Biomaterials Translational ›› 2020, Vol. 1 ›› Issue (1): 69-81.doi: 10.3877/cma.j.issn.2096-112X.2020.01.007
• RESEARCH ARTICLE • Previous Articles Next Articles
Yunsong Shi1,2, Ruijun He1, Xiangyu Deng1, Zengwu Shao1, Davide Deganello3, Chunze Yan4,*(), Zhidao Xia2,*()
Received:
2020-09-02
Revised:
2020-10-02
Accepted:
2020-10-07
Online:
2020-12-28
Published:
2020-12-28
Contact:
Chunze Yan,Zhidao Xia
E-mail:c-yan@hust.edu.cn;z.xia@swansea.ac.uk
Shi, Y.; He, R.; Deng, X.;Shao, Z.; Deganello, D.; Yan, C.; Xia,. Three-dimensional biofabrication of an aragoniteenriched self-hardening bone graft substitute and assessment of its osteogenicity in vitro and in vivo. Biomater Transl. 2020, 1(1), 69-81.
Figure 2. Experimental design of in vitro and in vivo tests. The blocks of HA/aragonite were sterilised by autoclaving at 121°C, 15 psi (1 psi = 6894.76 Pa) for 30 minutes. Further in vitro and in vivo tests were designed to compare between HA/aragonite and clinically-applied gelatine sponge. HA: hydroxyapatite; U & Pb: uranyl acetate and lead citrate staining.
Sample No. | Factor | Compression (MPa) | Porosity (%) | ||
---|---|---|---|---|---|
(A) Pressure (MPa) | (B) Printing speed (mm/s) | (C) Distance between strands (mm) | |||
1 | 0.6 | 25 | 1 | 2.49 ± 0.14 | 37.0 ± 1.4 |
2 | 0.6 | 27 | 1.1 | 2.43 ± 0.23 | 37.5 ± 1.5 |
3 | 0.6 | 30 | 1.2 | 1.11 ± 0.07 | 42.8 ± 1.8 |
4 | 0.7 | 25 | 1.1 | 1.13 ± 0.11 | 41.1 ± 1.1 |
5 | 0.7 | 27 | 1.2 | 1.34 ± 0.09 | 30.2 ± 1.5 |
6 | 0.7 | 30 | 1 | 1.58 ± 0.13 | 40.7 ± 1.3 |
7 | 0.8 | 25 | 1.2 | 1.03 ± 0.08 | 41.8 ± 1.1 |
8 | 0.8 | 27 | 1 | 0.56 ± 0.05 | 40.2 ± 1.2 |
9 | 0.8 | 30 | 1.1 | 0.75 ± 0.07 | 35.5 ± 1.6 |
Table 1 The effect of bioplotting parameters on hydroxyapatite/aragonite end products
Sample No. | Factor | Compression (MPa) | Porosity (%) | ||
---|---|---|---|---|---|
(A) Pressure (MPa) | (B) Printing speed (mm/s) | (C) Distance between strands (mm) | |||
1 | 0.6 | 25 | 1 | 2.49 ± 0.14 | 37.0 ± 1.4 |
2 | 0.6 | 27 | 1.1 | 2.43 ± 0.23 | 37.5 ± 1.5 |
3 | 0.6 | 30 | 1.2 | 1.11 ± 0.07 | 42.8 ± 1.8 |
4 | 0.7 | 25 | 1.1 | 1.13 ± 0.11 | 41.1 ± 1.1 |
5 | 0.7 | 27 | 1.2 | 1.34 ± 0.09 | 30.2 ± 1.5 |
6 | 0.7 | 30 | 1 | 1.58 ± 0.13 | 40.7 ± 1.3 |
7 | 0.8 | 25 | 1.2 | 1.03 ± 0.08 | 41.8 ± 1.1 |
8 | 0.8 | 27 | 1 | 0.56 ± 0.05 | 40.2 ± 1.2 |
9 | 0.8 | 30 | 1.1 | 0.75 ± 0.07 | 35.5 ± 1.6 |
Factors | Pressure (MPa) | Printing speed (mm/s) | Distance between strands (mm) |
---|---|---|---|
Compression strength | |||
k1 | 2.01 | 1.55 | 1.54 |
k2 | 1.35 | 1.44 | 1.44 |
k3 | 0.78 | 1.15 | 1.16 |
R | 1.23 | 0.4 | 0.38 |
Porosity | |||
k1 | 39.1 | 40.0 | 39.3 |
k2 | 27.3 | 36.0 | 38.0 |
k3 | 39.2 | 39.7 | 38.3 |
R | 11.9 | 3.0 | 1.0 |
Table 2 Range analysis of compression strength and porosity of hydroxyapatite/aragonite
Factors | Pressure (MPa) | Printing speed (mm/s) | Distance between strands (mm) |
---|---|---|---|
Compression strength | |||
k1 | 2.01 | 1.55 | 1.54 |
k2 | 1.35 | 1.44 | 1.44 |
k3 | 0.78 | 1.15 | 1.16 |
R | 1.23 | 0.4 | 0.38 |
Porosity | |||
k1 | 39.1 | 40.0 | 39.3 |
k2 | 27.3 | 36.0 | 38.0 |
k3 | 39.2 | 39.7 | 38.3 |
R | 11.9 | 3.0 | 1.0 |
Figure 3. (A) Scanning electron microscopic image of the cross section of hydroxyapatite/aragonite and measurement of pore size. (B) Higher magnification of the scanning electron microscopic image shown in A. (C) Energy dispersive X-ray spectroscopy analysis of the cross section of hydroxyapatite/aragonite. Scale bars: 100 μm in A, 10 μm in B.
Figure 4. X-ray diffraction analysis of hydroxyapatite/aragonite and calcium carbonate (CaCO3). The (104) in 2θ indicates that the CaCO3 in the HA/aragonite belongs to aragonite. HA: hydroxyapatite.
Figure 5. Comparation of the Fourier-transform infrared spectra of HA/aragonite. and calcium carbonate. Triangle indicates that the peak corresponding to PO43-; dot indicates that the peak corresponding to CO32-.
Figure 6. Thermogravimetric analysis results of hydroxyapatite/aragonite. Stage 1, gelatine in the HA/aragonite begins to decompose; stage 2, aragonite begins to dramatically decompose; stage 3, residual components of CaO and HA are stable, there are no mass weight loss.
Figure 7. Effect of HA/aragonite on the viability of human umbilical cord matrix mesenchymal stem cells detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Data are expressed as the mean ± SE. *P < 0.05 (two-way analysis of variance). HA: hydroxyapatite.
Figure 8. Effect of HA/aragonite on the ALP activity of human umbilical cord matrix mesenchymal stem cells. Data are expressed as the mean ± SE. *P < 0.05 (two-way analysis of variance. ALP: alkaline phosphatase; HA: hydroxyapatite.
Figure 9. (A, B) Weight loss percentage of HA/aragonite (A) and HA (B). Data are expressed as the mean ± SE. *P < 0.05 (two-way analysis of variance). HA: hydroxyapatite.
Figure 10. Implantation of HA/aragonite in a rat model. (A) A specimen of the HA/aragonite (red circle) implanted between the tibia and the tibialis anterior muscle in a rat model. After 6 weeks the sample has become well integrated. (B) MicroCT of gelatine sponge implanted in a rat model. Only the tibia is visible, with no mineralised tissue formed in the sponge. (C) HA/aragonite implanted in a rat model. Interestingly, formation of bone-like tissue (arrow) can be seen between the tibia and the HA/aragonite. Scale bars: 1 mm. HA: hydroxyapatite.
Figure 11. (A) Light microscopy (1 mm section stained with Toluidine blue) revealed that implantation of a gelatine sponge resulted in formation of fibrous tissue between the tibia and the tibialis anterior muscle. (B) At 6 weeks after HA/aragonite implantation, the materials were covered by fibroblasts and macrophages; interestingly, there was a small patch of bone-like tissue formation. Transmission electron microscopy (100 nm section with uranyl acetate and lead citrate staining) observation confirmed the findings of light microscopy. In the control gelatine sponge implantation group (C), macrophagic responses were observed with fibroblast infiltration for tissue regeneration; whereas with implantation of the HA/aragonite (D), typical osteoblast-like cells with canaliculi-like structures within calcified lacunae were observed in the patch of bone-like tissue. Scale bars: 20 μm in A, B, 2 μm in C, D. HA: hydroxyapatite.
1. |
Holmes, R. E.; Bucholz, R. W.; Mooney, V. Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. A histometric study. J Bone Joint Surg Am. 1986,68, 904-911.
URL pmid: 3015975 |
2. |
Giannoudis, P. V.; Dinopoulos, H.; Tsiridis, E. Bone substitutes: an update. Injury. 2005,36 Suppl 3, S20-27.
doi: 10.1016/j.injury.2005.07.029 URL pmid: 16188545 |
3. |
Kao, S. T.; Scott, D. D. A review of bone substitutes. Oral Maxillofac Surg Clin North Am. 2007,19, 513-521, vi.
doi: 10.1016/j.coms.2007.06.002 URL pmid: 18088902 |
4. |
Okuda, T.; Ioku, K.; Yonezawa, I.; Minagi, H.; Gonda, Y.; Kawachi, G.; Kamitakahara, M.; Shibata, Y.; Murayama, H.; Kurosawa, H.; Ikeda, T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials. 2008,29, 2719-2728.
doi: 10.1016/j.biomaterials.2008.03.028 URL pmid: 18403011 |
5. |
Tonino, A. J.; van der Wal, B. C.; Heyligers, I. C.; Grimm, B. Bone remodeling and hydroxyapatite resorption in coated primary hip prostheses. Clin Orthop Relat Res. 2009,467, 478-484.
doi: 10.1007/s11999-008-0559-y URL pmid: 18855086 |
6. |
Bouler, J. M.; Pilet, P.; Gauthier, O.; Verron, E. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater. 2017,53, 1-12.
doi: 10.1016/j.actbio.2017.01.076 URL pmid: 28159720 |
7. |
Wei, W.; Ma, G. H.; Hu, G.; Yu, D.; McLeish, T.; Su, Z. G.; Shen, Z. Y. Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. J Am Chem Soc. 2008,130, 15808-15810.
doi: 10.1021/ja8039585 URL pmid: 18980322 |
8. |
Biradar, S.; Ravichandran, P.; Gopikrishnan, R.; Goornavar, V.; Hall, J. C.; Ramesh, V.; Baluchamy, S.; Jeffers, R. B.; Ramesh, G. T. Calcium carbonate nanoparticles: synjournal, characterization and biocompatibility. J Nanosci Nanotechnol. 2011,11, 6868-6874.
doi: 10.1166/jnn.2011.4251 URL pmid: 22103092 |
9. |
Addadi, L.; Raz, S.; Weiner, S. Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater. 2003,15, 959-970.
doi: 10.1002/adma.200300381 URL |
10. |
Addadi, L.; Weiner, S. A pavement of pearl. Nature. 1997,389, 912-913.
doi: 10.1038/40010 URL |
11. |
Svenskaya, Y.; Parakhonskiy, B.; Haase, A.; Atkin, V.; Lukyanets, E.; Gorin, D.; Antolini, R. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophys Chem. 2013,182, 11-15.
doi: 10.1016/j.bpc.2013.07.006 URL pmid: 23932207 |
12. |
Küther, J.; Seshadri, R.; Knoll, W.; Tremel, W. Templated growth of calcite, vaterite and aragonite crystals onself-assembled monolayers of substituted alkylthiols on gold. J Mater Chem. 1998,8, 641-650.
doi: 10.1039/a705859d URL |
13. |
Wang, C.; Zhao, J.; Zhao, X.; Bala, H.; Wang, Z. Synthesis of nanosized calcium carbonate (aragonite) via a polyacrylamide inducing process. Powder Technol. 2006,163, 134-138.
doi: 10.1016/j.powtec.2005.12.019 URL |
14. |
Islam, K. N.; Bakar, M. Z. B. A.; Noordin, M. M.; Hussein, M. Z. B.; Rahman, N. S. B. A.; Ali, M. E. Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa). Powder Technol. 2011,213, 188-191.
doi: 10.1016/j.powtec.2011.07.031 URL |
15. |
Fu, K.; Xu, Q.; Czernuszka, J.; Triffitt, J. T.; Xia, Z. Characterization of a biodegradable coralline hydroxyapatite/calcium carbonate composite and its clinical implementation. Biomed Mater. 2013,8, 065007.
doi: 10.1088/1748-6041/8/6/065007 URL pmid: 24288015 |
16. |
Kucharska, M.; Butruk, B.; Walenko, K.; Brynk, T.; Ciach, T. Fabrication of in-situ foamed chitosan/β-TCP scaffolds for bone tissue engineering application. Mater Lett. 2012,85, 124-127.
doi: 10.1016/j.matlet.2012.07.002 URL |
17. |
Nommeots-Nomm, A.; Labbaf, S.; Devlin, A.; Todd, N.; Geng, H.; Solanki, A. K.; Tang, H. M.; Perdika, P.; Pinna, A.; Ejeian, F.; Tsigkou, O.; Lee, P. D.; Esfahani, M. H. N.; Mitchell, C. A.; Jones, J. R. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomater. 2017,57, 449-461.
doi: 10.1016/j.actbio.2017.04.030 URL pmid: 28457960 |
18. | Yoshikawa, H.; Tamai, N.; Murase, T.; Myoui, A. Interconnected porous hydroxyapatite ceramics for bone tissue engineering. J R Soc Interface. 2009,Suppl 3, S341-348. |
19. |
Cao, H.; Kuboyama, N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 2010,46, 386-395.
doi: 10.1016/j.bone.2009.09.031 URL pmid: 19800045 |
20. |
Brougham, C. M.; Levingstone, T. J.; Shen, N.; Cooney, G. M.; Jockenhoevel, S.; Flanagan, T. C.; O’Brien, F. J. Freeze-drying as a novel biofabrication method for achieving a controlled microarchitecture within large, complex natural biomaterial scaffolds. Adv Healthc Mater. 2017,6, 1700598.
doi: 10.1002/adhm.v6.21 URL |
21. |
Mi, H. Y.; Jing, X.; McNulty, J.; Salick, M. R.; Peng, X. F.; Turng, L. S. Approaches to fabricating multiple-layered vascular scaffolds using hybrid electrospinning and thermally induced phase separation methods. Ind Eng Chem Res. 2016,55, 882-892.
doi: 10.1021/acs.iecr.5b03462 URL |
22. |
Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater Today. 2013,16, 496-504.
doi: 10.1016/j.mattod.2013.11.017 URL |
23. |
Bracaglia, L. G.; Smith, B. T.; Watson, E.; Arumugasaamy, N.; Mikos, A. G.; Fisher, J. P. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater. 2017,56, 3-13.
doi: 10.1016/j.actbio.2017.03.030 URL pmid: 28342878 |
24. |
Loh, Q. L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev. 2013,19, 485-502.
doi: 10.1089/ten.TEB.2012.0437 URL pmid: 23672709 |
25. |
Ngo, T. D.; Kashani, A.; Imbalzano, G.; Nguyen, K. T. Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng. 2018,143, 172-196.
doi: 10.1016/j.compositesb.2018.02.012 URL |
26. |
Sobral, J. M.; Caridade, S. G.; Sousa, R. A.; Mano, J. F.; Reis, R. L. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency. Acta Biomater. 2011,7, 1009-1018.
doi: 10.1016/j.actbio.2010.11.003 URL pmid: 21056125 |
27. |
Trombetta, R.; Inzana, J. A.; Schwarz, E. M.; Kates, S. L.; Awad, H. A. 3D printing of calcium phosphate ceramics for bone tissue engineering and drug delivery. Ann Biomed Eng. 2017,45, 23-44.
doi: 10.1007/s10439-016-1678-3 URL pmid: 27324800 |
28. |
Inzana, J. A.; Olvera, D.; Fuller, S. M.; Kelly, J. P.; Graeve, O. A.; Schwarz, E. M.; Kates, S. L.; Awad, H. A. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014,35, 4026-4034.
doi: 10.1016/j.biomaterials.2014.01.064 URL pmid: 24529628 |
29. |
Brunello, G.; Sivolella, S.; Meneghello, R.; Ferroni, L.; Gardin, C.; Piattelli, A.; Zavan, B.; Bressan, E. Powder-based 3D printing for bone tissue engineering. Biotechnol Adv. 2016,34, 740-753.
doi: 10.1016/j.biotechadv.2016.03.009 URL pmid: 27086202 |
30. |
Bose, S.; Saha, S. K. Synjournal of hydroxyapatite nanopowders via sucrose-templated sol-gel method. J Am Ceram Soc. 2003,86, 1055-1057.
doi: 10.1111/jace.2003.86.issue-6 URL |
31. |
Lee, J. W.; Kim, J. Y.; Cho, D. W. Solid free-form fabrication technology and its application to bone tissue engineering. Int J Stem Cells. 2010,3, 85-95.
doi: 10.15283/ijsc.2010.3.2.85 URL pmid: 24855546 |
32. |
Xu, H. H.; Wang, P.; Wang, L.; Bao, C.; Chen, Q.; Weir, M. D.; Chow, L. C.; Zhao, L.; Zhou, X.; Reynolds, M. A. Calcium phosphate cements for bone engineering and their biological properties. Bone Res. 2017,5, 17056.
doi: 10.1038/boneres.2017.56 URL pmid: 29354304 |
33. | Ozdemir, F.; Evans, I.; Bretcanu, O. Calcium phosphate cements for medical applications. In Clinical Applications of Biomaterials: State-of-the-Art Progress, Trends, and Novel Approaches, Kaur, G., ed. Springer International Publishing: Cham, 2017; pp 91-121. |
34. |
Pimentel, C. R.; Ko, S. K.; Caviglia, C.; Wolff, A.; Emnéus, J.; Keller, S. S.; Dufva, M. Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater. 2018,65, 174-184.
doi: 10.1016/j.actbio.2017.10.047 URL pmid: 29102798 |
35. |
Stanton, M. M.; Samitier, J.; Sánchez, S. Bioprinting of 3D hydrogels. Lab ChiP. 2015,15, 3111-3115.
doi: 10.1039/c5lc90069g URL pmid: 26066320 |
36. |
Gopinathan, J.; Noh, I. Recent trends in bioinks for 3D printing. Biomater Res. 2018,22, 11.
doi: 10.1186/s40824-018-0122-1 URL pmid: 29636985 |
37. |
Şahin, E.; Kalyon, D. M. The rheological behavior of a fast-setting calcium phosphate bone cement and its dependence on deformation conditions. J Mech Behav Biomed Mater. 2017,72, 252-260.
doi: 10.1016/j.jmbbm.2017.05.017 URL pmid: 28505594 |
38. | General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China; Standardization Administration of the People’s Republic of China. Standard test method for compressive resistance of ceramic materials. GB/T 4740-1984. |
39. | Biological evaluation of medical devices — Part 14: Identification and quantification of degradation products from ceramics. ISO 10993-14:2001. |
40. |
Ma, T.; Xia, Z.; Liao, L. Effect of reaction systems and surfactant additives on the morphology evolution of hydroxyapatite nanorods obtained via a hydrothermal route. Appl Surf Sci. 2011,257, 4384-4388.
doi: 10.1016/j.apsusc.2010.12.067 URL |
41. |
Merry, J. C.; Gibson, I. R.; Best, S. M.; Bonfield, W. Synjournal and characterization of carbonate hydroxyapatite. J Mater Sci Mater Med. 1998,9, 779-783.
doi: 10.1023/a:1008975507498 URL pmid: 15348939 |
42. |
Wilson, R. M.; Elliott, J. C.; Dowker, S. E.; Rodriguez-Lorenzo, L. M. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite. Biomaterials. 2005,26, 1317-1327.
doi: 10.1016/j.biomaterials.2004.04.038 URL pmid: 15475062 |
43. |
Aminzare, M.; Eskandari, A.; Baroonian, M. H.; Berenov, A.; Razavi Hesabi, Z.; Taheri, M.; Sadrnezhaad, S. K. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram Int. 2013,39, 2197-2206.
doi: 10.1016/j.ceramint.2012.09.023 URL |
44. |
Ogose, A.; Hotta, T.; Kawashima, H.; Kondo, N.; Gu, W.; Kamura, T.; Endo, N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B Appl Biomater. 2005,72, 94-101.
doi: 10.1002/jbm.b.30136 URL pmid: 15376187 |
45. |
Oh, K. J.; Ko, Y. B.; Jaiswal, S.; Whang, I. C. Comparison of osteoconductivity and absorbability of beta-tricalcium phosphate and hydroxyapatite in clinical scenario of opening wedge high tibial osteotomy. J Mater Sci Mater Med. 2016,27, 179.
doi: 10.1007/s10856-016-5795-1 URL pmid: 27757780 |
46. |
Bohner, M.; Baroud, G. Injectability of calcium phosphate pastes. Biomaterials. 2005,26, 1553-1563.
doi: 10.1016/j.biomaterials.2004.05.010 URL pmid: 15522757 |
47. |
Gbureck, U.; Barralet, J. E.; Spatz, K.; Grover, L. M.; Thull, R. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials. 2004,25, 2187-2195.
doi: 10.1016/j.biomaterials.2003.08.066 URL pmid: 14741634 |
48. |
Venkatesan, J.; Rekha, P. D.; Anil, S.; Bhatnagar, I.; Sudha, P. N.; Dechsakulwatana, C.; Kim, S. K.; Shim, M. S. Hydroxyapatite from cuttlefish bone: isolation, characterizations, and applications. Biotechnol Bioprocess Eng. 2018,23, 383-393.
doi: 10.1007/s12257-018-0169-9 URL |
49. |
Ishikawa, K.; Takagi, S.; Chow, L. C.; Suzuki, K. Reaction of calcium phosphate cements with different amounts of tetracalcium phosphate and dicalcium phosphate anhydrous. J Biomed Mater Res. 1999,46, 504-510.
doi: 10.1002/(sici)1097-4636(19990915)46:4<504::aid-jbm8>3.0.co;2-h URL pmid: 10398011 |
50. | Manassero, M.; Decambron, A.; Guillemin, N.; Petite, H.; Bizios, R.; Viateau, V. Coral scaffolds in bone tissue engineering and bone regeneration. In The Cnidaria, Past, Present and Future: The world of Medusa and her sisters, Goffredo, S.; Dubinsky, Z., eds.; Springer International Publishing: Cham, 2016; pp 691-714. |
51. |
Sopyan, I.; Mel, M.; Ramesh, S.; Khalid, K. A. Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials. 2007,8, 116-123.
doi: 10.1016/j.stam.2006.11.017 URL |
52. |
Sudarmadji, N.; Tan, J. Y.; Leong, K. F.; Chua, C. K.; Loh, Y. T. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 2011,7, 530-537.
doi: 10.1016/j.actbio.2010.09.024 URL pmid: 20883840 |
53. |
He, F.; Zhang, J.; Yang, F.; Zhu, J.; Tian, X.; Chen, X. In vitro degradation and cell response of calcium carbonate composite ceramic in comparison with other synthetic bone substitute materials. Mater Sci Eng C Mater Biol Appl. 2015,50, 257-265.
doi: 10.1016/j.msec.2015.02.019 URL pmid: 25746269 |
54. |
Gerstenfeld, L. C.; Cullinane, D. M.; Barnes, G. L.; Graves, D. T.; Einhorn, T. A. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003,88, 873-884.
doi: 10.1002/jcb.10435 URL pmid: 12616527 |
55. |
Le Nihouannen D.; Daculsi, G.; Saffarzadeh, A.; Gauthier, O.; Delplace, S.; Pilet, P.; Layrolle, P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005,36, 1086-1093.
doi: 10.1016/j.bone.2005.02.017 URL pmid: 15869915 |
56. |
Yang, Z. J.; Yuan, H.; Zou, P.; Tong, W.; Qu, S.; Zhang, X. D. Osteogenic responses to extraskeletally implanted synthetic porous calcium phosphate ceramics: an early stage histomorphological study in dogs. J Mater Sci Mater Med. 1997,8, 697-701.
doi: 10.1023/a:1018540024082 URL pmid: 15348821 |
57. |
Lu, J.; Yu, H.; Chen, C. Biological properties of calcium phosphate biomaterials for bone repair: a review. RSC Adv. 2018,8, 2015-2033.
doi: 10.1039/C7RA11278E URL |
58. |
Habibovic, P.; Sees, T. M.; van den Doel, M. A.; van Blitterswijk, C. A.; de Groot, K. Osteoinduction by biomaterials physicochemical and structural influences. J Biomed Mater Res A. 2006,77, 747-762.
doi: 10.1002/jbm.a.30712 URL pmid: 16557498 |
59. |
Gedrange, T.; Mai, R.; Weingaertner, J.; Hietschold, V.; Bourauel, C.; Pradel, W.; Lauer, G.; Proff, P. Finite element representation of bone substitute remodelling in the jaw bone. Biomed Tech (Berl). 2008,53, 220-223.
doi: 10.1515/BMT.2008.039 URL |
[1] | Qingchuan Wang, Weidan Wang, Yanfang Li, Weirong Li, Lili Tan, Ke Yang. Biofunctional magnesium coating of implant materials by physical vapour deposition [J]. Biomaterials Translational, 2021, 2(3): 248-256. |
[2] | Wendy Rachel Francis, Zhao Liu, Sian E Owens, Xiao Wang, Huaming Xue, Alex Lord, Venkateswarlu Kanamarlapudi, Zhidao Xia. Role of hypoxia inducible factor 1α in cobalt nanoparticle induced cytotoxicity of human THP-1 macrophages [J]. Biomaterials Translational, 2021, 2(2): 143-150. |
[3] | Kamolrat Metavarayuth, Esteban Villarreal, Hui Wang, Qian Wang. Surface topography and free energy regulate osteogenesis of stem cells: effects of shape-controlled gold nanoparticles [J]. Biomaterials Translational, 2021, 2(2): 165-173. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||