Lin, J.; Huang, J.; Jiao, Z.; Nian, M.; Li, C.; Dai, Y.; Jia, S.; Zhang, X. Mesenchymal stem cells for osteoarthritis: recent advances in related cell therapy. Bioeng Transl Med. 2024, e10701. |
18. | Mendes-Pinheiro, B.; Campos, J.; Marote, A.; Soares-Cunha, C.; Nickels, S. L.; Monzel, A. S.; Cibrão, J. R.; Loureiro-Campos, E.; Serra, S. C.; Barata-Antunes, S.; Duarte-Silva, S.; Pinto, L.; Schwamborn, J. C.; Salgado, A. J. Treating Parkinson’s disease with human bone marrow mesenchymal stem cell secretome: a translational investigation using human brain organoids and different routes of in vivo administration. Cells. 2023, 12, 2565. |
19. |
Brassard, J. A.; Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Cell Stem Cell. 2019, 24, 860–876.
doi: S1934-5909(19)30209-7 pmid: 31173716 |
20. |
Aurora, M.; Spence, J. R. hPSC-derived lung and intestinal organoids as models of human fetal tissue. Dev Biol. 2016, 420, 230–238.
doi: S0012-1606(16)30188-9 pmid: 27287882 |
21. |
Yang, J.; Zhang, Y. S.; Yue, K.; Khademhosseini, A. Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 2017, 57, 1–25.
doi: S1742-7061(17)30036-3 pmid: 28088667 |
22. |
Fatehullah, A.; Tan, S. H.; Barker, N. Organoids as an in vitro model of human development and disease. Nat Cell Biol. 2016, 18, 246–254.
doi: 10.1038/ncb3312 pmid: 26911908 |
23. | Kleuskens, M. W. A.; Crispim, J. F.; van Donkelaar, C. C.; Janssen, R. P. A.; Ito, K. Evaluating initial integration of cell-based chondrogenic constructs in human osteochondral explants. Tissue Eng Part C Methods. 2022, 28, 34–44. |
24. | Xiahou, Z.; She, Y.; Zhang, J.; Qin, Y.; Li, G.; Zhang, L.; Fang, H.; Zhang, K.; Chen, C.; Yin, J. Designer hydrogel with intelligently switchable stem-cell contact for incubating cartilaginous microtissues. ACS Appl Mater Interfaces. 2020, 12, 40163–40175. |
25. |
Yang, Z.; Wang, B.; Liu, W.; Li, X.; Liang, K.; Fan, Z.; Li, J. J.; Niu, Y.; He, Z.; Li, H.; Wang, D.; Lin, J.; Du, Y.; Lin, J.; Xing, D. In situ self-assembled organoid for osteochondral tissue regeneration with dual functional units. Bioact Mater. 2023, 27, 200–215.
doi: 10.1016/j.bioactmat.2023.04.002 pmid: 37096194 |
26. | Dai, K.; Zhang, Q.; Deng, S.; Yu, Y.; Zhu, F.; Zhang, S.; Pan, Y.; Long, D.; Wang, J.; Liu, C. A BMP-2-triggered in vivo osteo-organoid for cell therapy. Sci Adv. 2023, 9, eadd1541 |
27. |
Li, Q.; Yu, H.; Sun, M.; Yang, P.; Hu, X.; Ao, Y.; Cheng, J. The tissue origin effect of extracellular vesicles on cartilage and bone regeneration. Acta Biomater. 2021, 125, 253–266.
doi: 10.1016/j.actbio.2021.02.039 pmid: 33657452 |
28. |
Shimizu, H.; Yokoyama, S.; Asahara, H. Growth and differentiation of the developing limb bud from the perspective of chondrogenesis. Dev Growth Differ. 2007, 49, 449–454.
pmid: 17661739 |
29. |
Gao, L.; Orth, P.; Cucchiarini, M.; Madry, H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev Med Devices. 2017, 14, 717–732.
doi: 10.1080/17434440.2017.1368386 pmid: 28817971 |
30. |
Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007, 25, 2739–2749.
doi: 10.1634/stemcells.2007-0197 pmid: 17656645 |
31. |
Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8, 315–317.
doi: 10.1080/14653240600855905 pmid: 16923606 |
32. | Sakaguchi, Y.; Sekiya, I.; Yagishita, K.; Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005, 52, 2521–2529. |
33. |
Yoshimura, H.; Muneta, T.; Nimura, A.; Yokoyama, A.; Koga, H.; Sekiya, I. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 2007, 327, 449–462.
doi: 10.1007/s00441-006-0308-z pmid: 17053900 |
34. | Xie, C.; Liang, R.; Ye, J.; Peng, Z.; Sun, H.; Zhu, Q.; Shen, X.; Hong, Y.; Wu, H.; Sun, W.; Yao, X.; Li, J.; Zhang, S.; Zhang, X.; Ouyang, H. High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials. 2022, 288, 121741. |
35. | Scotti, C.; Piccinini, E.; Takizawa, H.; Todorov, A.; Bourgine, P.; Papadimitropoulos, A.; Barbero, A.; Manz, M. G.; Martin, I. Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci U S A. 2013, 110, 3997–4002. |
36. |
Hamid, A. A.; Idrus, R. B.; Saim, A. B.; Sathappan, S.; Chua, K. H. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics (Sao Paulo). 2012, 67, 99–106.
doi: S1807-59322012000200003 pmid: 22358233 |
37. |
Baksh, D.; Yao, R.; Tuan, R. S. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007, 25, 1384–1392.
doi: 10.1634/stemcells.2006-0709 pmid: 17332507 |
38. |
Han, Y.; Wu, Y.; Wang, F.; Li, G.; Wang, J.; Wu, X.; Deng, A.; Ren, X.; Wang, X.; Gao, J.; Shi, Z.; Bai, L.; Su, J. Heterogeneous DNA hydrogel loaded with Apt02 modified tetrahedral framework nucleic acid accelerated critical-size bone defect repair. Bioact Mater. 2024, 35, 1–16.
doi: 10.1016/j.bioactmat.2024.01.009 pmid: 38298451 |
39. | Lin, W.; Wang, M.; Xu, L.; Tortorella, M.; Li, G. Cartilage organoids for cartilage development and cartilage-associated disease modeling. Front Cell Dev Biol. 2023, 11, 1125405. |
40. | Vail, D. J.; Somoza, R. A.; Caplan, A. I. MicroRNA regulation of bone marrow mesenchymal stem cell chondrogenesis: toward articular cartilage. Tissue Eng Part A. 2022, 28, 254–269. |
41. | Lemarié, L.; Dargar, T.; Grosjean, I.; Gache, V.; Courtial, E. J.; Sohier, J. Human induced pluripotent spheroids’ growth is driven by viscoelastic properties and macrostructure of 3D hydrogel environment. Bioengineering (Basel). 2023, 10, 1418. |
42. |
Adkar, S. S.; Brunger, J. M.; Willard, V. P.; Wu, C. L.; Gersbach, C. A.; Guilak, F. Genome engineering for personalized arthritis therapeutics. Trends Mol Med. 2017, 23, 917–931.
doi: S1471-4914(17)30142-9 pmid: 28887050 |
43. |
Narsinh, K. H.; Plews, J.; Wu, J. C. Comparison of human induced pluripotent and embryonic stem cells: fraternal or identical twins? Mol Ther. 2011, 19, 635–638.
doi: 10.1038/mt.2011.41 pmid: 21455209 |
44. |
Hirschi, K. K.; Li, S.; Roy, K. Induced pluripotent stem cells for regenerative medicine. Annu Rev Biomed Eng. 2014, 16, 277–294.
doi: 10.1146/annurev-bioeng-071813-105108 pmid: 24905879 |
45. | Zhao, J.; Jiang, W. J.; Sun, C.; Hou, C. Z.; Yang, X. M.; Gao, J. G. Induced pluripotent stem cells: origins, applications, and future perspectives. J Zhejiang Univ Sci B. 2013, 14, 1059–1069. |
46. | O’Connor, S. K.; Katz, D. B.; Oswald, S. J.; Groneck, L.; Guilak, F. Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Eng Part A. 2021, 27, 1099–1109. |
47. |
Larson, B. L.; Yu, S. N.; Park, H.; Estes, B. T.; Moutos, F. T.; Bloomquist, C. J.; Wu, P. B.; Welter, J. F.; Langer, R.; Guilak, F.; Freed, L. E. Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on three-dimensionally woven scaffolds. J Tissue Eng Regen Med. 2019, 13, 1453–1465.
doi: 10.1002/term.2899 pmid: 31115161 |
48. |
Liu, Z.; Tang, Y.; Lü, S.; Zhou, J.; Du, Z.; Duan, C.; Li, Z.; Wang, C. The tumourigenicity of iPS cells and their differentiated derivates. J Cell Mol Med. 2013, 17, 782–791.
doi: 10.1111/jcmm.12062 pmid: 23711115 |
49. |
Tam, W. L.; Freitas Mendes, L.; Chen, X.; Lesage, R.; Van Hoven, I.; Leysen, E.; Kerckhofs, G.; Bosmans, K.; Chai, Y. C.; Yamashita, A.; Tsumaki, N.; Geris, L.; Roberts, S. J.; Luyten, F. P. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res Ther. 2021, 12, 513.
doi: 10.1186/s13287-021-02580-7 pmid: 34563248 |
50. | Hall, G. N.; Tam, W. L.; Andrikopoulos, K. S.; Casas-Fraile, L.; Voyiatzis, G. A.; Geris, L.; Luyten, F. P.; Papantoniou, I. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials. 2021, 273, 120820. |
51. | Liu, H.; Yang, L.; Yu, F. F.; Wang, S.; Wu, C.; Qu, C.; Lammi, M. J.; Guo, X. The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis Cartilage. 2017, 25, 616–624. |
52. |
Abe, K.; Yamashita, A.; Morioka, M.; Horike, N.; Takei, Y.; Koyamatsu, S.; Okita, K.; Matsuda, S.; Tsumaki, N. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat Commun. 2023, 14, 804.
doi: 10.1038/s41467-023-36408-0 pmid: 36808132 |
53. | Nilsson Hall, G.; Mendes, L. F.; Gklava, C.; Geris, L.; Luyten, F. P.; Papantoniou, I. Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing. Adv Sci (Weinh). 2020, 7, 1902295. |
54. |
Tsumaki, N.; Okada, M.; Yamashita, A. iPS cell technologies and cartilage regeneration. Bone. 2015, 70, 48–54.
doi: 10.1016/j.bone.2014.07.011 pmid: 25026496 |
55. |
Rodríguez Ruiz, A.; van Hoolwerff, M.; Sprangers, S.; Suchiman, E.; Schoenmaker, T.; Dibbets-Schneider, P.; Bloem, J. L.; Nelissen, R.; Freund, C.; Mummery, C.; Everts, V.; de Vries, T. J.; Ramos, Y. F. M.; Meulenbelt, I. Mutation in the CCAL1 locus accounts for bidirectional process of human subchondral bone turnover and cartilage mineralization. Rheumatology (Oxford). 2022, 62, 360–372.
doi: 10.1093/rheumatology/keac232 pmid: 35412619 |
56. | Han, B.; Fang, W.; Yang, Z.; Wang, Y.; Zhao, S.; Hoang, B. X.; Vangsness, C. T., Jr. Enhancement of chondrogenic markers by exosomes derived from cultured human synovial fluid-derived cells: a comparative analysis of 2D and 3D conditions. Biomedicines. 2023, 11, 3145. |
57. | Amarasekara, D. S.; Kim, S.; Rho, J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 2021, 22, 2851. |
58. |
Breslin, S.; O’Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013, 18, 240–249.
doi: 10.1016/j.drudis.2012.10.003 pmid: 23073387 |
59. |
Fang, Y.; Eglen, R. M. Three-dimensional cell cultures in drug discovery and development. SLAS Discov. 2017, 22, 456–472.
doi: 10.1177/1087057117696795 pmid: 28520521 |
60. | Fuller, J.; Lefferts, K. S.; Shah, P.; Cottrell, J. A. Methodology and characterization of a 3D bone organoid model derived from murine cells. Int J Mol Sci. 2024, 25, 4225. |
61. |
Iordachescu, A.; Hughes, E. A. B.; Joseph, S.; Hill, E. J.; Grover, L. M.; Metcalfe, A. D. Trabecular bone organoids: a micron-scale ‘humanised’ prototype designed to study the effects of microgravity and degeneration. NPJ Microgravity. 2021, 7, 17.
doi: 10.1038/s41526-021-00146-8 pmid: 34021163 |
62. | Park, Y.; Cheong, E.; Kwak, J. G.; Carpenter, R.; Shim, J. H.; Lee, J. Trabecular bone organoid model for studying the regulation of localized bone remodeling. Sci Adv. 2021, 7, eabd6495 |
63. | Knowles, H. J.; Chanalaris, A.; Koutsikouni, A.; Cribbs, A. P.; Grover, L. M.; Hulley, P. A. Mature primary human osteocytes in mini organotypic cultures secrete FGF23 and PTH1-34-regulated sclerostin. Front Endocrinol (Lausanne). 2023, 14, 1167734. |
64. | Kleuskens, M. W. A.; Crispim, J. F.; van Doeselaar, M.; van Donkelaar, C. C.; Janssen, R. P. A.; Ito, K. Neo-cartilage formation using human nondegenerate versus osteoarthritic chondrocyte-derived cartilage organoids in a viscoelastic hydrogel. J Orthop Res. 2023, 41, 1902–1915. |
65. | Crispim, J. F.; Ito, K. De novo neo-hyaline-cartilage from bovine organoids in viscoelastic hydrogels. Acta Biomater. 2021, 128, 236–249. |
66. |
Wei, W.; Dai, H. Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater. 2021, 6, 4830–4855.
doi: 10.1016/j.bioactmat.2021.05.011 pmid: 34136726 |
67. |
D’Costa, K.; Kosic, M.; Lam, A.; Moradipour, A.; Zhao, Y.; Radisic, M. Biomaterials and culture systems for development of organoid and organ-on-a-chip models. Ann Biomed Eng. 2020, 48, 2002–2027.
doi: 10.1007/s10439-020-02498-w pmid: 32285341 |
68. | Haghwerdi, F.; Khozaei Ravari, M.; Taghiyar, L.; Shamekhi, M. A.; Jahangir, S.; Haririan, I.; Baghaban Eslaminejad, M. Application of bone and cartilage extracellular matrices in articular cartilage regeneration. Biomed Mater. 2021, 16, 042014. |
69. | Chen, L.; Ren, W. Three-dimensional (3D) and drug-eluting nanofiber coating for prosthetic implants. In Racing for the surface: antimicrobial and interface tissue engineering, Li, B.; Moriarty, T. F.; Webster, T.; Xing, M., eds.; Springer International Publishing: Cham, 2020; pp 91–114. |
70. | Wang, Z.; Wang, Y.; Yan, J.; Zhang, K.; Lin, F.; Xiang, L.; Deng, L.; Guan, Z.; Cui, W.; Zhang, H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021, 174, 504–534. |
71. | Zhou, J.; Xiong, S.; Liu, M.; Yang, H.; Wei, P.; Yi, F.; Ouyang, M.; Xi, H.; Long, Z.; Liu, Y.; Li, J.; Ding, L.; Xiong, L. Study on the influence of scaffold morphology and structure on osteogenic performance. Front Bioeng Biotechnol. 2023, 11, 1127162. |
72. |
Chen, S.; Chen, X.; Geng, Z.; Su, J. The horizon of bone organoid: a perspective on construction and application. Bioact Mater. 2022, 18, 15–25.
doi: 10.1016/j.bioactmat.2022.01.048 pmid: 35387160 |
73. |
Chae, S.; Lee, H.; Ryu, D.; Kim, G. Macroscale pseudo-spheroids fabricated using methacrylated collagen-coated cells. Theranostics. 2024, 14, 924–939.
doi: 10.7150/thno.92193 pmid: 38250048 |
74. | Nerger, B. A.; Sinha, S.; Lee, N. N.; Cheriyan, M.; Bertsch, P.; Johnson, C. P.; Mahadevan, L.; Bonventre, J. V.; Mooney, D. J. 3D hydrogel encapsulation regulates nephrogenesis in kidney organoids. Adv Mater. 2024, 36, e2308325 |
75. | Cullier, A.; Cassé, F.; Manivong, S.; Contentin, R.; Legendre, F.; Garcia Ac, A.; Sirois, P.; Roullin, G.; Banquy, X.; Moldovan, F.; Bertoni, L.; Audigié, F.; Galéra, P.; Demoor, M. Functionalized nanogels with endothelin-1 and bradykinin receptor antagonist peptides decrease inflammatory and cartilage degradation markers of osteoarthritis in a horse organoid model of cartilage. Int J Mol Sci. 2022, 23, 8949. |
76. |
Cardier, J. E.; Diaz-Solano, D.; Wittig, O.; Sierra, G.; Pulido, J.; Moreno, R.; Fuentes, S.; Leal, F. Osteogenic organoid for bone regeneration: Healing of bone defect in congenital pseudoarthrosis of the tibia. Int J Artif Organs. 2024, 47, 107–114.
doi: 10.1177/03913988231220844 pmid: 38182554 |
77. | Shehzad, A.; Mukasheva, F.; Moazzam, M.; Sultanova, D.; Abdikhan, B.; Trifonov, A.; Akilbekova, D. Dual-crosslinking of gelatin-based hydrogels: promising compositions for a 3D printed organotypic bone model. Bioengineering (Basel). 2023, 10, 704. |
78. |
Luo, Z.; Xian, B.; Li, K.; Li, K.; Yang, R.; Chen, M.; Xu, C.; Tang, M.; Rong, H.; Hu, D.; Ye, M.; Yang, S.; Lu, S.; Zhang, H.; Ge, J. Biodegradable scaffolds facilitate epiretinal transplantation of hiPSC-Derived retinal neurons in nonhuman primates. Acta Biomater. 2021, 134, 289–301.
doi: 10.1016/j.actbio.2021.07.040 pmid: 34314890 |
79. | Qiao, F.; Zou, Y.; Bie, B.; Lv, Y. Dual siRNA-loaded cell membrane functionalized matrix facilitates bone regeneration with angiogenesis and neurogenesis. Small. 2024, 20, e2307062 |
80. | Majumder, J.; Torr, E. E.; Aisenbrey, E. A.; Lebakken, C. S.; Favreau, P. F.; Richards, W. D.; Yin, Y.; Chang, Q.; Murphy, W. L. Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels. J Tissue Eng. 2024, 15, 20417314241230633. |
81. | Zhang, F. X.; Liu, P.; Ding, W.; Meng, Q. B.; Su, D. H.; Zhang, Q. C.; Lian, R. X.; Yu, B. Q.; Zhao, M. D.; Dong, J.; Li, Y. L.; Jiang, L. B. Injectable mussel-inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regeneration. Biomaterials. 2021, 278, 121169. |
82. | Eiraku, M.; Takata, N.; Ishibashi, H.; Kawada, M.; Sakakura, E.; Okuda, S.; Sekiguchi, K.; Adachi, T.; Sasai, Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011, 472, 51–56. |
83. | Banihashemian, S. A.; Zamanlui Benisi, S.; Hosseinzadeh, S.; Shojaei, S.; Abbaszadeh, H. A. Chitosan/hyaluronan and alginate-nanohydroxyapatite biphasic scaffold as a promising matrix for osteoarthritis disorders. Adv Pharm Bull. 2024, 14, 176–191. |
84. | Dai, K.; Zhang, W.; Deng, S.; Wang, J.; Liu, C. Sulfated polysaccharide regulates the homing of HSPCs in a BMP-2-triggered in vivo osteo-organoid. Adv Sci (Weinh). 2023, 10, e2301592 |
85. |
Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int J Biol Macromol. 2020, 151, 1012–1029.
doi: S0141-8130(19)36547-X pmid: 31715233 |
86. |
Paggi, C. A.; Teixeira, L. M.; Le Gac, S.; Karperien, M. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat Rev Rheumatol. 2022, 18, 217–231.
doi: 10.1038/s41584-021-00736-6 pmid: 35058618 |
87. | Deng, S.; Zhu, F.; Dai, K.; Wang, J.; Liu, C. Harvest of functional mesenchymal stem cells derived from in vivo osteo-organoids. Biomater Transl. 2023, 4, 270–279. |
88. | Wang, J.; Wu, Y.; Li, G.; Zhou, F.; Wu, X.; Wang, M.; Liu, X.; Tang, H.; Bai, L.; Geng, Z.; Song, P.; Shi, Z.; Ren, X.; Su, J. Engineering large-scale self-mineralizing bone organoids with bone matrix-inspired hydroxyapatite hybrid bioinks. Adv Mater. 2024, 36, e2309875 |
89. |
Sun, Y.; You, Y.; Wu, Q.; Hu, R.; Dai, K. Senescence-targeted MicroRNA/Organoid composite hydrogel repair cartilage defect and prevention joint degeneration via improved chondrocyte homeostasis. Bioact Mater. 2024, 39, 427–442.
doi: 10.1016/j.bioactmat.2024.05.036 pmid: 38855061 |
90. | Zhang, L.; Tang, H.; Xiahou, Z.; Zhang, J.; She, Y.; Zhang, K.; Hu, X.; Yin, J.; Chen, C. Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication. 2022, 14, 035003. |
91. | Toni, R.; Barbaro, F.; Di Conza, G.; Zini, N.; Remaggi, G.; Elviri, L.; Spaletta, G.; Quarantini, E.; Quarantini, M.; Mosca, S.; Caravelli, S.; Mosca, M.; Ravanetti, F.; Sprio, S.; Tampieri, A. A bioartificial and vasculomorphic bone matrix-based organoid mimicking microanatomy of flat and short bones. J Biomed Mater Res B Appl Biomater. 2024, 112, e35329 |
92. |
Ma, C.; Peng, Y.; Li, H.; Chen, W. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021, 42, 119–133.
doi: 10.1016/j.tips.2020.11.009 pmid: 33341248 |
93. | Klotz, B. J.; Oosterhoff, L. A.; Utomo, L.; Lim, K. S.; Vallmajo-Martin, Q.; Clevers, H.; Woodfield, T. B. F.; Rosenberg, A.; Malda, J.; Ehrbar, M.; Spee, B.; Gawlitta, D. A versatile biosynthetic hydrogel platform for engineering of tissue analogues. Adv Healthc Mater. 2019, 8, e1900979 |
94. |
Shen, C.; Wang, J.; Li, G.; Hao, S.; Wu, Y.; Song, P.; Han, Y.; Li, M.; Wang, G.; Xu, K.; Zhang, H.; Ren, X.; Jing, Y.; Yang, R.; Geng, Z.; Su, J. Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor. Bioact Mater. 2024, 35, 429–444.
doi: 10.1016/j.bioactmat.2024.02.016 pmid: 38390528 |
95. |
Pina, S.; Rebelo, R.; Correlo, V. M.; Oliveira, J. M.; Reis, R. L. Bioceramics for osteochondral tissue engineering and regeneration. Adv Exp Med Biol. 2018, 1058, 53–75.
doi: 10.1007/978-3-319-76711-6_3 pmid: 29691817 |
96. | Li, Z. A.; Shang, J.; Xiang, S.; Li, E. N.; Yagi, H.; Riewruja, K.; Lin, H.; Tuan, R. S. Articular tissue-mimicking organoids derived from mesenchymal stem cells and induced pluripotent stem cells. Organoids. 2022, 1, 135–148. |
97. | Li, L.; Li, H.; Wang, Q.; Xue, Y.; Dai, Y.; Dong, Y.; Shao, M.; Lyu, F. Hydroxyapatite nanoparticles promote the development of bone microtissues for accelerated bone regeneration by activating the FAK/Akt pathway. ACS Biomater Sci Eng. 2024, 10, 4463–4479. |
98. |
He, T.; Hausdorf, J.; Chevalier, Y.; Klar, R. M. Trauma induced tissue survival in vitro with a muscle-biomaterial based osteogenic organoid system: a proof of concept study. BMC Biotechnol. 2020, 20, 8.
doi: 10.1186/s12896-020-0602-y pmid: 32005149 |
99. | Chung, C.; Kim, Y. K.; Shin, D.; Ryoo, S. R.; Hong, B. H.; Min, D. H. Biomedical applications of graphene and graphene oxide. Acc Chem Res. 2013, 46, 2211–2224. |
100. | Park, S. Y.; Park, J.; Sim, S. H.; Sung, M. G.; Kim, K. S.; Hong, B. H.; Hong, S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater. 2011, 23, H263–267. |
101. | Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater. 2008, 20, 3557–3561. |
102. |
Lee, W. C.; Lim, C. H.; Shi, H.; Tang, L. A.; Wang, Y.; Lim, C. T.; Loh, K. P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano. 2011, 5, 7334–7341.
doi: 10.1021/nn202190c pmid: 21793541 |
103. |
Nayak, T. R.; Andersen, H.; Makam, V. S.; Khaw, C.; Bae, S.; Xu, X.; Ee, P. L.; Ahn, J. H.; Hong, B. H.; Pastorin, G.; Özyilmaz, B. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011, 5, 4670–4678.
doi: 10.1021/nn200500h pmid: 21528849 |
104. | Marrella, A.; Lagazzo, A.; Barberis, F.; Catelani, T.; Quarto, R.; Scaglione, S. Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon. 2017, 115, 608–616. |
105. |
Choe, G.; Oh, S.; Seok, J. M.; Park, S. A.; Lee, J. Y. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale. 2019, 11, 23275–23285.
doi: 10.1039/c9nr07643c pmid: 31782460 |
106. | Kang, S.; Park, J. B.; Lee, T.-J.; Ryu, S.; Bhang, S. H.; La, W.-G.; Noh, M.-K.; Hong, B. H.; Kim, B.-S. Covalent conjugation of mechanically stiff graphene oxide flakes to three-dimensional collagen scaffolds for osteogenic differentiation of human mesenchymal stem cells. Carbon. 2015, 83, 162–172. |
107. | Shin, S. R.; Aghaei-Ghareh-Bolagh, B.; Dang, T. T.; Topkaya, S. N.; Gao, X.; Yang, S. Y.; Jung, S. M.; Oh, J. H.; Dokmeci, M. R.; Tang, X. S.; Khademhosseini, A. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide. Adv Mater. 2013, 25, 6385–6391. |
108. |
Zhang, J.; Wehrle, E.; Adamek, P.; Paul, G. R.; Qin, X. H.; Rubert, M.; Müller, R. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Acta Biomater. 2020, 114, 307–322.
doi: S1742-7061(20)30401-3 pmid: 32673752 |
109. |
Zhang, J.; Eyisoylu, H.; Qin, X. H.; Rubert, M.; Müller, R. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 2021, 121, 637–652.
doi: 10.1016/j.actbio.2020.12.026 pmid: 33326888 |
110. | Zhang, J.; Griesbach, J.; Ganeyev, M.; Zehnder, A. K.; Zeng, P.; Schädli, G. N.; Leeuw, A.; Lai, Y.; Rubert, M.; Müller, R. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication. 2022, 14, 035018. |
111. |
Rossi, G.; Manfrin, A.; Lutolf, M. P. Progress and potential in organoid research. Nat Rev Genet. 2018, 19, 671–687.
doi: 10.1038/s41576-018-0051-9 pmid: 30228295 |
112. | Li, J.; Dong, S. The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells Int. 2016, 2016, 2470351. |
113. | Mendes, L. F.; Tam, W. L.; Chai, Y. C.; Geris, L.; Luyten, F. P.; Roberts, S. J. Combinatorial analysis of growth factors reveals the contribution of bone morphogenetic proteins to chondrogenic differentiation of human periosteal cells. Tissue Eng Part C Methods. 2016, 22, 473–486. |
114. |
Murphy, M. K.; Huey, D. J.; Hu, J. C.; Athanasiou, K. A. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Stem Cells. 2015, 33, 762–773.
doi: 10.1002/stem.1890 pmid: 25377511 |
115. |
Matta, C.; Mobasheri, A. Regulation of chondrogenesis by protein kinase C: Emerging new roles in calcium signalling. Cell Signal. 2014, 26, 979–1000.
doi: 10.1016/j.cellsig.2014.01.011 pmid: 24440668 |
116. |
Min, S. K.; Kim, M.; Park, J. B. Bone morphogenetic protein 2-enhanced osteogenic differentiation of stem cell spheres by regulation of Runx2 expression. Exp Ther Med. 2020, 20, 79.
doi: 10.3892/etm.2020.9206 pmid: 32968436 |
117. |
Lin, W.; Zhu, X.; Gao, L.; Mao, M.; Gao, D.; Huang, Z. Osteomodulin positively regulates osteogenesis through interaction with BMP2. Cell Death Dis. 2021, 12, 147.
doi: 10.1038/s41419-021-03404-5 pmid: 33542209 |
118. | Limraksasin, P.; Kondo, T.; Zhang, M.; Okawa, H.; Osathanon, T.; Pavasant, P.; Egusa, H. In vitro fabrication of hybrid bone/cartilage complex using mouse induced pluripotent stem cells. Int J Mol Sci. 2020, 21, 581. |
119. |
Dicks, A. R.; Steward, N.; Guilak, F.; Wu, C. L. Chondrogenic differentiation of human-induced pluripotent stem cells. Methods Mol Biol. 2023, 2598, 87–114.
doi: 10.1007/978-1-0716-2839-3_8 pmid: 36355287 |
120. | Belluzzi, E.; Todros, S.; Pozzuoli, A.; Ruggieri, P.; Carniel, E. L.; Berardo, A. Human cartilage biomechanics: experimental and theoretical approaches towards the identification of mechanical properties in healthy and osteoarthritic conditions. Processes. 2023, 11, 1014. |
121. |
Ansari, S.; Khorshidi, S.; Karkhaneh, A. Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater. 2019, 87, 41–54.
doi: S1742-7061(19)30102-3 pmid: 30721785 |
122. |
Bilic, J.; Izpisua Belmonte, J. C. Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells. 2012, 30, 33–41.
doi: 10.1002/stem.700 pmid: 22213481 |
123. | Juhász, K. Z.; Hajdú, T.; Kovács, P.; Vágó, J.; Matta, C.; Takács, R. Hypoxic conditions modulate chondrogenesis through the circadian clock: the role of hypoxia-inducible factor-1α. Cells. 2024, 13, 512. |
124. | Arai, Y.; Cha, R.; Nakagawa, S.; Inoue, A.; Nakamura, K.; Takahashi, K. Cartilage homeostasis under physioxia. Int J Mol Sci. 2024, 25, 9398. |
125. | Yu, Y.; Jiang, Y.; Ge, H.; Fan, X.; Gao, H.; Zhou, Z. HIF-1α in cartilage homeostasis, apoptosis, and glycolysis in mice with steroid-induced osteonecrosis of the femoral head. J Cell Physiol. 2024, 239, e31224 |
126. | Bolander, J.; Mota, C.; Ooi, H. W.; Agten, H.; Baker, M. B.; Moroni, L.; Luyten, F. P. Bioinspired development of an in vitro engineered fracture callus for the treatment of critical long bone defects. Adv Funct Mater. 2021, 31, 2104159. |
127. | Li, Z.; Lin, Z.; Liu, S.; Yagi, H.; Zhang, X.; Yocum, L.; Romero-Lopez, M.; Rhee, C.; Makarcyzk, M. J.; Yu, I.; Li, E. N.; Fritch, M. R.; Gao, Q.; Goh, K. B.; O’Donnell, B.; Hao, T.; Alexander, P. G.; Mahadik, B.; Fisher, J. P.; Goodman, S. B.; Bunnell, B. A.; Tuan, R. S.; Lin, H. Human mesenchymal stem cell-derived miniature joint system for disease modeling and drug testing. Adv Sci (Weinh). 2022, 9, e2105909 |
128. | Paggi, C. A.; Hendriks, J.; Karperien, M.; Le Gac, S. Emulating the chondrocyte microenvironment using multi-directional mechanical stimulation in a cartilage-on-chip. Lab Chip. 2022, 22, 1815–1828. |
129. | Alamán-Díez, P.; García-Gareta, E.; Arruebo, M.; Pérez, M. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J Biomed Mater Res A. 2023, 111, 88–105. |
130. | Bahmaee, H.; Owen, R.; Boyle, L.; Perrault, C. M.; Garcia-Granada, A. A.; Reilly, G. C.; Claeyssens, F. Design and evaluation of an osteogenesis-on-a-chip microfluidic device incorporating 3D cell culture. Front Bioeng Biotechnol. 2020, 8, 557111. |
131. | Zhang, W.; Wei, X.; Wang, Q.; Dai, K.; Wang, J.; Liu, C. In vivo osteo-organoid approach for harvesting therapeutic hematopoietic stem/progenitor cells. J Vis Exp. 2024, e66026. |
132. | Yu, L.; Lin, Y. L.; Yan, M.; Li, T.; Wu, E. Y.; Zimmel, K.; Qureshi, O.; Falck, A.; Sherman, K. M.; Huggins, S. S.; Hurtado, D. O.; Suva, L. J.; Gaddy, D.; Cai, J.; Brunauer, R.; Dawson, L. A.; Muneoka, K. Hyaline cartilage differentiation of fibroblasts in regeneration and regenerative medicine. Development. 2022, 149, dev200249 |
133. |
Wilson, H. V. A new method by which sponges may be artificially reared. Science. 1907, 25, 912–915.
pmid: 17842577 |
134. | Wu, Y.; Wang, K.; Karapetyan, A.; Fernando, W. A.; Simkin, J.; Han, M.; Rugg, E. L.; Muneoka, K. Connective tissue fibroblast properties are position-dependent during mouse digit tip regeneration. PLoS One. 2013, 8, e54764 |
135. |
Yan, H. H. N.; Siu, H. C.; Law, S.; Ho, S. L.; Yue, S. S. K.; Tsui, W. Y.; Chan, D.; Chan, A. S.; Ma, S.; Lam, K. O.; Bartfeld, S.; Man, A. H. Y.; Lee, B. C. H.; Chan, A. S. Y.; Wong, J. W. H.; Cheng, P. S. W.; Chan, A. K. W.; Zhang, J.; Shi, J.; Fan, X.; Kwong, D. L. W.; Mak, T. W.; Yuen, S. T.; Clevers, H.; Leung, S. Y. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell. 2018, 23, 882–897.e11.
doi: S1934-5909(18)30480-6 pmid: 30344100 |
136. |
Li, Z.; Yu, D.; Zhou, C.; Wang, F.; Lu, K.; Liu, Y.; Xu, J.; Xuan, L.; Wang, X. Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives. Biomater Transl. 2024, 5, 21–32.
doi: 10.12336/biomatertransl.2024.01.003 URL |
137. | Dönges, L.; Damle, A.; Mainardi, A.; Bock, T.; Schönenberger, M.; Martin, I.; Barbero, A. Engineered human osteoarthritic cartilage organoids. Biomaterials. 2024, 308, 122549. |
138. | van Hoolwerff, M.; Rodríguez Ruiz, A.; Bouma, M.; Suchiman, H. E. D.; Koning, R. I.; Jost, C. R.; Mulder, A. A.; Freund, C.; Guilak, F.; Ramos, Y. F. M.; Meulenbelt, I. High-impact FN1 mutation decreases chondrogenic potential and affects cartilage deposition via decreased binding to collagen type II. Sci Adv. 2021, 7, eabg8583 |
139. | Liu, H.; Su, J. Organoid and organoid extracellular vesicles for osteoporotic fractures therapy: current status and future perspectives. Interdiscip Med. 2023, 1, e20230011 |
[1] | Yongtao Wang, Yan Hou, Tian Hao, Marta Garcia-Contreras, Guoping Li, Dragos Cretoiu, Junjie Xiao. Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases [J]. Biomaterials Translational, 2024, 5(4): 337-354. |
[2] | Ruiqi Huang, Yanjing Zhu, Haokun Chen, Liqun Yu, Zhibo Liu, Yuchen Liu, Zhaojie Wang, Xiaolie He, Li Yang, Xu Xu, Yuxin Bai, Bairu Chen, Rongrong Zhu. Progress in spinal cord organoid research: advancing understanding of neural development, disease modelling, and regenerative medicine [J]. Biomaterials Translational, 2024, 5(4): 355-371. |
[3] | Jiawei Yang, Nicholas G. Fischer, Zhou Ye. Revolutionising oral organoids with artificial intelligence [J]. Biomaterials Translational, 2024, 5(4): 372-389. |
[4] | Chen Zhang, Yingying Jing, Jianhua Wang, Zhidao Xia, Yuxiao Lai, Long Bai, Jiacan Su. Skeletal organoids [J]. Biomaterials Translational, 2024, 5(4): 390-410. |
[5] | Pengrui Zhang, Qiwei Qin, Xinna Cao, Honglin Xiang, Dechao Feng, Dilinaer Wusiman, Yuling Li. Hydrogel microspheres for bone regeneration through regulation of the regenerative microenvironment [J]. Biomaterials Translational, 2024, 5(3): 205-235. |
[6] | Congyang Xue, Liping Chen, Nan Wang, Heng Chen, Wenqiang Xu, Zhipeng Xi, Qing Sun, Ran Kang, Lin Xie, Xin Liu. Stimuli-responsive hydrogels for bone tissue engineering [J]. Biomaterials Translational, 2024, 5(3): 257-273. |
[7] | Shuhao Yang, Haoming Wu, Chao Peng, Jian He, Zhengguang Pu, Zhidong Lin, Jun Wang, Yingkun Hu, Qiao Su, Bingnan Zhou, Xin Yong, Hai Lan, Ning Hu, Xulin Hu. From the microspheres to scaffolds: advances in polymer microsphere scaffolds for bone regeneration applications [J]. Biomaterials Translational, 2024, 5(3): 274-299. |
[8] | Yuqi Gai, Huaijuan Zhou, Yingting Yang, Jiatian Chen, Bowen Chi, Pei Li, Yue Yin, Yilong Wang, Jinhua Li. Injectable body temperature responsive hydrogel for encephalitis treatment via sustained release of nano-anti-inflammatory agents [J]. Biomaterials Translational, 2024, 5(3): 300-313. |
[9] | Zhuangzhuang Li, Yi Luo, Minxun Lu, Yitian Wang, Linsen Zhong, Yong Zhou, Zhenfeng Duan, Li Min, Chongqi Tu. Design, characterisation, and clinical evaluation of a novel porous Ti-6Al-4V hemipelvic prosthesis based on Voronoi diagram [J]. Biomaterials Translational, 2024, 5(3): 314-324. |
[10] | Wan-Ying Guo, Wei-Huang Wang, Pei-Yao Xu, Ranjith Kumar Kankala, Ai-Zheng Chen. Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications [J]. Biomaterials Translational, 2024, 5(2): 114-128. |
[11] | Haohan Wang, Yonglin Guo, Yiwen Jiang, Yingyu Ge, Hanyi Wang, Dingyi Shi, Guoyang Zhang, Jinzhong Zhao, Yuhao Kang, Liren Wang. Exosome-loaded biomaterials for tendon/ligament repair [J]. Biomaterials Translational, 2024, 5(2): 129-143. |
[12] | Wenpin Qin, Jialu Gao, Jianfei Yan, Xiaoxiao Han, Weicheng Lu, Zhangyu Ma, Lina Niu, Kai Jiao. Microarray analysis of signalling interactions between inflammation and angiogenesis in subchondral bone in temporomandibular joint osteoarthritis [J]. Biomaterials Translational, 2024, 5(2): 175-184. |
[13] | Qiushi Liang, Zhiliang Cheng, Ling Qin. Advanced nanoparticles in osteoarthritis treatment [J]. Biomaterials Translational, 2024, 5(2): 95-113. |
[14] | Zhangjie Li, Dingyuan Yu, Chenyang Zhou, Feifan Wang, Kangyi Lu, Yijun Liu, Jiaqi Xu, Lian Xuan, Xiaolin Wang. Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives [J]. Biomaterials Translational, 2024, 5(1): 21-32. |
[15] | Lei Qi, Tong Zhao, Jinge Yan, Weiwen Ge, Weidong Jiang, Jing Wang, Mazaher Gholipourmalekabadi, Kaili Lin, Xiuhui Wang, Lei Zhang. Advances in magnesium-containing bioceramics for bone repair [J]. Biomaterials Translational, 2024, 5(1): 3-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||