A biomaterials viewpoint for the 2020 SARS-CoV-2 vaccine development
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a considerable loss of life, morbidity, and economic distress since its emergence in late 2019. In response to the novel virus, public and private institutions around the world have utilized novel technologies to develop a vaccine in the hopes of building herd immunity and ending the pandemic. This review provides an overview of mechanisms and available data on the nascent vaccine technologies undergoing clinical trials to combat SARS-CoV-2, namely, those using protein subunits, viral vectors, mRNA, and DNA. Furthermore, we discuss the potential uses of biomaterials in improving the immunogenicity and safety of these vaccine technologies with the goal of improving upon newly-available technologies to combat future SARS-CoV-2 strains and other emerging viral pathogens.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Hu, B.; Guo, H.; Zhou, P.; Shi, Z. L. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021, 19, 141-154.
2. World Health Organization. The COVID-19 candidate vaccine landscape and tracker. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. Accessed by January 6, 2021.
3. Astuti, I.; Ysrafil. Severe Acute Respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr. 2020, 14, 407-412.
4. Shaikh, S. S.; Jose, A. P.; Nerkar, D. A.; Vijaykumar Kv, M.; Shaikh, S. K. COVID-19 pandemic crisis-a complete outline of SARS-CoV-2. Futur J Pharm Sci. 2020, 6, 116.
5. Huang, Y.; Yang, C.; Xu, X. F.; Xu, W.; Liu, S. W. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin. 2020, 41, 1141-1149.
6. Lam, S. D.; Bordin, N.; Waman, V. P.; Scholes, H. M.; Ashford, P.; Sen, N.; van Dorp, L.; Rauer, C.; Dawson, N. L.; Pang, C. S. M.; Abbasian, M.; Sillitoe, I.; Edwards, S. J. L.; Fraternali, F.; Lees, J. G.; Santini, J. M.; Orengo, C. A. SARS-CoV-2 spike protein predicted to form complexes with host receptor protein orthologues from a broad range of mammals. Sci Rep. 2020, 10, 16471.
7. Zhang, H.; Penninger, J. M.; Li, Y.; Zhong, N.; Slutsky, A. S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586-590.
8. McMahan, K.; Yu, J.; Mercado, N. B.; Loos, C.; Tostanoski, L. H.; Chandrashekar, A.; Liu, J.; Peter, L.; Atyeo, C.; Zhu, A.; Bondzie, E. A.; Dagotto, G.; Gebre, M. S.; Jacob-Dolan, C.; Li, Z.; Nampanya, F.; Patel, S.; Pessaint, L.; Van Ry, A.; Blade, K.; Yalley-Ogunro, J.; Cabus, M.; Brown, R.; Cook, A.; Teow, E.; Andersen, H.; Lewis, M. G.; Lauffenburger, D. A.; Alter, G.; Barouch, D. H. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2021, 590, 630-634.
9. Tang, F.; Quan, Y.; Xin, Z. T.; Wrammert, J.; Ma, M. J.; Lv, H.; Wang, T. B.; Yang, H.; Richardus, J. H.; Liu, W.; Cao, W. C. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011, 186, 7264-7268.
10. Spellberg, B.; Nielsen, T. B.; Casadevall, A. Antibodies, immunity, and COVID-19. JAMA Intern Med. 2020. doi:10.1001/jamainternmed.2020.7986.
11. Delrue, I.; Verzele, D.; Madder, A.; Nauwynck, H. J. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines. 2012, 11, 695-719.
12. Badgett, M. R.; Auer, A.; Carmichael, L. E.; Parrish, C. R.; Bull, J. J. Evolutionary dynamics of viral attenuation. J Virol. 2002, 76, 10524-10529.
13. Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics. 2020, 10, 7821-7835.
14. Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther. 2020, 5, 237.
15. Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J. S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; Smith, G.; Patel, N.; Frieman, M. B.; Haupt, R. E.; Logue, J.; McGrath, M.; Weston, S.; Piedra, P. A.; Desai, C.; Callahan, K.; Lewis, M.; Price-Abbott, P.; Formica, N.; Shinde, V.; Fries, L.; Lickliter, J. D.; Griffin, P.; Wilkinson, B.; Glenn, G. M. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020, 383, 2320-2332.
16. Graham, B. S. Rapid COVID-19 vaccine development. Science. 2020, 368, 945-946.
17. Tian, J. H.; Patel, N.; Haupt, R.; Zhou, H.; Weston, S.; Hammond, H.; Logue, J.; Portnoff, A. D.; Norton, J.; Guebre-Xabier, M.; Zhou, B.; Jacobson, K.; Maciejewski, S.; Khatoon, R.; Wisniewska, M.; Moffitt, W.; Kluepfel-Stahl, S.; Ekechukwu, B.; Papin, J.; Boddapati, S.; Jason Wong, C.; Piedra, P. A.; Frieman, M. B.; Massare, M. J.; Fries, L.; Bengtsson, K. L.; Stertman, L.; Ellingsworth, L.; Glenn, G.; Smith, G. SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun. 2021, 12, 372.
18. Kaur, S. P.; Gupta, V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020, 288, 198114.
19. Reimer, J. M.; Karlsson, K. H.; Lövgren-Bengtsson, K.; Magnusson, S. E.; Fuentes, A.; Stertman, L. Matrix-MTM adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One. 2012, 7, e41451.
20. Siegrist, C. A. 2 - Vaccine Immunology. In Plotkin’s Vaccines (Seventh Edition), Plotkin, S. A.; Orenstein, W. A.; Offit, P. A.; Edwards, K. M., eds. Elsevier, 2018; pp 16-34.e17.
21. Noad, R.; Roy, P. Virus-like particles as immunogens. Trends Microbiol. 2003, 11, 438-444.
22. Chung, Y. H.; Beiss, V.; Fiering, S. N.; Steinmetz, N. F. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020, 14, 12522-12537.
23. Dai, L.; Gao, G. F. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021, 21, 73-82.
24. Sharma, P. K.; Dmitriev, I. P.; Kashentseva, E. A.; Raes, G.; Li, L.; Kim, S. W.; Lu, Z. H.; Arbeit, J. M.; Fleming, T. P.; Kaliberov, S. A.; Goedegebuure, S. P.; Curiel, D. T.; Gillanders, W. E. Development of an adenovirus vector vaccine platform for targeting dendritic cells. Cancer Gene Ther. 2018, 25, 27-38.
25. Zhu, F. C.; Guan, X. H.; Li, Y. H.; Huang, J. Y.; Jiang, T.; Hou, L. H.; Li, J. X.; Yang, B. F.; Wang, L.; Wang, W. J.; Wu, S. P.; Wang, Z.; Wu, X. H.; Xu, J. J.; Zhang, Z.; Jia, S. Y.; Wang, B. S.; Hu, Y.; Liu, J. J.; Zhang, J.; Qian, X. A.; Li, Q.; Pan, H. X.; Jiang, H. D.; Deng, P.; Gou, J. B.; Wang, X. W.; Wang, X. H.; Chen, W. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet. 2020, 396, 479-488.
26. Geisbert, T. W.; Bailey, M.; Hensley, L.; Asiedu, C.; Geisbert, J.; Stanley, D.; Honko, A.; Johnson, J.; Mulangu, S.; Pau, M. G.; Custers, J.; Vellinga, J.; Hendriks, J.; Jahrling, P.; Roederer, M.; Goudsmit, J.; Koup, R.; Sullivan, N. J. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol. 2011, 85, 4222-4233.
27. Dicks, M. D.; Spencer, A. J.; Edwards, N. J.; Wadell, G.; Bojang, K.; Gilbert, S. C.; Hill, A. V.; Cottingham, M. G. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One. 2012, 7, e40385.
28. Gerke, C.; Frantz, P. N.; Ramsauer, K.; Tangy, F. Measles-vectored vaccine approaches against viral infections: a focus on Chikungunya. Expert Rev Vaccines. 2019, 18, 393-403.
29. Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 2012, 9, 1319-1330.
30. Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018, 17, 261-279.
31. Hoerr, I.; Obst, R.; Rammensee, H. G.; Jung, G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur J Immunol. 2000, 30, 1-7.
32. Pardi, N.; Tuyishime, S.; Muramatsu, H.; Kariko, K.; Mui, B. L.; Tam, Y. K.; Madden, T. D.; Hope, M. J.; Weissman, D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Control Release. 2015, 217, 345-351.
33. Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.; McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J.; Pruijssers, A. J.; McDermott, A.; Flach, B.; Doria-Rose, N. A.; Corbett, K. S.; Morabito, K. M.; O’Dell, S.; Schmidt, S. D.; Swanson, P. A. 2nd; Padilla, M.; Mascola, J. R.; Neuzil, K. M.; Bennett, H.; Sun, W.; Peters, E.; Makowski, M.; Albert, J.; Cross, K.; Buchanan, W.; Pikaart-Tautges, R.; Ledgerwood, J. E.; Graham, B. S.; Beigel, J. H. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med. 2020, 383, 1920-1931.
34. Mulligan, M. J.; Lyke, K. E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K. A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P. Y.; Türeci, Ö.; Tompkins, K. R.; Walsh, E. E.; Frenck, R.; Falsey, A. R.; Dormitzer, P. R.; Gruber, W. C.; Şahin, U.; Jansen, K. U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020, 586, 589-593.
35. Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008, 16, 1833-1840.
36. Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Pérez Marc, G.; Moreira, E. D.; Zerbini, C.; Bailey, R.; Swanson, K. A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W. V.; Cooper, D.; Frenck, R. W. Jr.; Hammitt, L. L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D. B.; Mather, S.; Dormitzer, P. R.; Şahin, U.; Jansen, K. U.; Gruber, W. C. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med. 2020, 383, 2603-2615.
37. Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B.; McGettigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Marovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B. S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021, 384, 403-416.
38. Smith, T. R. F.; Patel, A.; Ramos, S.; Elwood, D.; Zhu, X.; Yan, J.; Gary, E. N.; Walker, S. N.; Schultheis, K.; Purwar, M.; Xu, Z.; Walters, J.; Bhojnagarwala, P.; Yang, M.; Chokkalingam, N.; Pezzoli, P.; Parzych, E.; Reuschel, E. L.; Doan, A.; Tursi, N.; Vasquez, M.; Choi, J.; Tello-Ruiz, E.; Maricic, I.; Bah, M. A.; Wu, Y.; Amante, D.; Park, D. H.; Dia, Y.; Ali, A. R.; Zaidi, F. I.; Generotti, A.; Kim, K. Y.; Herring, T. A.; Reeder, S.; Andrade, V. M.; Buttigieg, K.; Zhao, G.; Wu, J. M.; Li, D.; Bao, L.; Liu, J.; Deng, W.; Qin, C.; Brown, A. S.; Khoshnejad, M.; Wang, N.; Chu, J.; Wrapp, D.; McLellan, J. S.; Muthumani, K.; Wang, B.; Carroll, M. W.; Kim, J. J.; Boyer, J.; Kulp, D. W.; Humeau, L.; Weiner, D. B.; Broderick, K. E. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020, 11, 2601.
39. Silveira, M. M.; Moreira, G.; Mendonça, M. DNA vaccines against COVID-19: perspectives and challenges. Life Sci. 2021, 267, 118919.
40. Kool, M.; Soullié, T.; van Nimwegen, M.; Willart, M. A.; Muskens, F.; Jung, S.; Hoogsteden, H. C.; Hammad, H.; Lambrecht, B. N. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med. 2008, 205, 869-882.
41. Bode, C.; Zhao, G.; Steinhagen, F.; Kinjo, T.; Klinman, D. M. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011, 10, 499-511.
42. Lloyd, J.; Cheyne, J. The origins of the vaccine cold chain and a glimpse of the future. Vaccine. 2017, 35, 2115-2120.
43. Advisory Committee on Immunization Practices. Storage and Handling of Immunobiologics. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/storage.html. Accessed by January 10, 2021.
44. Crommelin, D. J. A.; Anchordoquy, T. J.; Volkin, D. B.; Jiskoot, W.; Mastrobattista, E. Addressing the cold reality of mRNA vaccine stability. J Pharm Sci. 2021, 110, 997-1001.
45. Zhang, N. N.; Li, X. F.; Deng, Y. Q.; Zhao, H.; Huang, Y. J.; Yang, G.; Huang, W. J.; Gao, P.; Zhou, C.; Zhang, R. R.; Guo, Y.; Sun, S. H.; Fan, H.; Zu, S. L.; Chen, Q.; He, Q.; Cao, T. S.; Huang, X. Y.; Qiu, H. Y.; Nie, J. H.; Jiang, Y.; Yan, H. Y.; Ye, Q.; Zhong, X.; Xue, X. L.; Zha, Z. Y.; Zhou, D.; Yang, X.; Wang, Y. C.; Ying, B.; Qin, C. F. A thermostable mRNA vaccine against COVID-19. Cell. 2020, 182, 1271-1283.e16.
46. Logunov, D. Y.; Dolzhikova, I. V.; Zubkova, O. V.; Tukhvatulin, A. I.; Shcheblyakov, D. V.; Dzharullaeva, A. S.; Grousova, D. M.; Erokhova, A. S.; Kovyrshina, A. V.; Botikov, A. G.; Izhaeva, F. M.; Popova, O.; Ozharovskaya, T. A.; Esmagambetov, I. B.; Favorskaya, I. A.; Zrelkin, D. I.; Voronina, D. V.; Shcherbinin, D. N.; Semikhin, A. S.; Simakova, Y. V.; Tokarskaya, E. A.; Lubenets, N. L.; Egorova, D. A.; Shmarov, M. M.; Nikitenko, N. A.; Morozova, L. F.; Smolyarchuk, E. A.; Kryukov, E. V.; Babira, V. F.; Borisevich, S. V.; Naroditsky, B. S.; Gintsburg, A. L. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020, 396, 887-897.
47. Wang, Y.; Zhang, Z.; Luo, J.; Han, X.; Wei, Y.; Wei, X. mRNA vaccine: a potential therapeutic strategy. Mol Cancer. 2021, 20, 33.
48. Bachmann, M. F.; Rohrer, U. H.; Kündig, T. M.; Bürki, K.; Hengartner, H.; Zinkernagel, R. M. The influence of antigen organization on B cell responsiveness. Science. 1993, 262, 1448-1451.
49. Zhao, X.; Chen, L.; Luckanagul, J. A.; Zhang, X.; Lin, Y.; Wang, Q. Enhancing antibody response against small molecular hapten with tobacco mosaic virus as a polyvalent carrier. ChemBioChem. 2015, 16, 1279-1283.
50. Zhang, X.; Zhao, X.; Luckanagul, J. A.; Yan, J.; Nie, Y.; Lee, L. A.; Wang, Q. Polymer–protein core–shell nanoparticles for enhanced antigen immunogenicity. ACS Macro Lett. 2017, 6, 442-446.
51. Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl. 1998, 37, 2754-2794.
52. Tyson, A.; Johnson, C.; Funk, C. U.S. Public Now Divided Over Whether To Get COVID-19 Vaccine. https://www.pewresearch.org/science/2020/09/17/u-s-public-now-divided-over-whether-to-get-covid-19-vaccine/. Accessed by January 10, 2021.
53. Wise, J. Covid-19: New coronavirus variant is identified in UK. BMJ. 2020, 371, m4857.
54. Tegally, H.; Wilkinson, E.; Giovanetti, M.; Iranzadeh, A.; Fonseca, V.; Giandhari, J.; Doolabh, D.; Pillay, S.; San, E. J.; Msomi, N.; Mlisana, K.; von Gottberg, A.; Walaza, S.; Allam, M.; Ismail, A.; Mohale, T.; Glass, A. J.; Engelbrecht, S.; Van Zyl, G.; Preiser, W.; Petruccione, F.; Sigal, A.; Hardie, D.; Marais, G.; Hsiao, M.; Korsman, S.; Davies, M. A.; Tyers, L.; Mudau, I.; York, D.; Maslo, C.; Goedhals, D.; Abrahams, S.; Laguda-Akingba, O.; Alisoltani-Dehkordi, A.; Godzik, A.; Wibmer, C. K.; Sewell, B. T.; Lourenço, J.; Alcantara, L. C. J.; Kosakovsky Pond, S. L.; Weaver, S.; Martin, D.; Lessells, R. J.; Bhiman, J. N.; Williamson, C.; de Oliveira, T. Emergence of a SARS-CoV-2 variant of concern with mutations in spike glycoprotein. Nature. 2021. doi:10.1038/s41586-021-03402-9.
55. Shin, M. D.; Shukla, S.; Chung, Y. H.; Beiss, V.; Chan, S. K.; Ortega-Rivera, O. A.; Wirth, D. M.; Chen, A.; Sack, M.; Pokorski, J. K.; Steinmetz, N. F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol. 2020, 15, 646-655.