Home

Content of REVIEW in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Biological approaches to the repair and regeneration of the rotator cuff tendon-bone enthesis: a literature review
    Ahlam A. Abdalla, Catherine J. Pendegrass
    Biomaterials Translational    2023, 4 (2): 85-103.   DOI: 10.12336/biomatertransl.2023.02.004
    Abstract321)   HTML35)    PDF(pc) (834KB)(449)       Save

    Entheses are highly specialised organs connecting ligaments and tendons to bones, facilitating force transmission, and providing mechanical strengths to absorb forces encountered. Two types of entheses, fibrocartilaginous and fibrous, exist in interfaces. The gradual fibrocartilaginous type is in rotator cuff tendons and is more frequently injured due to the poor healing capacity that leads to loss of the original structural and biomechanical properties and is attributed to the high prevalence of retears. Fluctuating methodologies and outcomes of biological approaches are challenges to overcome for them to be routinely used in clinics. Therefore, stratifying the existing literature according to different categories (chronicity, extent of tear, and studied population) would effectively guide repair approaches. This literature review supports tissue engineering approaches to promote rotator cuff enthesis healing employing cells, growth factors, and scaffolds period. Outcomes suggest its promising role in animal studies as well as some clinical trials and that combination therapies are more beneficial than individualized ones. It then highlights the importance of tailoring interventions according to the tear extent, chronicity, and the population being treated. Contributing factors such as loading, deficiencies, and lifestyle habits should also be taken into consideration. Optimum results can be achieved if biological, mechanical, and environmental factors are approached. It is challenging to determine whether variations are due to the interventions themselves, the animal models, loading regimen, materials, or tear mechanisms. Future research should focus on tailoring interventions for different categories to formulate protocols, which would best guide regenerative medicine decision making.

    Table and Figures | Reference | Related Articles | Metrics
    Therapeutic potential of oncolytic viruses in the era of precision oncology
    Monchupa Kingsak, Thongpon Meethong, Jinnawat Jongkhumkrong, Li Cai, Qian Wang
    Biomaterials Translational    2023, 4 (2): 67-84.   DOI: 10.12336/biomatertransl.2023.02.003
    Abstract195)   HTML35)    PDF(pc) (1311KB)(237)       Save

    Oncolytic virus (OV) therapy has been shown to be an effective targeted cancer therapy treatment in recent years, providing an avenue of treatment that poses no damage to surrounding healthy tissues. Not only do OVs cause direct oncolysis, but they also amplify both innate and adaptive immune responses generating long-term anti-tumour immunity. Genetically engineered OVs have become the common promising strategy to enhance anti-tumour immunity, safety, and efficacy as well as targeted delivery. The studies of various OVs have been accomplished through phase I-III clinical trial studies. In addition, the uses of carrier platforms of organic materials such as polymer chains, liposomes, hydrogels, and cell carriers have played a vital role in the potentially targeted delivery of OVs. The mechanism, rational design, recent clinical trials, applications, and the development of targeted delivery platforms of OVs will be discussed in this review.

    Table and Figures | Reference | Related Articles | Metrics
    Bioactive elements manipulate bone regeneration
    Long Bai, Peiran Song, Jiacan Su
    Biomaterials Translational    2023, 4 (4): 248-269.   DOI: 10.12336/biomatertransl.2023.04.005
    Abstract174)   HTML31)    PDF(pc) (3289KB)(407)       Save

    While bone tissue is known for its inherent regenerative abilities, various pathological conditions and trauma can disrupt its meticulously regulated processes of bone formation and resorption. Bone tissue engineering aims to replicate the extracellular matrix of bone tissue as well as the sophisticated biochemical mechanisms crucial for effective regeneration. Traditionally, the field has relied on external agents like growth factors and pharmaceuticals to modulate these processes. Although efficacious in certain scenarios, this strategy is compromised by limitations such as safety issues and the transient nature of the compound release and half-life. Conversely, bioactive elements such as zinc (Zn), magnesium (Mg) and silicon (Si), have garnered increasing interest for their therapeutic benefits, superior stability, and reduced biotic risks. Moreover, these elements are often incorporated into biomaterials that function as multifaceted bioactive components, facilitating bone regeneration via release on-demand. By elucidating the mechanistic roles and therapeutic efficacy of the bioactive elements, this review aims to establish bioactive elements as a robust and clinically viable strategy for advanced bone regeneration.

    Table and Figures | Reference | Related Articles | Metrics
    Fabrication, microstructure and properties of advanced ceramic–reinforced composites for dental implants: a review
    Mugilan Thanigachalam, Aezhisai Vallavi Muthusamy Subramanian
    Biomaterials Translational    2023, 4 (3): 151-165.   DOI: 10.12336/biomatertransl.2023.03.004
    Abstract173)   HTML16)    PDF(pc) (2244KB)(305)       Save

    The growing field of dental implant research and development has emerged to rectify the problems associated with human dental health issues. Bio–ceramics are widely used in the medical field, particularly in dental implants, ortho implants, and medical and surgical tools. Various materials have been used in those applications to overcome the limitations and problems associated with their performance and its impact on dental implants. In this article we review and describe the fabrication methods employed for ceramic composites, the microstructure analyses used to identify significant effects on fracture behaviour, and various methods of enhancing mechanical properties. Further, the collective data show that the sintering technique improves the density, hardness, fracture toughness, and flexural strength of alumina– and zirconia–based composites compared with other methods. Future research aspects and suggestions are discussed systematically.

    Table and Figures | Reference | Related Articles | Metrics
    Animal models for testing biomaterials in periodontal regeneration
    Qiao Sun, Yicun Li, Ping Luo, Hong He
    Biomaterials Translational    2023, 4 (3): 142-150.   DOI: 10.12336/biomatertransl.2023.03.003
    Abstract171)   HTML30)    PDF(pc) (746KB)(298)       Save

    Periodontitis is a prevalent oral disease. It can cause tooth loss and has a significant impact on patients’ quality of life. While existing treatments can only slow the progression of periodontitis, they are unable to achieve complete regeneration and functional reconstruction of periodontal tissues. As a result, regenerative therapies based on biomaterials have become a focal point of research in the field of periodontology. Despite numerous studies reporting the superiority of new materials in periodontal regeneration, limited progress has been made in translating these findings into clinical practice. This may be due to the lack of appropriate animal models to simulate the tissue defects caused by human periodontitis. This review aims to provide an overview of established animal models for periodontal regeneration, examine their advantages and limitations, and outline the steps for model construction. The objective is to determine the most relevant animal models for periodontal regeneration based on the hypothesis and expected outcomes.

    Table and Figures | Reference | Related Articles | Metrics
    Advances in electrode interface materials and modification technologies for brain-computer interfaces
    Yunke Jiao, Miao Lei, Jianwei Zhu, Ronghang Chang, Xue Qu
    Biomaterials Translational    2023, 4 (4): 213-233.   DOI: 10.12336/biomatertransl.2023.04.003
    Abstract170)   HTML28)    PDF(pc) (4326KB)(336)       Save

    Recent advances in neuroelectrode interface materials and modification technologies are reviewed. Brain-computer interface is the new method of human-computer interaction, which not only can realise the exchange of information between the human brain and external devices, but also provides a brand-new means for the diagnosis and treatment of brain-related diseases. The neural electrode interface part of brain-computer interface is an important area for electrical, optical and chemical signal transmission between brain tissue system and external electronic devices, which determines the performance of brain-computer interface. In order to solve the problems of insufficient flexibility, insufficient signal recognition ability and insufficient biocompatibility of traditional rigid electrodes, researchers have carried out extensive studies on the neuroelectrode interface in terms of materials and modification techniques. This paper introduces the biological reactions that occur in neuroelectrodes after implantation into brain tissue and the decisive role of the electrode interface for electrode function. Following this, the latest research progress on neuroelectrode materials and interface materials is reviewed from the aspects of neuroelectrode materials and modification technologies, firstly taking materials as a clue, and then focusing on the preparation process of neuroelectrode coatings and the design scheme of functionalised structures.

    Table and Figures | Reference | Related Articles | Metrics
    Organoid extracellular vesicle-based therapeutic strategies for bone therapy
    Han Liu, Jiacan Su
    Biomaterials Translational    2023, 4 (4): 199-212.   DOI: 10.12336/biomatertransl.2023.04.002
    Abstract154)   HTML29)    PDF(pc) (1653KB)(432)       Save

    With the rapid development of population ageing, bone-related diseases seriously affecting the life of the elderly. Over the past few years, organoids, cell clusters with specific functions and structures that are self-induced from stem cells after three-dimensional culture in vitro, have been widely used for bone therapy. Moreover, organoid extracellular vesicles (OEVs) have emerging as promising cell-free nanocarriers due to their vigoroso physiological effects, significant biological functions, stable loading capacity, and great biocompatibility. In this review, we first provide a comprehensive overview of biogenesis, internalisation, isolation, and characterisation of OEVs. We then comprehensively highlight the differences between OEVs and traditional EVs. Subsequently, we present the applications of natural OEVs in disease treatment. We also summarise the engineering modifications of OEVs, including engineering parental cells and engineering OEVs after isolation. Moreover, we provide an outlook on the potential of natural and engineered OEVs in bone-related diseases. Finally, we critically discuss the advantages and challenges of OEVs in the treatment of bone diseases. We believe that a comprehensive discussion of OEVs will provide more innovative and efficient solutions for complex bone diseases.

    Table and Figures | Reference | Related Articles | Metrics
    Research progress and clinical translation of three–dimensional printed porous tantalum in orthopaedics
    Jiawei Ying, Haiyu Yu, Liangliang Cheng, Junlei Li, Bin Wu, Liqun Song, Pinqiao Yi, Haiyao Wang, Lingpeng Liu, Dewei Zhao
    Biomaterials Translational    2023, 4 (3): 166-179.   DOI: 10.12336/biomatertransl.2023.03.005
    Abstract147)   HTML11)    PDF(pc) (1526KB)(295)       Save

    With continuous developments in additive manufacturing technology, tantalum (Ta) metal has been manufactured into orthopaedic implants with a variety of forms, properties and uses by three–dimensional printing. Based on extensive research in recent years, the design, processing and performance aspects of this new orthopaedic implant material have been greatly improved. Besides the bionic porous structure and mechanical characteristics that are similar to human bone tissue, porous tantalum is considered to be a viable bone repair material due to its outstanding corrosion resistance, biocompatibility, bone integration and bone conductivity. Numerous in vitro, in vivo, and clinical studies have been carried out in order to analyse the safety and efficacy of these implants in orthopaedic applications. This study reviews the most recent advances in manufacturing, characteristics and clinical application of porous tantalum materials.

    Table and Figures | Reference | Related Articles | Metrics
    Recent advances of medical polyhydroxyalkanoates in musculoskeletal system
    Chen-Hui Mi, Xin-Ya Qi, Yan-Wen Ding, Jing Zhou, Jin-Wei Dao, Dai-Xu Wei
    Biomaterials Translational    2023, 4 (4): 234-247.   DOI: 10.12336/biomatertransl.2023.04.004
    Abstract108)   HTML20)    PDF(pc) (2169KB)(371)       Save

    Infection and rejection in musculoskeletal trauma often pose challenges for natural healing, prompting the exploration of biomimetic organ and tissue transplantation as a common alternative solution. Polyhydroxyalkanoates (PHAs) are a large family of biopolyesters synthesised in microorganism, demonstrating excellent biocompatibility and controllable biodegradability for tissue remodelling and drug delivery. With different monomer-combination and polymer-types, multi-mechanical properties of PHAs making them have great application prospects in medical devices with stretching, compression, twist in long time, especially in musculoskeletal tissue engineering. This review systematically summarises the applications of PHAs in multiple tissues repair and drug release, encompassing areas such as bone, cartilage, joint, skin, tendons, ligament, cardiovascular tissue, and nervous tissue. It also discusses challenges encountered in their application, including high production costs, potential cytotoxicity, and uncontrollable particle size distribution. In conclusion, PHAs offer a compelling avenue for musculoskeletal system applications, striking a balance between biocompatibility and mechanical performance. However, addressing challenges in their production and application requires further research to unleash their full potential in tackling the complexities of musculoskeletal regeneration.

    Table and Figures | Reference | Related Articles | Metrics