·
REVIEW
·

History, progress and future challenges of artificial blood vessels: a narrative review

Ke Hu1 Yuxuan Li1 Zunxiang Ke2 Hongjun Yang3 Chanjun Lu1 Yiqing Li1 Yi Guo1,4* Weici Wang1*
Show Less
1 Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
2 Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
3 Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, Hubei Province, China
4 Clinical Centre of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
Submitted: 22 January 2022 | Revised: 24 February 2022 | Accepted: 1 March 2022 | Published: 28 March 2022
Copyright © 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.

Keywords
animal models
artificial blood vessel
biomaterials
in vivo evaluation
tissue engineering
vascular graft
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Blais, C., Rochette, L., Ouellet, S., Huynh, T. Complex evolution of epidemiology of vascular diseases, including increased disease burden: from 2000 to 2015. Can J Cardiol. 2020, 36, 740-746.

2. Zoghbi, W. A., Duncan, T., Antman, E., Barbosa, M., Champagne, B., Chen, D., Gamra, H., Harold, J. G., Josephson, S., Komajda, M., Logstrup, S., Jur, C., Mayosi, B. M., Mwangi, J., Ralston, J., Sacco, R. L., Sim, K. H., Smith, S. C., Jr., Vardas, P. E., Wood, D. A. Sustainable Development Goals and the future of cardiovascular health. A statement from the Global Cardiovascular Disease Taskforce. Eur Heart J. 2014, 35, 3238-3239.

3. Nelson, J. A., Fischer, J. P., Grover, R., Kovach, S. J., Low, D. W., Kanchwala, S. K., Levin, L. S., Serletti, J. M., Wu, L. C. Vein grafting your way out of trouble: examining the utility and efficacy of vein grafts in microsurgery. J Plast Reconstr Aesthet Surg. 2015, 68, 830-836.

4. Caliskan, E., de Souza, D. R., Böning, A., Liakopoulos, O. J., Choi, Y. H., Pepper, J., Gibson, C. M., Perrault, L. P., Wolf, R. K., Kim, K. B., Emmert, M. Y. Saphenous vein grafts in contemporary coronary artery bypass graft surgery. Nat Rev Cardiol. 2020, 17, 155-169.

5. Kaiser, E., Jaganathan, S. K., Supriyanto, E., Ayyar, M. Fabrication and characterization of chitosan nanoparticles and collagen-loaded polyurethane nanocomposite membrane coated with heparin for atrial septal defect (ASD) closure. 3 Biotech. 2017, 7, 174.

6. Biancari, F., Railo, M., Lundin, J., Albäck, A., Kantonen, I., Lehtola, A., Lepäntalo, M. Redo bypass surgery to the infrapopliteal arteries for critical leg ischaemia. Eur J Vasc Endovasc Surg. 2001, 21, 137-142.

7. Cai, Q., Liao, W., Xue, F., Wang, X., Zhou, W., Li, Y., Zeng, W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater. 2021, 6, 2557-2568.

8. Tara, S., Kurobe, H., Maxfield, M. W., Rocco, K. A., Yi, T., Naito, Y., Breuer, C. K., Shinoka, T. Evaluation of remodeling process in small-diameter cell-free tissue-engineered arterial graft. J Vasc Surg. 2015, 62, 734-743.

9. Filipe, E. C., Santos, M., Hung, J., Lee, B. S. L., Yang, N., Chan, A. H. P., Ng, M. K. C., Rnjak-Kovacina, J., Wise, S. G. Rapid endothelialization of off-the-shelf small diameter silk vascular grafts. JACC Basic Transl Sci. 2018, 3, 38-53.

10. Moore, M. J., Tan, R. P., Yang, N., Rnjak-Kovacina, J., Wise, S. G. Bioengineering artificial blood vessels from natural materials. Trends Biotechnol. 2021. doi: 10.1016/j.tibtech.2021.11.003.

11. Brown, B. N., Haschak, M. J., Lopresti, S. T., Stahl, E. C. Effects of age-related shifts in cellular function and local microenvironment upon the innate immune response to implants. Semin Immunol. 2017, 29, 24-32.

12. Stekelenburg, M., Rutten, M. C., Snoeckx, L. H., Baaijens, F. P. Dynamic straining combined with fibrin gel cell seeding improves strength of tissue-engineered small-diameter vascular grafts. Tissue Eng Part A. 2009, 15, 1081-1089.

13. Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., Fiorillo, A., Avila, H., Wystrychowski, W., Zagalski, K., Maruszewski, M., Jones, A. L., Cierpka, L., de la Fuente, L. M., L’Heureux, N. Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials. 2009, 30, 1542-1550.

14. Gu, Y., Tian, C., Qin, Y., Sun, Y., Liu, S., Li, H., Duan, X., Shu, C., Ouyang, C. The novel hybrid polycarbonate polyurethane/polyester three-layered large-diameter artificial blood vessel. J Biomater Appl. 2022, 36, 965-975.

15. Dubost, C., Allary, M., Oeconomos, N. Resection of an aneurysm of the abdominal aorta: reestablishment of the continuity by a preserved human arterial graft, with result after five months. AMA Arch Surg. 1952, 64, 405-408.

16. Blakemore, A. H., Voorhees, A. B., Jr. The use of tubes constructed from vinyon N cloth in bridging arterial defects; experimental and clinical. Ann Surg. 1954, 140, 324-334.

17. De Bakey, M. E., Cooley, D. A., Crawford, E. S., Morris, G. C., Jr. Clinical application of a new flexible knitted dacron arterial substitute. Am Surg. 1958, 24, 862-869.

18. Ravi, S., Chaikof, E. L. Biomaterials for vascular tissue engineering. Regen Med. 2010, 5, 107-120.

19. Whittemore, A. D., Kent, K. C., Donaldson, M. C., Couch, N. P., Mannick, J. A. What is the proper role of polytetrafluoroethylene grafts in infrainguinal reconstruction? J Vasc Surg. 1989, 10, 299-305.

20. van der Lei, B., Darius, H., Schrör, K., Nieuwenhuis, P., Molenaar, I., Wildevuur, C. R. Arterial wall regeneration in small-caliber vascular grafts in rats. Neoendothelial healing and prostacyclin production. J Thorac Cardiovasc Surg. 1985, 90, 378-386.

21. Weinberg, C. B., Bell, E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986, 231, 397-400.

22. Bobadilla, J. L. From ebers to EVARs: a historical perspective on aortic surgery. Aorta (Stamford). 2013, 1, 89-95.

23. Niklason, L. E. Techview: medical technology. Replacement arteries made to order. Science. 1999, 286, 1493-1494.

24. Niklason, L. E., Gao, J., Abbott, W. M., Hirschi, K. K., Houser, S., Marini, R., Langer, R. Functional arteries grown in vitro. Science. 1999, 284, 489-493.

25. Skovrind, I., Harvald, E. B., Juul Belling, H., Jørgensen, C. D., Lindholt, J. S., Andersen, D. C. Concise review: patency of small-diameter tissue-engineered vascular grafts: a meta-analysis of preclinical trials. Stem Cells Transl Med. 2019, 8, 671-680.

26. Lawson, J. H., Glickman, M. H., Ilzecki, M., Jakimowicz, T., Jaroszynski, A., Peden, E. K., Pilgrim, A. J., Prichard, H. L., Guziewicz, M., Przywara, S., Szmidt, J., Turek, J., Witkiewicz, W., Zapotoczny, N., Zubilewicz, T., Niklason, L. E. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet. 2016, 387, 2026-2034.

27. Lee, A. Y., Mahler, N., Best, C., Lee, Y. U., Breuer, C. K. Regenerative implants for cardiovascular tissue engineering. Transl Res. 2014, 163, 321-341.

28. Klinkert, P., Post, P. N., Breslau, P. J., van Bockel, J. H. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004, 27, 357-362.

29. Spadaccio, C., Rainer, A., Barbato, R., Chello, M., Meyns, B. The fate of large-diameter Dacron® vascular grafts in surgical practice: are we really satisfied? Int J Cardiol. 2013, 168, 5028-5029.

30. Conte, M. S. The ideal small arterial substitute: a search for the Holy Grail? FASEB J. 1998, 12, 43-45.

31. Akoh, J. A., Patel, N. Infection of hemodialysis arteriovenous grafts. J Vasc Access. 2010, 11, 155-158.

32. Knox, W. G. Aneurysm occurring in a femoral artery Dacron prosthesis five and one-half years after insertion. Ann Surg. 1962, 156, 827-830.

33. Eslami, M. H., Gangadharan, S. P., Belkin, M., Donaldson, M. C., Whittemore, A. D., Conte, M. S. Monocyte adhesion to human vein grafts: a marker for occult intraoperative injury? J Vasc Surg. 2001, 34, 923-929.

34. Kohler, T. R., Kirkman, T. R., Kraiss, L. W., Zierler, B. K., Clowes, A. W. Increased blood flow inhibits neointimal hyperplasia in endothelialized vascular grafts. Circ Res. 1991, 69, 1557-1565.

35. Greenwald, S. E., Berry, C. L. Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol. 2000, 190, 292-299.

36. Haruguchi, H., Teraoka, S. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J Artif Organs. 2003, 6, 227-235.

37. Davies, M. G., Hagen, P. O. Reprinted article “Pathophysiology of vein graft failure: a review”. Eur J Vasc Endovasc Surg. 2011, 42 Suppl 1, S19-29.

38. FitzGibbon, G. M., Leach, A. J., Kafka, H. P., Keon, W. J. Coronary bypass graft fate: long-term angiographic study. J Am Coll Cardiol. 1991, 17, 1075-1080.

39. van der Wal, A. C., Becker, A. E., Elbers, J. R., Das, P. K. An immunocytochemical analysis of rapidly progressive atherosclerosis in human vein grafts. Eur J Cardiothorac Surg. 1992, 6, 469-473; discussion 474.

40. Chiesa, R., Astore, D., Frigerio, S., Garriboli, L., Piccolo, G., Castellano, R., Scalamogna, M., Odero, A., Pirrelli, S., Biasi, G., Mingazzini, P., Biglioli, P., Polvani, G., Guarino, A., Agrifoglio, G., Tori, A., Spina, G. Vascular prosthetic graft infection: epidemiology, bacteriology, pathogenesis and treatment. Acta Chir Belg. 2002, 102, 238-247.

41. Zetrenne, E., McIntosh, B. C., McRae, M. H., Gusberg, R., Evans, G. R., Narayan, D. Prosthetic vascular graft infection: a multi-center review of surgical management. Yale J Biol Med. 2007, 80, 113-121.

42. Padberg, F. T., Jr., Calligaro, K. D., Sidawy, A. N. Complications of arteriovenous hemodialysis access: recognition and management. J Vasc Surg. 2008, 48, 55s-80s.

43. Wu, W., Allen, R. A., Wang, Y. Fast-degrading elastomer enables rapid remodeling of a cell-free synthetic graft into a neoartery. Nat Med. 2012, 18, 1148-1153.

44. Yokota, T., Ichikawa, H., Matsumiya, G., Kuratani, T., Sakaguchi, T., Iwai, S., Shirakawa, Y., Torikai, K., Saito, A., Uchimura, E., Kawaguchi, N., Matsuura, N., Sawa, Y. In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg. 2008, 136, 900-907.

45. Ross, R., Glomset, J. A. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science. 1973, 180, 1332-1339.

46. Wang, Z., Liu, C., Zhu, D., Gu, X., Xu, Y., Qin, Q., Dong, N., Zhang, S., Wang, J. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling. Biomaterials. 2020, 231, 119654.

47. Gong, W., Lei, D., Li, S., Huang, P., Qi, Q., Sun, Y., Zhang, Y., Wang, Z., You, Z., Ye, X., Zhao, Q. Hybrid small-diameter vascular grafts: Anti-expansion effect of electrospun poly ε-caprolactone on heparin-coated decellularized matrices. Biomaterials. 2016, 76, 359-370.

48. Jalaie, H., Steitz, J., Afify, M., Barbati, M. E., Hoeft, K., Assar, M. A. M., Hermanns-Sachweh, B., Tolba, R. H., Jacobs, M. J., Schleimer, K. In vivo endothelialization and neointimal hyperplasia assessment after angioplasty of sheep carotid artery with a novel polycarbonate polyurethane patch. J Biomater Appl. 2019, 34, 208-218.

49. Torikai, K., Ichikawa, H., Hirakawa, K., Matsumiya, G., Kuratani, T., Iwai, S., Saito, A., Kawaguchi, N., Matsuura, N., Sawa, Y. A self-renewing, tissue-engineered vascular graft for arterial reconstruction. J Thorac Cardiovasc Surg. 2008, 136:37-45, 45.e1.

50. Pan, Y., Zhou, X., Wei, Y., Zhang, Q., Wang, T., Zhu, M., Li, W., Huang, R., Liu, R., Chen, J., Fan, G., Wang, K., Kong, D., Zhao, Q. Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep. 2017, 7, 3615.

51. Hedin, U. Long-term results of PTFE grafts. J Vasc Access. 2015, 16 Suppl 9, S87-92.

52. Alessandrino, A., Chiarini, A., Biagiotti, M., Dal Prà, I., Bassani, G. A., Vincoli, V., Settembrini, P., Pierimarchi, P., Freddi, G., Armato, U. Three-layered silk fibroin tubular scaffold for the repair and regeneration of small caliber blood vessels: from design to in vivo pilot tests. Front Bioeng Biotechnol. 2019, 7, 356.

53. Zhang, F., Bambharoliya, T., Xie, Y., Liu, L., Celik, H., Wang, L., Akkus, O., King, M. W. A hybrid vascular graft harnessing the superior mechanical properties of synthetic fibers and the biological performance of collagen filaments. Mater Sci Eng C Mater Biol Appl. 2021, 118, 111418.

54. Shelah, O., Wertheimer, S., Haj-Ali, R., Lesman, A. Coral-derived collagen fibers for engineering aligned tissues. Tissue Eng Part A. 2021, 27, 187-200.

55. Dastagir, K., Dastagir, N., Limbourg, A., Reimers, K., Strauß, S., Vogt, P. M. In vitro construction of artificial blood vessels using spider silk as a supporting matrix. J Mech Behav Biomed Mater. 2020, 101, 103436.

56. Joyce, K., Fabra, G. T., Bozkurt, Y., Pandit, A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021, 6, 122.

57. Vasconcelos, A., Gomes, A. C., Cavaco-Paulo, A. Novel silk fibroin/elastin wound dressings. Acta Biomater. 2012, 8, 3049-3060.

58. Daamen, W. F., Hafmans, T., Veerkamp, J. H., van Kuppevelt, T. H. Isolation of intact elastin fibers devoid of microfibrils. Tissue Eng. 2005, 11, 1168-1176.

59. Scherner, M., Reutter, S., Klemm, D., Sterner-Kock, A., Guschlbauer, M., Richter, T., Langebartels, G., Madershahian, N., Wahlers, T., Wippermann, J. In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res. 2014, 189, 340-347.

60. Blanco Parte, F. G., Santoso, S. P., Chou, C. C., Verma, V., Wang, H. T., Ismadji, S., Cheng, K. C. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol. 2020, 40, 397-414.

61. Weber, C., Reinhardt, S., Eghbalzadeh, K., Wacker, M., Guschlbauer, M., Maul, A., Sterner-Kock, A., Wahlers, T., Wippermann, J., Scherner, M. Patency and in vivo compatibility of bacterial nanocellulose grafts as small-diameter vascular substitute. J Vasc Surg. 2018, 68:177S-187S.e1.

62. Li, Y., Jiang, K., Feng, J., Liu, J., Huang, R., Chen, Z., Yang, J., Dai, Z., Chen, Y., Wang, N., Zhang, W., Zheng, W., Yang, G., Jiang, X. Construction of small-diameter vascular graft by shape-memory and self-rolling bacterial cellulose membrane. Adv Healthc Mater. 2017, 6, 1601343.

63. Bao, L., Tang, J., Hong, F. F., Lu, X., Chen, L. Physicochemical properties and in vitro biocompatibility of three bacterial nanocellulose conduits for blood vessel applications. Carbohydr Polym. 2020, 239, 116246.

64. Bao, L., Hong, F. F., Li, G., Hu, G., Chen, L. Implantation of air-dried bacterial nanocellulose conduits in a small-caliber vascular prosthesis rabbit model. Mater Sci Eng C Mater Biol Appl. 2021, 122, 111922.

65. Tanaka, T., Abe, Y., Cheng, C. J., Tanaka, R., Naito, A., Asakura, T. Development of small-diameter elastin-silk fibroin vascular grafts. Front Bioeng Biotechnol. 2020, 8, 622220.

66. Hasan, A., Memic, A., Annabi, N., Hossain, M., Paul, A., Dokmeci, M. R., Dehghani, F., Khademhosseini, A. Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 2014, 10, 11-25.

67. Pellegata, A. F., Asnaghi, M. A., Stefani, I., Maestroni, A., Maestroni, S., Dominioni, T., Zonta, S., Zerbini, G., Mantero, S. Detergent-enzymatic decellularization of swine blood vessels: insight on mechanical properties for vascular tissue engineering. Biomed Res Int. 2013, 2013, 918753.

68. Englberger, L., Noti, J., Immer, F. F., Stalder, M., Eckstein, F. S., Carrel, T. P. The Shelhigh No-React bovine internal mammary artery: a questionable alternative conduit in coronary bypass surgery? Eur J Cardiothorac Surg. 2008, 33, 222-224.

69. Leoce, B. M., Montoya, M., Dardik, H., Bernik, T. R. Rapid degradation and subsequent endovascular salvage of upper extremity cryogenic allograft bypass. Ann Vasc Surg. 2019, 57:276.e5-276.e8.

70. Soletti, L., Hong, Y., Guan, J., Stankus, J. J., El-Kurdi, M. S., Wagner, W. R., Vorp, D. A. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 2010, 6, 110-122.

71. Wu, T., Huang, C., Li, D., Yin, A., Liu, W., Wang, J., Chen, J., El-Hamshary, H., Al-Deyab, S. S., Mo, X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf B Biointerfaces. 2015, 133, 179-188.

72. Ju, Y. M., Choi, J. S., Atala, A., Yoo, J. J., Lee, S. J. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010, 31, 4313-4321.

73. de Valence, S., Tille, J. C., Mugnai, D., Mrowczynski, W., Gurny, R., Möller, M., Walpoth, B. H. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials. 2012, 33, 38-47.

74. Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., Ohst, D., Ong, C. S., Zhang, H., Shinoka, T., Breuer, C. K., Johnson, J., Hibino, N. Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PLoS One. 2016, 11, e0158555.

75. Xing, Y., Gu, Y., Guo, L., Guo, J., Xu, Z., Xiao, Y., Fang, Z., Wang, C., Feng, Z. G., Wang, Z. Gelatin coating promotes in situ endothelialization of electrospun polycaprolactone vascular grafts. J Biomater Sci Polym Ed. 2021, 32, 1161-1181.

76. Stollwerck, P. L., Kozlowski, B., Sandmann, W., Grabitz, K., Pfeiffer, T. Long-term dilatation of polyester and expanded polytetrafluoroethylene tube grafts after open repair of infrarenal abdominal aortic aneurysms. J Vasc Surg. 2011, 53, 1506-1513.

77. Salata, K., Hussain, M. A., de Mestral, C., Greco, E., Awartani, H., Aljabri, B. A., Mamdani, M., Forbes, T. L., Bhatt, D. L., Verma, S., Al-Omran, M. Population-based long-term outcomes of open versus endovascular aortic repair of ruptured abdominal aortic aneurysms. J Vasc Surg. 2020, 71:1867-1878.e8.

78. Steuer, J., Lachat, M., Veith, F. J., Wanhainen, A. Endovascular grafts for abdominal aortic aneurysm. Eur Heart J. 2016, 37, 145-151.

79. Seib, F. P., Herklotz, M., Burke, K. A., Maitz, M. F., Werner, C., Kaplan, D. L. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications. Biomaterials. 2014, 35, 83-91.

80. Saberianpour, S., Heidarzadeh, M., Geranmayeh, M. H., Hosseinkhani, H., Rahbarghazi, R., Nouri, M. Tissue engineering strategies for the induction of angiogenesis using biomaterials. J Biol Eng. 2018, 12, 36.

81. Dahl, S. L., Kypson, A. P., Lawson, J. H., Blum, J. L., Strader, J. T., Li, Y., Manson, R. J., Tente, W. E., DiBernardo, L., Hensley, M. T., Carter, R., Williams, T. P., Prichard, H. L., Dey, M. S., Begelman, K. G., Niklason, L. E. Readily available tissue-engineered vascular grafts. Sci Transl Med. 2011, 3, 68ra69.

82. McAllister, T. N., Maruszewski, M., Garrido, S. A., Wystrychowski, W., Dusserre, N., Marini, A., Zagalski, K., Fiorillo, A., Avila, H., Manglano, X., Antonelli, J., Kocher, A., Zembala, M., Cierpka, L., de la Fuente, L. M., L’Heureux, N. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet. 2009, 373, 1440-1446.

83. Eitan, Y., Sarig, U., Dahan, N., Machluf, M. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods. 2010, 16, 671-683.

84. Badylak, S. F., Freytes, D. O., Gilbert, T. W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater. 2009, 5, 1-13.

85. Swinehart, I. T., Badylak, S. F. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn. 2016, 245, 351-360.

86. Lin, C. H., Hsia, K., Ma, H., Lee, H., Lu, J. H. In vivo performance of decellularized vascular grafts: a review article. Int J Mol Sci. 2018, 19, 2101.

87. Xue, J., Wu, T., Dai, Y., Xia, Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev. 2019, 119, 5298-5415.

88. Yin, A., Luo, R., Li, J., Mo, X., Wang, Y., Zhang, X. Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties. Colloids Surf B Biointerfaces. 2017, 152, 432-439.

89. Rodriguez, M., Kluge, J. A., Smoot, D., Kluge, M. A., Schmidt, D. F., Paetsch, C. R., Kim, P. S., Kaplan, D. L. Fabricating mechanically improved silk-based vascular grafts by solution control of the gel-spinning process. Biomaterials. 2020, 230, 119567.

90. Kuang, H., Wang, Y., Shi, Y., Yao, W., He, X., Liu, X., Mo, X., Lu, S., Zhang, P. Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft. Biomaterials. 2020, 259, 120288.

91. L’Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire, P., Wight, T. N., Chronos, N. A., Kyles, A. E., Gregory, C. R., Hoyt, G., Robbins, R. C., McAllister, T. N. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006, 12, 361-365.

92. Kimicata, M., Swamykumar, P., Fisher, J. P. Extracellular matrix for small-diameter vascular grafts. Tissue Eng Part A. 2020, 26, 1388-1401.

93. Ainslie, K. M., Bachelder, E. M., Borkar, S., Zahr, A. S., Sen, A., Badding, J. V., Pishko, M. V. Cell adhesion on nanofibrous polytetrafluoroethylene (nPTFE). Langmuir. 2007, 23, 747-754.

94. Zilla, P., Bezuidenhout, D., Human, P. Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials. 2007, 28, 5009-5027.

95. Ashraf, R., Sofi, H. S., Malik, A., Beigh, M. A., Hamid, R., Sheikh, F. A. Recent Trends in the Fabrication of Starch Nanofibers: Electrospinning and Non-electrospinning Routes and Their Applications in Biotechnology. Appl Biochem Biotechnol. 2019, 187, 47-74.

96. Kudo, F. A., Nishibe, T., Miyazaki, K., Flores, J., Yasuda, K. Albumin-coated knitted Dacron aortic prostheses. Study of postoperative inflammatory reactions. Int Angiol. 2002, 21, 214-217.

97. Radenkovic, D., Solouk, A., Seifalian, A. Personalized development of human organs using 3D printing technology. Med Hypotheses. 2016, 87, 30-33.

98. Melchiorri, A. J., Hibino, N., Best, C. A., Yi, T., Lee, Y. U., Kraynak, C. A., Kimerer, L. K., Krieger, A., Kim, P., Breuer, C. K., Fisher, J. P. 3D-printed biodegradable polymeric vascular grafts. Adv Healthc Mater. 2016, 5, 319-325.

99. Mosadegh, B., Xiong, G., Dunham, S., Min, J. K. Current progress in 3D printing for cardiovascular tissue engineering. Biomed Mater. 2015, 10, 034002.

100. Lee, S. J., Heo, D. N., Park, J. S., Kwon, S. K., Lee, J. H., Lee, J. H., Kim, W. D., Kwon, I. K., Park, S. A. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system. Phys Chem Chem Phys. 2015, 17, 2996-2999.

101. Sakaguchi, K., Shimizu, T., Horaguchi, S., Sekine, H., Yamato, M., Umezu, M., Okano, T. In vitro engineering of vascularized tissue surrogates. Sci Rep. 2013, 3, 1316.

102. Sekine, H., Shimizu, T., Sakaguchi, K., Dobashi, I., Wada, M., Yamato, M., Kobayashi, E., Umezu, M., Okano, T. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 2013, 4, 1399.

103. Scott, R. A., Panitch, A. Macromolecular approaches to prevent thrombosis and intimal hyperplasia following percutaneous coronary intervention. Biomacromolecules. 2014, 15, 2825-2832.

104. Wang, Z., Lu, Y., Qin, K., Wu, Y., Tian, Y., Wang, J., Zhang, J., Hou, J., Cui, Y., Wang, K., Shen, J., Xu, Q., Kong, D., Zhao, Q. Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. J Control Release. 2015, 210, 179-188.

105. Ranjan, A. K., Kumar, U., Hardikar, A. A., Poddar, P., Nair, P. D., Hardikar, A. A. Human blood vessel-derived endothelial progenitors for endothelialization of small diameter vascular prosthesis. PLoS One. 2009, 4, e7718.

106. Kang, I. K., Kwon, B. K., Lee, J. H., Lee, H. B. Immobilization of proteins on poly(methyl methacrylate) films. Biomaterials. 1993, 14, 787-792.

107. Arepally, G. M., Cines, D. B. Pathogenesis of heparin-induced thrombocytopenia. Transl Res. 2020, 225, 131-140.

108. More, R. S., Brack, M. J., Gershlick, A. H. Heparin after angioplasty: an unresolved issue? Eur Heart J. 1993, 14, 1543-1547.

109. Bezon, E., Khalifa, A. A., Le Gal, G., Choplain, J. N., Mansourati, J., Barra, J. A. Use of arterial patch to improve re-endothelialization in a sheep model of open carotid endarterectomy. An incentive to use internal thoracic artery as an on-lay patch following coronary endarterectomy? Interact Cardiovasc Thorac Surg. 2009, 8, 543-547.

110. Patel, S. D., Waltham, M., Wadoodi, A., Burnand, K. G., Smith, A. The role of endothelial cells and their progenitors in intimal hyperplasia. Ther Adv Cardiovasc Dis. 2010, 4, 129-141.

111. Melchiorri, A. J., Hibino, N., Fisher, J. P. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts. Tissue Eng Part B Rev. 2013, 19, 292-307.

112. Nguyen, T. U., Shojaee, M., Bashur, C. A., Kishore, V. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering. Biofabrication. 2018, 11, 015007.

113. Bates, N. M., Heidenreich, H. E., Fallon, M. E., Yao, Y., Yim, E. K. F., Hinds, M. T., Anderson, D. E. J. Bioconjugation of a collagen-mimicking peptide onto poly(vinyl alcohol) encourages endothelialization while minimizing thrombosis. Front Bioeng Biotechnol. 2020, 8, 621768.

114. Do, T. M., Yang, Y., Deng, A. Porous bilayer vascular grafts fabricated from electrospinning of the recombinant human collagen (RHC) peptide-based blend. Polymers. 2021, 13, 4042.

115. Adipurnama, I., Yang, M. C., Ciach, T., Butruk-Raszeja, B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2016, 5, 22-37.

116. Issa Bhaloo, S., Wu, Y., Le Bras, A., Yu, B., Gu, W., Xie, Y., Deng, J., Wang, Z., Zhang, Z., Kong, D., Hu, Y., Qu, A., Zhao, Q., Xu, Q. Binding of Dickkopf-3 to CXCR7 enhances vascular progenitor cell migration and degradable graft regeneration. Circ Res. 2018, 123, 451-466.

117. Pan, Y., Yang, J., Wei, Y., Wang, H., Jiao, R., Moraga, A., Zhang, Z., Hu, Y., Kong, D., Xu, Q., Zeng, L., Zhao, Q. Histone deacetylase 7-derived peptides play a vital role in vascular repair and regeneration. Adv Sci (Weinh). 2018, 5, 1800006.

118. Kong, X., Han, B., Wang, H., Li, H., Xu, W., Liu, W. Mechanical properties of biodegradable small-diameter chitosan artificial vascular prosthesis. J Biomed Mater Res A. 2012, 100, 1938-1945.

119. Aytemiz, D., Sakiyama, W., Suzuki, Y., Nakaizumi, N., Tanaka, R., Ogawa, Y., Takagi, Y., Nakazawa, Y., Asakura, T. Small-diameter silk vascular grafts (3 mm diameter) with a double-raschel knitted silk tube coated with silk fibroin sponge. Adv Healthc Mater. 2013, 2, 361-368.

120. Meinel, L., Kaplan, D. L. Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev. 2012, 64, 1111-1122.

121. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., Oz, M. C., Hicklin, D. J., Witte, L., Moore, M. A., Rafii, S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000, 95, 952-958.

122. Rhodes, N. P., Williams, D. F. Plasma recalcification as a measure of contact phase activation and heparinization efficacy after contact with biomaterials. Biomaterials. 1994, 15, 35-37.

123. Jin, D., Hu, J., Xia, D., Liu, A., Kuang, H., Du, J., Mo, X., Yin, M. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Int J Nanomedicine. 2019, 14, 4261-4276.

124. Zheng, W., Wang, Z., Song, L., Zhao, Q., Zhang, J., Li, D., Wang, S., Han, J., Zheng, X. L., Yang, Z., Kong, D. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials. 2012, 33, 2880-2891.

125. Yang, X., Wei, J., Lei, D., Liu, Y., Wu, W. Appropriate density of PCL nano-fiber sheath promoted muscular remodeling of PGS/PCL grafts in arterial circulation. Biomaterials. 2016, 88, 34-47.

126. Syedain, Z., Reimer, J., Lahti, M., Berry, J., Johnson, S., Tranquillo, R. T. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun. 2016, 7, 12951.

127. Swartz, D. D., Andreadis, S. T. Animal models for vascular tissue-engineering. Curr Opin Biotechnol. 2013, 24, 916-925.

128. Byrom, M. J., Bannon, P. G., White, G. H., Ng, M. K. Animal models for the assessment of novel vascular conduits. J Vasc Surg. 2010, 52, 176-195.

129. Riboldi, S. A., Tozzi, M., Bagardi, M., Ravasio, G., Cigalino, G., Crippa, L., Piccolo, S., Nahal, A., Spandri, M., Catto, V., Tironi, M., Greco, F. G., Remuzzi, A., Acocella, F. A novel hybrid silk fibroin/polyurethane arteriovenous graft for hemodialysis: proof-of-concept animal study in an ovine model. Adv Healthc Mater. 2020, 9, e2000794.

130. Koens, M. J., Krasznai, A. G., Hanssen, A. E., Hendriks, T., Praster, R., Daamen, W. F., van der Vliet, J. A., van Kuppevelt, T. H. Vascular replacement using a layered elastin-collagen vascular graft in a porcine model: one week patency versus one month occlusion. Organogenesis. 2015, 11, 105-121.

131. Yamamoto, S., Okamoto, H., Haga, M., Shigematsu, K., Miyata, T., Watanabe, T., Ogawa, Y., Takagi, Y., Asakura, T. Rapid endothelialization and thin luminal layers in vascular grafts using silk fibroin. J Mater Chem B. 2016, 4, 938-946.

132. Li, H., Wang, Y., Sun, X., Tian, W., Xu, J., Wang, J. Steady-state behavior and endothelialization of a silk-based small-caliber scaffold in vivo transplantation. Polymers. 2019, 11, 1303.

133. Cutiongco, M. F., Kukumberg, M., Peneyra, J. L., Yeo, M. S., Yao, J. Y., Rufaihah, A. J., Le Visage, C., Ho, J. P., Yim, E. K. Submillimeter diameter poly(vinyl alcohol) vascular graft patency in rabbit model. Front Bioeng Biotechnol. 2016, 4, 44.

134. Zhang, J., Huang, H., Ju, R., Chen, K., Li, S., Wang, W., Yan, Y. In vivo biocompatibility and hemocompatibility of a polytetrafluoroethylene small diameter vascular graft modified with sulfonated silk fibroin. Am J Surg. 2017, 213, 87-93.

135. Li, W., Chen, J., Xu, P., Zhu, M., Wu, Y., Wang, Z., Zhao, T., Cheng, Q., Wang, K., Fan, G., Zhu, Y., Kong, D. Long-term evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model. J Biomed Mater Res B Appl Biomater. 2018, 106, 2596-2604.

136. Fu, J., Ding, X., Stowell, C. E. T., Wu, Y. L., Wang, Y. Slow degrading poly(glycerol sebacate) derivatives improve vascular graft remodeling in a rat carotid artery interposition model. Biomaterials. 2020, 257, 120251.

137. Sugiura, T., Tara, S., Nakayama, H., Kurobe, H., Yi, T., Lee, Y. U., Lee, A. Y., Breuer, C. K., Shinoka, T. Novel bioresorbable vascular graft with sponge-type scaffold as a small-diameter arterial graft. Ann Thorac Surg. 2016, 102, 720-727.

138. Weber, B., Emmert, M. Y., Schoenauer, R., Brokopp, C., Baumgartner, L., Hoerstrup, S. P. Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol. 2011, 33, 307-315.

139. Itoh, M., Mukae, Y., Kitsuka, T., Arai, K., Nakamura, A., Uchihashi, K., Toda, S., Matsubayashi, K., Oyama, J. I., Node, K., Kami, D., Gojo, S., Morita, S., Nishida, T., Nakayama, K., Kobayashi, E. Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes. Nat Commun. 2019, 10, 2244.

140. Rohren, E. M., Kliewer, M. A., Carroll, B. A., Hertzberg, B. S. A spectrum of Doppler waveforms in the carotid and vertebral arteries. AJR Am J Roentgenol. 2003, 181, 1695-1704.

141. Fang, S., Ellman, D. G., Andersen, D. C. Review: tissue engineering of small-diameter vascular grafts and their in vivo evaluation in large animals and humans. Cells. 2021, 10, 713.

142. Fayon, A., Menu, P., El Omar, R. Cellularized small-caliber tissue-engineered vascular grafts: looking for the ultimate gold standard. NPJ Regen Med. 2021, 6, 46.

143. Ren, X., Feng, Y., Guo, J., Wang, H., Li, Q., Yang, J., Hao, X., Lv, J., Ma, N., Li, W. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem Soc Rev. 2015, 44, 5680-5742.

144. Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J., Atala, A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016, 34, 312-319.

145. Li, X., Liu, L., Zhang, X., Xu, T. Research and development of 3D printed vasculature constructs. Biofabrication. 2018, 10, 032002.

146. Wang, D., Liu, H., Fan, Y. Silk fibroin for vascular regeneration. Microsc Res Tech. 2017, 80, 280-290.

147. Duijvelshoff, R., Cabrera, M. S., Sanders, B., Dekker, S., Smits, A., Baaijens, F. P. T., Bouten, C. V. C. Transcatheter-delivered expandable bioresorbable polymeric graft with stenting capacity induces vascular regeneration. JACC Basic Transl Sci. 2020, 5, 1095-1110.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top