·
REVIEW
·

Recent updates on the biological basis of  heterogeneity in bone marrow stromal cells/ skeletal stem cells

Deepika Arora1,2,3 Pamela Gehron Robey1*
Show Less
1 National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
2 Biosystems and Biomaterials Division, National Institute of Standards and Technology, Department of Commerce, Gaithersburg, MD, USA
3 Department of Biotechnology, School of Biological Engineering & Life Sciences, Shobhit Institute of Engineering & Technology (Deemed-to-be-University), Meerut, India
Submitted: 20 January 2022 | Revised: 17 March 2022 | Accepted: 20 March 2022 | Published: 28 March 2022
Copyright © 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Based on studies over the last several decades, the self-renewing skeletal lineages derived from bone marrow stroma could be an ideal source for skeletal tissue engineering. However, the markers for osteogenic precursors; i.e., bone marrow-derived skeletal stem cells (SSCs), in association with other cells of the marrow stroma (bone marrow stromal cells, BMSCs) and their heterogeneous nature both in vivo and in vitro remain to be clarified. This review aims to highlight: i) the importance of distinguishing BMSCs/SSCs from other “mesenchymal stem/stromal cells”, and ii) factors that are responsible for their heterogeneity, and how these factors impact on the differentiation potential of SSCs towards bone. The prospective role of SSC enrichment, their expansion and its impact on SSC phenotype is explored. Emphasis has also been given to emerging single cell RNA sequencing approaches in scrutinizing the unique population of SSCs within the BMSC population, along with their committed progeny. Understanding the factors involved in heterogeneity may help researchers to improvise their strategies to isolate, characterize and adopt best culture practices and source identification to develop standard operating protocols for developing reproducible stem cells grafts. However, more scientific understanding of the molecular basis of heterogeneity is warranted that may be obtained from the robust high-throughput functional transcriptomics of single cells or clonal populations.

Keywords
bone marrow stromal cells; clonal analysis; heterogeneity; single cell analysis; skeletal stem cells
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Bianco, P.; Robey, P. G. Skeletal stem cells. In Handbook of adult and fetal stem cells, Lanza, R. P., ed. Academic Press: San Diego, 2004; pp 415-424.  
2. Bianco, P.; Robey, P. G. Skeletal stem cells. Development. 2015, 142, 1023-1027.  
3. Robey, P. G. Cell sources for bone regeneration: the good, the bad, and the ugly (but promising). Tissue Eng Part B Rev. 2011, 17, 423-430.  
4. Ambrosi, T. H.; Longaker, M. T.; Chan, C. K. F. A revised perspective of skeletal stem cell biology. Front Cell Dev Biol. 2019, 7, 189.  
5. Sacchetti, B.; Funari, A.; Michienzi, S.; Di Cesare, S.; Piersanti, S.; Saggio, I.; Tagliafico, E.; Ferrari, S.; Robey, P. G.; Riminucci, M.; Bianco, P. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007, 131, 324-336.  
6. Friedenstein, A. J.; Chailakhjan, R. K.; Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970, 3, 393-403.  
7. Owen, M. E.; Cavé, J.; Joyner, C. J. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci. 1987, 87 (Pt 5), 731-738.  
8. Friedenstein, A. J. Precursor cells of mechanocytes. Int Rev Cytol. 1976, 47, 327-359.  
9. Owen, M.; Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988, 136, 42-60.  
10. Johnstone, B.; Hering, T. M.; Caplan, A. I.; Goldberg, V. M.; Yoo, J. U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998, 238, 265-272.  
11. Gronthos, S.; Zannettino, A. C.; Hay, S. J.; Shi, S.; Graves, S. E.; Kortesidis, A.; Simmons, P. J. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci. 2003, 116, 1827-1835.  
12. Kuznetsov, S. A.; Krebsbach, P. H.; Satomura, K.; Kerr, J.; Riminucci, M.; Benayahu, D.; Robey, P. G. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res. 1997, 12, 1335-1347.  
13. Sworder, B. J.; Yoshizawa, S.; Mishra, P. J.; Cherman, N.; Kuznetsov, S. A.; Merlino, G.; Balakumaran, A.; Robey, P. G. Molecular profile of clonal strains of human skeletal stem/progenitor cells with different potencies. Stem Cell Res. 2015, 14, 297-306.  
14. Caplan, A. I. Mesenchymal stem cells. J Orthop Res. 1991, 9, 641-650.  
15. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8, 315-317.  
16. MacCord, K. “Mesenchyme”. Embryo Project Encyclopedia (2012-09-14). ISSN: 1940-5030 http://embryo.asu.edu/handle/10776/3941.  
17. Olsen, B. R.; Reginato, A. M.; Wang, W. Bone development. Annu Rev Cell Dev Biol. 2000, 16, 191-220.  
18. Minasi, M. G.; Riminucci, M.; De Angelis, L.; Borello, U.; Berarducci, B.; Innocenzi, A.; Caprioli, A.; Sirabella, D.; Baiocchi, M.; De Maria, R.; Boratto, R.; Jaffredo, T.; Broccoli, V.; Bianco, P.; Cossu, G. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development. 2002, 129, 2773-2783.  
19. Gilbert, S. F. Developmental Biology. 10th ed.; Sinauer Associates, Inc.: Sunderland, 2014.  
20. Ren, J.; Jin, P.; Sabatino, M.; Balakumaran, A.; Feng, J.; Kuznetsov, S. A.; Klein, H. G.; Robey, P. G.; Stroncek, D. F. Global transcriptome analysis of human bone marrow stromal cells (BMSC) reveals proliferative, mobile and interactive cells that produce abundant extracellular matrix proteins, some of which may affect BMSC potency. Cytotherapy. 2011, 13, 661-674.  
21. da Silva Meirelles, L.; Chagastelles, P. C.; Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006, 119, 2204-2213.  
22. Bianco, P.; Robey, P. G.; Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008, 2, 313-319.  
23. Yang, Y. K.; Ogando, C. R.; Wang See, C.; Chang, T. Y.; Barabino, G. A. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018, 9, 131.  
24. Rojewski, M. T.; Weber, B. M.; Schrezenmeier, H. Phenotypic characterization of mesenchymal stem cells from various tissues. Transfus Med Hemother. 2008, 35, 168-184.  
25. Sotiropoulou, P. A.; Perez, S. A.; Salagianni, M.; Baxevanis, C. N.; Papamichail, M. Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells. 2006, 24, 462-471.  
26. Urist, M. R. Bone: formation by autoinduction. Science. 1965, 150, 893-899.  
27. Friedenstein, A. J.; Lalykina, K. S. Thymus cells are inducible to osteogenesis. Eur J Immunol. 1972, 2, 602-603.  
28. Bonewald, L. F.; Harris, S. E.; Rosser, J.; Dallas, M. R.; Dallas, S. L.; Camacho, N. P.; Boyan, B.; Boskey, A. von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int. 2003, 72, 537-547.  
29. Diascro, D. D., Jr.; Vogel, R. L.; Johnson, T. E.; Witherup, K. M.; Pitzenberger, S. M.; Rutledge, S. J.; Prescott, D. J.; Rodan, G. A.; Schmidt, A. High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells. J Bone Miner Res. 1998, 13, 96-106.  
30. Sacchetti, B.; Funari, A.; Remoli, C.; Giannicola, G.; Kogler, G.; Liedtke, S.; Cossu, G.; Serafini, M.; Sampaolesi, M.; Tagliafico, E.; Tenedini, E.; Saggio, I.; Robey, P. G.; Riminucci, M.; Bianco, P. No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels. Stem Cell Reports. 2016, 6, 897-913.  
31. Robey, P. “Mesenchymal stem cells”: fact or fiction, and implications in their therapeutic use. F1000Res. 2017, 6, F1000 Faculty Rev-1524.  
32. Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P. G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000, 97, 13625-13630.  
33. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L. W.; Robey, P. G.; Shi, S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003, 100, 5807-5812.  
34. Seo, B. M.; Miura, M.; Gronthos, S.; Bartold, P. M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P. G.; Wang, C. Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004, 364, 149-155.  
35. Sherwood, R. I.; Christensen, J. L.; Conboy, I. M.; Conboy, M. J.; Rando, T. A.; Weissman, I. L.; Wagers, A. J. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell. 2004, 119, 543-554.  
36. Liu, X.; Rui, T.; Zhang, S.; Ding, Z. Heterogeneity of MSC: origin, molecular identities, and functionality. Stem Cells Int. 2019, 2019, 9281520.  
37. Nemeth, K.; Mayer, B.; Sworder, B. J.; Kuznetsov, S. A.; Mezey, E. A practical guide to culturing mouse and human bone marrow stromal cells. Curr Protoc Immunol. 2013, 102, 22F.12.1-22F.12.13.  
38. Chu, D. T.; Phuong, T. N. T.; Tien, N. L. B.; Tran, D. K.; Thanh, V. V.; Quang, T. L.; Truong, D. T.; Pham, V. H.; Ngoc, V. T. N.; Chu-Dinh, T.; Kushekhar, K. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int J Mol Sci. 2020, 21, 708.  
39. Coleman, C. M.; Curtin, C.; Barry, F. P.; O’Flatharta, C.; Murphy, J. M. Mesenchymal stem cells and osteoarthritis: remedy or accomplice? Hum Gene Ther. 2010, 21, 1239-1250.  
40. Caplan, A. I.; Hariri, R. Body management: mesenchymal stem cells control the internal regenerator. Stem Cells Transl Med. 2015, 4, 695-701.  
41. Haniffa, M. A.; Collin, M. P.; Buckley, C. D.; Dazzi, F. Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica. 2009, 94, 258-263.  
42. Galipeau, J.; Sensébé, L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018, 22, 824-833.  
43. Satomura, K.; Derubeis, A. R.; Fedarko, N. S.; Ibaraki-O’Connor, K.; Kuznetsov, S. A.; Rowe, D. W.; Young, M. F.; Gehron Robey, P. Receptor tyrosine kinase expression in human bone marrow stromal cells. J Cell Physiol. 1998, 177, 426-438.  
44. Rennerfeldt, D. A.; Raminhos, J. S.; Leff, S. M.; Manning, P.; Van Vliet, K. J. Emergent heterogeneity in putative mesenchymal stem cell colonies: Single-cell time-lapsed analysis. PLoS One. 2019, 14, e0213452.  
45. Akintoye, S. O.; Lam, T.; Shi, S.; Brahim, J.; Collins, M. T.; Robey, P. G. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone. 2006, 38, 758-768.  
46. Kidwai, F.; Mui, B. W. H.; Arora, D.; Iqbal, K.; Hockaday, M.; de Castro Diaz, L. F.; Cherman, N.; Martin, D.; Myneni, V. D.; Ahmad, M.; Futrega, K.; Ali, S.; Merling, R. K.; Kaufman, D. S.; Lee, J.; Robey, P. G. Lineage-specific differentiation of osteogenic progenitors from pluripotent stem cells reveals the FGF1-RUNX2 association in neural crest-derived osteoprogenitors. Stem Cells. 2020, 38, 1107-1123.  
47. Debnath, S.; Yallowitz, A. R.; McCormick, J.; Lalani, S.; Zhang, T.; Xu, R.; Li, N.; Liu, Y.; Yang, Y. S.; Eiseman, M.; Shim, J. H.; Hameed, M.; Healey, J. H.; Bostrom, M. P.; Landau, D. A.; Greenblatt, M. B. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018, 562, 133-139.  
48. Sivaraj, K. K.; Jeong, H. W.; Dharmalingam, B.; Zeuschner, D.; Adams, S.; Potente, M.; Adams, R. H. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep. 2021, 36, 109352.  
49. Ambrosi, T. H.; Sinha, R.; Steininger, H. M.; Hoover, M. Y.; Murphy, M. P.; Koepke, L. S.; Wang, Y.; Lu, W. J.; Morri, M.; Neff, N. F.; Weissman, I. L.; Longaker, M. T.; Chan, C. K. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. eLife. 2021, 10, e66063.  
50. Tormin, A.; Li, O.; Brune, J. C.; Walsh, S.; Schütz, B.; Ehinger, M.; Ditzel, N.; Kassem, M.; Scheding, S. CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood. 2011, 117, 5067-5077.  
51. Boudin, E.; Fijalkowski, I.; Hendrickx, G.; Van Hul, W. Genetic control of bone mass. Mol Cell Endocrinol. 2016, 432, 3-13.  
52. Ren, J.; Stroncek, D. F.; Zhao, Y.; Jin, P.; Castiello, L.; Civini, S.; Wang, H.; Feng, J.; Tran, K.; Kuznetsov, S. A.; Robey, P. G.; Sabatino, M. Intra-subject variability in human bone marrow stromal cell (BMSC) replicative senescence: molecular changes associated with BMSC senescence. Stem Cell Research. 2013, 11, 1060-1073.  
53. Fedarko, N. S.; Bianco, P.; Vetter, U.; Robey, P. G. Human bone cell enzyme expression and cellular heterogeneity: correlation of alkaline phosphatase enzyme activity with cell cycle. J Cell Physiol. 1990, 144, 115-121.  
54. Galindo, M.; Kahler, R. A.; Teplyuk, N. M.; Stein, J. L.; Lian, J. B.; Stein, G. S.; Westendorf, J. J.; van Wijnen, A. J. Cell cycle related modulations in Runx2 protein levels are independent of lymphocyte enhancer-binding factor 1 (Lef1) in proliferating osteoblasts. J Mol Histol. 2007, 38, 501-506.  
55. Oh, J.; Lee, Y. D.; Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014, 20, 870-880.  
56. Ambrosi, T. H.; Goodnough, L. H.; Steininger, H. M.; Hoover, M. Y.; Kim, E.; Koepke, L. S.; Marecic, O.; Zhao, L.; Seita, J.; Bishop, J. A.; Gardner, M. J.; Chan, C. K. F. Geriatric fragility fractures are associated with a human skeletal stem cell defect. Aging Cell. 2020, 19, e13164.  
57. Sahin, E.; Depinho, R. A. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010, 464, 520-528.  
58. Ambrosi, T. H.; Marecic, O.; McArdle, A.; Sinha, R.; Gulati, G. S.; Tong, X.; Wang, Y.; Steininger, H. M.; Hoover, M. Y.; Koepke, L. S.; Murphy, M. P.; Sokol, J.; Seo, E. Y.; Tevlin, R.; Lopez, M.; Brewer, R. E.; Mascharak, S.; Lu, L.; Ajanaku, O.; Conley, S. D.; Seita, J.; Morri, M.; Neff, N. F.; Sahoo, D.; Yang, F.; Weissman, I. L.; Longaker, M. T.; Chan, C. K. F. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021, 597, 256-262.  
59. Josephson, A. M.; Bradaschia-Correa, V.; Lee, S.; Leclerc, K.; Patel, K. S.; Muinos Lopez, E.; Litwa, H. P.; Neibart, S. S.; Kadiyala, M.; Wong, M. Z.; Mizrahi, M. M.; Yim, N. L.; Ramme, A. J.; Egol, K. A.; Leucht, P. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A. 2019, 116, 6995-7004.  
60. Sarkar, T. J.; Quarta, M.; Mukherjee, S.; Colville, A.; Paine, P.; Doan, L.; Tran, C. M.; Chu, C. R.; Horvath, S.; Qi, L. S.; Bhutani, N.; Rando, T. A.; Sebastiano, V. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun. 2020, 11, 1545.  
61. Saul, D.; Monroe, D. G.; Rowsey, J. L.; Kosinsky, R. L.; Vos, S. J.; Doolittle, M. L.; Farr, J. N.; Khosla, S. Modulation of fracture healing by the transient accumulation of senescent cells. eLife. 2021, 10, e69958.  
62. Cakouros, D.; Gronthos, S. Epigenetic regulators of mesenchymal stem/stromal cell lineage determination. Curr Osteoporos Rep. 2020, 18, 597-605.  
63. Buisman, S. C.; de Haan, G. Epigenetic changes as a target in aging haematopoietic stem cells and age-related malignancies. Cells. 2019, 8, 868.  
64. Cakouros, D.; Gronthos, S. The changing epigenetic landscape of mesenchymal stem/stromal cells during aging. Bone. 2020, 137, 115440.  
65. Tsai, C. C.; Hung, S. C. Functional roles of pluripotency transcription factors in mesenchymal stem cells. Cell Cycle. 2012, 11, 3711-3712.  
66. Li, Z.; Liu, C.; Xie, Z.; Song, P.; Zhao, R. C.; Guo, L.; Liu, Z.; Wu, Y. Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One. 2011, 6, e20526.  
67. So, A. Y.; Jung, J. W.; Lee, S.; Kim, H. S.; Kang, K. S. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One. 2011, 6, e19503.  
68. Robey, P. G.; Kuznetsov, S. A.; Ren, J.; Klein, H. G.; Sabatino, M.; Stroncek, D. F. Generation of clinical grade human bone marrow stromal cells for use in bone regeneration. Bone. 2015, 70, 87-92.  
69. Mabuchi, Y.; Okawara, C.; Méndez-Ferrer, S.; Akazawa, C. Cellular heterogeneity of mesenchymal stem/stromal cells in the bone marrow. Front Cell Dev Biol. 2021, 9, 689366.  
70. Placzek, M. R.; Chung, I. M.; Macedo, H. M.; Ismail, S.; Mortera Blanco, T.; Lim, M.; Cha, J. M.; Fauzi, I.; Kang, Y.; Yeo, D. C.; Ma, C. Y.; Polak, J. M.; Panoskaltsis, N.; Mantalaris, A. Stem cell bioprocessing: fundamentals and principles. J R Soc Interface. 2009, 6, 209-232.  
71. Wilson, A.; Webster, A.; Genever, P. Nomenclature and heterogeneity: consequences for the use of mesenchymal stem cells in regenerative medicine. Regen Med. 2019, 14, 595-611.  
72. Liu, S.; de Castro, L. F.; Jin, P.; Civini, S.; Ren, J.; Reems, J. A.; Cancelas, J.; Nayak, R.; Shaw, G.; O’Brien, T.; McKenna, D. H.; Armant, M.; Silberstein, L.; Gee, A. P.; Hei, D. J.; Hematti, P.; Kuznetsov, S. A.; Robey, P. G.; Stroncek, D. F. Manufacturing differences affect human bone marrow stromal cell characteristics and function: comparison of production methods and products from multiple centers. Sci Rep. 2017, 7, 46731.  
73. Iaquinta, M. R.; Mazzoni, E.; Manfrini, M.; D’Agostino, A.; Trevisiol, L.; Nocini, R.; Trombelli, L.; Barbanti-Brodano, G.; Martini, F.; Tognon, M. Innovative biomaterials for bone regrowth. Int J Mol Sci. 2019, 20, 618.  
74. Zhang, C.; Zhang, L.; Liu, L.; Lv, L.; Gao, L.; Liu, N.; Wang, X.; Ye, J. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. J Orthop Surg Res. 2020, 15, 40.  
75. Barbanti Brodano, G.; Mazzoni, E.; Tognon, M.; Griffoni, C.; Manfrini, M. Human mesenchymal stem cells and biomaterials interaction: a promising synergy to improve spine fusion. Eur Spine J. 2012, 21 Suppl 1, S3-9.  
76. Hay, S. B.; Ferchen, K.; Chetal, K.; Grimes, H. L.; Salomonis, N. The Human Cell Atlas bone marrow single-cell interactive web portal. Exp Hematol. 2018, 68, 51-61.  
77. Zheng, S.; Papalexi, E.; Butler, A.; Stephenson, W.; Satija, R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol Syst Biol. 2018, 14, e8041.  
78. Dahlin, J. S.; Hamey, F. K.; Pijuan-Sala, B.; Shepherd, M.; Lau, W. W. Y.; Nestorowa, S.; Weinreb, C.; Wolock, S.; Hannah, R.; Diamanti, E.; Kent, D. G.; Göttgens, B.; Wilson, N. K. A single-cell hematopoietic landscape resolves 8 lineage trajectories and defects in Kit mutant mice. Blood. 2018, 131, e1-e11.  
79. Chan, C. K. F.; Gulati, G. S.; Sinha, R.; Tompkins, J. V.; Lopez, M.; Carter, A. C.; Ransom, R. C.; Reinisch, A.; Wearda, T.; Murphy, M.; Brewer, R. E.; Koepke, L. S.; Marecic, O.; Manjunath, A.; Seo, E. Y.; Leavitt, T.; Lu, W. J.; Nguyen, A.; Conley, S. D.; Salhotra, A.; Ambrosi, T. H.; Borrelli, M. R.; Siebel, T.; Chan, K.; Schallmoser, K.; Seita, J.; Sahoo, D.; Goodnough, H.; Bishop, J.; Gardner, M.; Majeti, R.; Wan, D. C.; Goodman, S.; Weissman, I. L.; Chang, H. Y.; Longaker, M. T. Identification of the human skeletal stem cell. Cell. 2018, 175, 43-56.e21.  
80. Tikhonova, A. N.; Dolgalev, I.; Hu, H.; Sivaraj, K. K.; Hoxha, E.; Cuesta-Domínguez, Á.; Pinho, S.; Akhmetzyanova, I.; Gao, J.; Witkowski, M.; Guillamot, M.; Gutkin, M. C.; Zhang, Y.; Marier, C.; Diefenbach, C.; Kousteni, S.; Heguy, A.; Zhong, H.; Fooksman, D. R.; Butler, J. M.; Economides, A.; Frenette, P. S.; Adams, R. H.; Satija, R.; Tsirigos, A.; Aifantis, I. The bone marrow microenvironment at single-cell resolution. Nature. 2019, 569, 222-228.  
81. Baryawno, N.; Przybylski, D.; Kowalczyk, M. S.; Kfoury, Y.; Severe, N.; Gustafsson, K.; Kokkaliaris, K. D.; Mercier, F.; Tabaka, M.; Hofree, M.; Dionne, D.; Papazian, A.; Lee, D.; Ashenberg, O.; Subramanian, A.; Vaishnav, E. D.; Rozenblatt-Rosen, O.; Regev, A.; Scadden, D. T. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell. 2019, 177, 1915-1932.e16.  
82. Wolock, S. L.; Krishnan, I.; Tenen, D. E.; Matkins, V.; Camacho, V.; Patel, S.; Agarwal, P.; Bhatia, R.; Tenen, D. G.; Klein, A. M.; Welner, R. S. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019, 28, 302-311.e5.  
83. Liu, S.; Stroncek, D. F.; Zhao, Y.; Chen, V.; Shi, R.; Chen, J.; Ren, J.; Liu, H.; Bae, H. J.; Highfill, S. L.; Jin, P. Single cell sequencing reveals gene expression signatures associated with bone marrow stromal cell subpopulations and time in culture. J Transl Med. 2019, 17, 23.  
84. Baldarelli, R. M.; Hill, D. P.; Blake, J. A.; Adachi, J.; Furuno, M.; Bradt, D.; Corbani, L. E.; Cousins, S.; Frazer, K. S.; Qi, D.; Yang, L.; Ramachandran, S.; Reed, D.; Zhu, Y.; Kasukawa, T.; Ringwald, M.; King, B. L.; Maltais, L. J.; McKenzie, L. M.; Schriml, L. M.; Maglott, D.; Church, D. M.; Pruitt, K.; Eppig, J. T.; Richardson, J. E.; Kadin, J. A.; Bult, C. J. Connecting sequence and biology in the laboratory mouse. Genome Res. 2003, 13, 1505-1519.  
85. Sun, M.; Schwalb, B.; Schulz, D.; Pirkl, N.; Etzold, S.; Larivière, L.; Maier, K. C.; Seizl, M.; Tresch, A.; Cramer, P. Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Res. 2012, 22, 1350-1359.  
86. Tung, P. Y.; Blischak, J. D.; Hsiao, C. J.; Knowles, D. A.; Burnett, J. E.; Pritchard, J. K.; Gilad, Y. Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017, 7, 39921.  
87. Chen, J.; Cheung, F.; Shi, R.; Zhou, H.; Lu, W.; CHI Consortium. PBMC fixation and processing for Chromium single-cell RNA sequencing. J Transl Med. 2018, 16, 198.  
88. Banfi, A.; Muraglia, A.; Dozin, B.; Mastrogiacomo, M.; Cancedda, R.; Quarto, R. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol. 2000, 28, 707-715.  
89. Post, S.; Abdallah, B. M.; Bentzon, J. F.; Kassem, M. Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone. 2008, 43, 32-39.  
90. Elsafadi, M.; Manikandan, M.; Atteya, M.; Hashmi, J. A.; Iqbal, Z.; Aldahmash, A.; Alfayez, M.; Kassem, M.; Mahmood, A. Characterization of cellular and molecular heterogeneity of bone marrow stromal cells. Stem Cells Int. 2016, 2016, 9378081.  
91. Xiang, Y.; Wu, C.; Wu, J.; Quan, W.; Cheng, C.; Zhou, J.; Chen, L.; Xiang, L.; Li, F.; Zhang, K.; Ran, Q.; Zhang, Y.; Li, Z. In vitro expansion affects the response of human bone marrow stromal cells to irradiation. Stem Cell Res Ther. 2019, 10, 82.  
92. Oetjen, K. A.; Lindblad, K. E.; Goswami, M.; Gui, G.; Dagur, P. K.; Lai, C.; Dillon, L. W.; McCoy, J. P.; Hourigan, C. S. Human bone marrow assessment by single-cell RNA sequencing, mass cytometry, and flow cytometry. JCI insight. 2018, 3, e124928.  
93. Wolock, S. L.; Krishnan, I.; Tenen, D. E.; Matkins, V.; Camacho, V.; Patel, S.; Agarwal, P.; Bhatia, R.; Tenen, D. G.; Klein, A. M.; Welner, R. S. Mapping distinct bone marrow niche populations and their differentiation paths. Cell Rep. 2019, 28, 302-311.  e5.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top