Physicochemical properties of respiratory droplets and their role in COVID-19 pandemics: a critical review
The ongoing coronavirus disease 2019 (COVID-19) pandemic is a serious challenge faced by the global community. Physical scientists can help medical workers and biomedical scientists, engineers, and practitioners, who are working on the front line, to slow down and eventually contain the spread of the COVID-19 virus. This review is focused on the physicochemical characteristics, including composition, aerodynamics, and drying behavior of respiratory droplets as a complex and multicomponent soft matter system, which are the main carrier of the virus for interpersonal transmission. The distribution and dynamics of virus particles within a droplet are also discussed. Understanding the characteristics of virus-laden respiratory droplets can lead to better design of personal protective equipment, frequently touched surfaces such as door knobs and touchscreens, and filtering equipment for indoor air circulation. Such an understanding also provides the scientific basis of public policy, including social distancing rules and public hygiene guidelines, implemented by governments around the world.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu. Accessed by January 3, 2021.
2. World Health Organization. Coronavirus disease (COVID-19) advice for the public. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public. Accessed by January 3, 2021.
3. Zimmer, C.; Corum, J.; Wee, S. L. Coronavirus vaccine tracker. https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html. Accessed by January 3, 2021.
4. Ghaffarzadegan, N.; Childs, L. M.; Täuber, U. C. Diverse Computer Simulation Models Provide Unified Lessons on University Operation during a Pandemic. Bioscience. 2020. doi:10.1093/biosci/biaa122.
5. Huang, H.; Fan, C.; Li, M.; Nie, H. L.; Wang, F. B.; Wang, H.; Wang, R.; Xia, J.; Zheng, X.; Zuo, X.; Huang, J. COVID-19: A call for physical scientists and engineers. ACS Nano. 2020, 14, 3747-3754.
6. Behzadinasab, S.; Chin, A.; Hosseini, M.; Poon, L.; Ducker, W. A. A surface coating that rapidly inactivates SARS-CoV-2. ACS Appl Mater Interfaces. 2020, 12, 34723-34727.
7. Masters, P. S. The molecular biology of coronaviruses. Adv Virus Res. 2006, 66, 193-292.
8. Weber, T. P.; Stilianakis, N. I. Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect. 2008, 57, 361-373.
9. World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions. Accessed by January 3, 2021.
10. Duguid, J. P. The numbers and the sites of origin of the droplets expelled during expiratory activities. Edinb Med J. 1945, 52, 385-401.
11. Loudon, R. G.; Roberts, R. M. Relation between the airborne diameters of respiratory droplets and the diameter of the stains left after recovery. Nature. 1967, 213, 95-96.
12. Fennelly, K. P.; Martyny, J. W.; Fulton, K. E.; Orme, I. M.; Cave, D. M.; Heifets, L. B. Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am J Respir Crit Care Med. 2004, 169, 604-609.
13. Chao, C. Y. H.; Wan, M. P.; Morawska, L.; Johnson, G. R.; Ristovski, Z. D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Li, Y.; Xie, X.; Katoshevski, D. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J Aerosol Sci. 2009, 40, 122-133.
14. Xie, X.; Li, Y.; Sun, H.; Liu, L. Exhaled droplets due to talking and coughing. J R Soc Interface. 2009, 6 Suppl 6, S703-714.
15. Otter, J. A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S. D.; Weber, D. J. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect. 2016, 92, 235-250.
16. van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020, 382, 1564-1567.
17. World Health Organization. Infection prevention and control of epidemic-and pandemic-prone acute respiratory infections in health care. https://apps.who.int/iris/bitstream/handle/10665/112656/9789241507134_eng.pdf;jsessionid=41AA684FB64571CE8D8A453C4F2B2096?sequence=1. Accessed by January 3, 2021.
18. Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N. K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; Liu, X.; Xu, K.; Ho, K. F.; Kan, H.; Fu, Q.; Lan, K. Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature. 2020, 582, 557-560.
19. Nicas, M.; Nazaroff, W. W.; Hubbard, A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. J Occup Environ Hyg. 2005, 2, 143-154.
20. Morawska, L.; Johnson, G. R.; Ristovski, Z. D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C. Y. H.; Li, Y.; Katoshevski, D. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. J Aerosol Sci. 2009, 40, 256-269.
21. Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. Environ Int. 2020, 139, 105730.
22. Grasmeijer, N.; Frijlink, H. W.; Hinrichs, W. L. J. An adaptable model for growth and/or shrinkage of droplets in the respiratory tract during inhalation of aqueous particles. J Aerosol Sci. 2016, 93, 21-34.
23. Zanin, M.; Baviskar, P.; Webster, R.; Webby, R. The interaction between respiratory pathogens and mucus. Cell Host Microbe. 2016, 19, 159-168.
24. Xu, H.; Zhong, L.; Deng, J.; Peng, J.; Dan, H.; Zeng, X.; Li, T.; Chen, Q. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020, 12, 8.
25. Effros, R. M.; Hoagland, K. W.; Bosbous, M.; Castillo, D.; Foss, B.; Dunning, M.; Gare, M.; Lin, W.; Sun, F. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med. 2002, 165, 663-669.
26. Davies, N. M.; Feddah, M. R. A novel method for assessing dissolution of aerosol inhaler products. Int J Pharm. 2003, 255, 175-187.
27. Larsson, B.; Olivecrona, G.; Ericson, T. Lipids in human saliva. Arch Oral Biol. 1996, 41, 105-110.
28. Ruocco, L.; Fattori, B.; Romanelli, A.; Martelloni, M.; Casani, A.; Samolewska, M.; Rezzonico, R. A new collection method for the evaluation of nasal mucus proteins. Clin Exp Allergy. 1998, 28, 881-888.
29. Xie, X.; Li, Y.; Chwang, A. T.; Ho, P. L.; Seto, W. H. How far droplets can move in indoor environments--revisiting the Wells evaporation-falling curve. Indoor Air. 2007, 17, 211-225.
30. Chaudhuri, S.; Basu, S.; Kabi, P.; Unni, V. R.; Saha, A. Modeling the role of respiratory droplets in Covid-19 type pandemics. Phys Fluids (1994). 2020, 32, 063309.
31. You, Y.; Renbaum-Wolff, L.; Carreras-Sospedra, M.; Hanna, S. J.; Hiranuma, N.; Kamal, S.; Smith, M. L.; Zhang, X.; Weber, R. J.; Shilling, J. E.; Dabdub, D.; Martin, S. T.; Bertram, A. K. Images reveal that atmospheric particles can undergo liquid-liquid phase separations. Proc Natl Acad Sci U S A. 2012, 109, 13188-13193.
32. Dallemagne, M. A.; Huang, X. Y.; Eddingsaas, N. C. Variation in pH of model secondary organic aerosol during liquid-liquid phase separation. J Phys Chem A. 2016, 120, 2868-2876.
33. Gregson, F. K. A.; Robinson, J. F.; Miles, R. E. H.; Royall, C. P.; Reid, J. P. Drying kinetics of salt solution droplets: Water evaporation rates and crystallization. J Phys Chem B. 2019, 123, 266-276.
34. Benbough, J. E. Some factors affecting the survival of airborne viruses. J Gen Virol. 1971, 10, 209-220.
35. Pabst, G.; Hodzic, A.; Strancar, J.; Danner, S.; Rappolt, M.; Laggner, P. Rigidification of neutral lipid bilayers in the presence of salts. Biophys J. 2007, 93, 2688-2696.
36. Yang, W.; Marr, L. C. Mechanisms by which ambient humidity may affect viruses in aerosols. Appl Environ Microbiol. 2012, 78, 6781-6788.
37. Stadnytskyi, V.; Bax, C. E.; Bax, A.; Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc Natl Acad Sci U S A. 2020, 117, 11875-11877.
38. Mittal, R.; Ni, R.; Seo, J. H. The flow physics of COVID-19. J Fluid Mech. 2020, 894, F2.
39. Bourouiba, L.; Dehandschoewercker, E.; Bush, John W. M. Violent expiratory events: on coughing and sneezing. J Fluid Mech. 2014, 745, 537-563.
40. Yang, W.; Marr, L. C. Dynamics of airborne influenza A viruses indoors and dependence on humidity. PLoS One. 2011, 6, e21481.
41. Olson, D. E.; Sudlow, M. F.; Horsfield, K.; Filley, G. F. Convective patterns of flow during inspiration. Arch Intern Med. 1973, 131, 51-57.
42. Bourouiba, L. Turbulent gas clouds and respiratory pathogen emissions: Potential implications for reducing transmission of COVID-19. JAMA. 2020, 323, 1837-1838.
43. Kontogeorgis, G. M.; Kiil, S. Characterization methods of colloids – Part I. In Introduction to applied colloid and surface chemistry, Kontogeorgis, G. M.; Kiil, S., eds.; John Wiley & Sons, Ltd.: Hoboken, 2016; pp 185-201.
44. Kontogeorgis, G. M.; Kiil, S. Characterization methods of colloids – Part II. In Introduction to applied colloid and surface chemistry, Kontogeorgis, G. M.; Kiil, S., eds.; John Wiley & Sons, Inc.: Hoboken, 2016; pp 202-210.
45. Bake, B.; Larsson, P.; Ljungkvist, G.; Ljungström, E.; Olin, A. C. Exhaled particles and small airways. Respir Res. 2019, 20, 8.
46. Cornier, J.; Owen, A.; Kwade, A.; Van de Voorde, M. Characterization methods: Physical and chemical characterization techniques. In Pharmaceutical Nanotechnology: Innovation and Production, Cornier, J.; Owen, A.; Kwade, A.; Voorde, M. V. D., eds.; John Wiley & Sons, Inc.: Hoboken, 2017; pp 135-156.
47. Liu, L.; Wei, J.; Li, Y.; Ooi, A. Evaporation and dispersion of respiratory droplets from coughing. Indoor Air. 2017, 27, 179-190.
48. Mecenas, P.; Bastos, R.; Vallinoto, A. C. R.; Normando, D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One. 2020, 15, e0238339.
49. Matson, M. J.; Yinda, C. K.; Seifert, S. N.; Bushmaker, T.; Fischer, R. J.; van Doremalen, N.; Lloyd-Smith, J. O.; Munster, V. J. Effect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputum. Emerg Infect Dis. 2020, 26, 2276-2278.
50. Vejerano, E. P.; Marr, L. C. Physico-chemical characteristics of evaporating respiratory fluid droplets. J R Soc Interface. 2018, 15, 20170939.
51. Pastorino, B.; Touret, F.; Gilles, M.; de Lamballerie, X.; Charrel, R. N. Prolonged infectivity of SARS-CoV-2 in fomites. Emerg Infect Dis. 2020, 26, 2256-2257.
52. Kumar, S. K.; Ganesan, V.; Riggleman, R. A. Perspective: Outstanding theoretical questions in polymer-nanoparticle hybrids. J Chem Phys. 2017, 147, 020901.
53. Mampallil, D.; Eral, H. B. A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface Sci. 2018, 252, 38-54.
54. Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat Mater. 2006, 5, 265-270.
55. Schulz, M.; Keddie, J. L. A critical and quantitative review of the stratification of particles during the drying of colloidal films. Soft Matter. 2018, 14, 6181-6197.
56. Cheng, S.; Grest, G. S. Dispersing nanoparticles in a polymer film via solvent evaporation. ACS Macro Lett. 2016, 5, 694-698.
57. Tang, Y.; Grest, G. S.; Cheng, S. Stratification in drying films containing bidisperse mixtures of nanoparticles. Langmuir. 2018, 34, 7161-7170.
58. Bailey, E. J.; Winey, K. I. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci. 2020, 105, 101242.
59. Ge, T.; Rubinstein, M. Mobility of polymer-tethered nanoparticles in unentangled polymer melts. Macromolecules. 2019, 52, 1536-1545.
60. Ge, T.; Rubinstein, M.; Grest, G. S. Effects of tethered polymers on dynamics of nanoparticles in unentangled polymer melts. Macromolecules. 2020, 53, 6898-6906.