Optimising soft tissue in-growth in vivo in additive layer manufactured osseointegrated transcutaneous implants
Osseointegrated transcutaneous implants could provide an alternative and improved means of attaching artificial limbs for amputees, however epithelial down growth, inflammation, and infections are common failure modalities associated with their use. To overcome these problems, a tight seal associated with the epidermal and dermal adhesion to the implant is crucial. This could be achieved with specific biomaterials (that mimic the surrounding tissue), or a tissue–specific design to enhance the proliferation and attachment of dermal fibroblasts and keratinocytes. The intraosseous transcutaneous amputation prosthesis is a new device with a pylon and a flange, which is specifically designed for optimising soft tissue attachment. Previously the flange has been fabricated using traditional machining techniques, however, the advent of additive layer manufacturing (ALM) has enabled 3–dimensional porous flanges with specific pore sizes to be used to optimise soft tissue integration and reduce failure of osseointegrated transcutaneous implants. The study aimed to investigate the effect of ALM–manufactured porous flanges on soft tissue ingrowth and attachment in an in vivo ovine model that replicates an osseointegrated percutaneous implant. At 12 and 24 weeks, epithelial downgrowth, dermal attachment and revascularisation into ALM–manufactured flanges with three different pore sizes were compared with machined controls where the pores were made using conventional drilling. The pore sizes of the ALM flanges were 700, 1000 and 1250 μm. We hypothesised that ALM porous flanges would reduce downgrowth, improve soft tissue integration and revascularisation compared with machined controls. The results supported our hypothesis with significantly greater soft tissue integration and revascularisation in ALM porous flanges compared with machined controls.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Adamson, C.; Kaufmann, M.; Levine, D.; Millis, D. L.; Marcellin-Little, D. J. Assistive devices, orthotics, and prosthetics. *Vet Clin North Am Small Anim Pract.* 2005, 35, 1441-1451, ix.
2. Ontario Health (Quality). Osseointegrated prosthetic implants for people with lower-limb amputation: a health technology assessment. *Ont Health Technol Assess Ser.* 2019, 19, 1-126.
3. Roffman, C. E.; Buchanan, J.; Allison, G. T. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. *J Physiother.* 2014, 60, 224-231.
4. Pirouzi, G.; Abu Osman, N. A.; Eshraghi, A.; Ali, S.; Gholizadeh, H.; Wan Abas, W. A. Review of the socket design and interface pressure measurement for transtibial prosthesis. *ScientificWorldJournal.* 2014, 2014, 849073.
5. Bhandari, P. S.; Jain, S. K. Long term effects of prostheses on stump in lower limb amputees: a critical analysis of 100 cases. *Med J Armed Forces India.* 1996, 52, 169-171.
6. Bowker, J. H.; Michael, J. W. *Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles.* Mosby Inc.: St. Louis, 1992.
7. National Health Service. Amputation. https://www.nhs.uk/conditions/amputation/. Accessed August 9, 2022.
8. Cole, G. L.; Millis, D. The effect of limb amputation on standing weight distribution in the remaining three limbs in dogs. *Vet Comp Orthop Traumatol.* 2017, 30, 59-61.
9. Tzortzis, S.; Tzifa, K.; Tikka, T.; Worrollo, S.; Williams, J.; Reid, A. P.; Proops, D. A ten-year review of soft tissue reactions around percutaneous titanium implants for auricular prosthesis. *Laryngoscope.* 2015, 125, 1934-1939.
10. Li, Y.; Felländer-Tsai, L. The bone anchored prostheses for amputees - historical development, current status, and future aspects. *Biomaterials.* 2021, 273, 120836.
11. Overmann, A. L.; Forsberg, J. A. The state of the art of osseointegration for limb prosthesis. *Biomed Eng Lett.* 2020, 10, 5-16.
12. Pitkin, M.; Cassidy, C.; Shevtsov, M. A.; Jarrell, J. R.; Park, H.; Farrell, B. J.; Dalton, J. F.; Childers, W. L.; Kistenberg, R. S.; Oh, K.; Klishko, A. N.; Prilutsky, B. I. Recent progress in animal studies of the skin- and bone-integrated pylon with deep porosity for bone-anchored limb prosthetics with and without neural interface. *Mil Med.* 2021, 186, 688-695.
13. Isackson, D.; McGill, L. D.; Bachus, K. N. Percutaneous implants with porous titanium dermal barriers: an in vivo evaluation of infection risk. *Med Eng Phys.* 2011, 33, 418-426.
14. Tsikandylakis, G.; Berlin, Ö.; Brånemark, R. Implant survival, adverse events, and bone remodeling of osseointegrated percutaneous implants for transhumeral amputees. *Clin Orthop Relat Res.* 2014, 472, 2947-2956.
15. Fitzpatrick, N.; Smith, T. J.; Pendegrass, C. J.; Yeadon, R.; Ring, M.; Goodship, A. E.; Blunn, G. W. Intraosseous transcutaneous amputation prosthesis (ITAP) for limb salvage in 4 dogs. *Vet Surg.* 2011, 40, 909-925.
16. Kierdorf, U.; Flohr, S.; Gomez, S.; Landete-Castillejos, T.; Kierdorf, H. The structure of pedicle and hard antler bone in the European roe deer (Capreolus capreolus): a light microscope and backscattered electron imaging study. *J Anat.* 2013, 223, 364-384.
17. Pendegrass, C. J.; Goodship, A. E.; Blunn, G. W. Development of a soft tissue seal around bone-anchored transcutaneous amputation prostheses. *Biomaterials.* 2006, 27, 4183-4191.
18. Chimutengwende-Gordon, M.; Pendegrass, C.; Blunn, G. The in vivo effect of a porous titanium alloy flange with hydroxyapatite, silver and fibronectin coatings on soft-tissue integration of intraosseous transcutaneous amputation prostheses. *Bone Joint J.* 2017, 99-b, 393-400.
19. Kang, N. V.; Pendegrass, C.; Marks, L.; Blunn, G. Osseocutaneous integration of an intraosseous transcutaneous amputation prosthesis implant used for reconstruction of a transhumeral amputee: case report. *J Hand Surg Am.* 2010, 35, 1130-1134.
20. Anil, U.; Singh, V.; Schwarzkopf, R. Diagnosis and detection of subtle aseptic loosening in total hip arthroplasty. *J Arthroplasty.* 2022, 37, 1494-1500.
21. Abu-Amer, Y.; Darwech, I.; Clohisy, J. C. Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. *Arthritis Res Ther.* 2007, 9 Suppl 1, S6.
22. Mead, R.; Gilmour, S. G.; Mead, A. Statistical principles for the design of experiments: applications to real experiments. Cambridge University Press: Cambridge. 2012.
23. Steinstraesser, L.; Sorkin, M.; Niederbichler, A. D.; Becerikli, M.; Stupka, J.; Daigeler, A.; Kesting, M. R.; Stricker, I.; Jacobsen, F.; Schulte, M. A novel human skin chamber model to study wound infection ex vivo. *Arch Dermatol Res.* 2010, 302, 357-365.
24. Pendegrass, C. J.; Gordon, D.; Middleton, C. A.; Sun, S. N.; Blunn, G. W. Sealing the skin barrier around transcutaneous implants: in vitro study of keratinocyte proliferation and adhesion in response to surface modifications of titanium alloy. *J Bone Joint Surg Br.* 2008, 90, 114-121.
25. Caiado, F.; Carvalho, T.; Silva, F.; Castro, C.; Clode, N.; Dye, J. F.; Dias, S. The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. *Biomaterials.* 2011, 32, 7096-7105.
26. Coulter, F. B.; Levey, R. E.; Robinson, S. T.; Dolan, E. B.; Deotti, S.; Monaghan, M.; Dockery, P.; Coulter, B. S.; Burke, L. P.; Lowery, A. J.; Beatty, R.; Paetzold, R.; Prendergast, J. J.; Bellavia, G.; Straino, S.; Cianfarani, F.; Salamone, M.; Bruno, C. M.; Moerman, K. M.; Ghersi, G.; Duffy, G. P.; O’Cearbhaill, E. D. Additive manufacturing of multi-scale porous soft tissue implants that encourage vascularization and tissue ingrowth. *Adv Healthc Mater.* 2021, 10, e2100229.
27. Overmann, A. L.; Aparicio, C.; Richards, J. T.; Mutreja, I.; Fischer, N. G.; Wade, S. M.; Potter, B. K.; Davis, T. A.; Bechtold, J. E.; Forsberg, J. A.; Dey, D. Orthopaedic osseointegration: Implantology and future directions. *J Orthop Res.* 2020, 38, 1445-1454.
28. Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. *Mater Sci Eng C Mater Biol Appl.* 2016, 59, 690-701.
29. Chimutengwende-Gordon, N. F. Enhancing the soft tissue-implant seal and reducing bacterial colonisation around the intraosseous transcutaneous amputation prosthesis. University College London: College. 2015.
30. Akhmanova, M.; Osidak, E.; Domogatsky, S.; Rodin, S.; Domogatskaya, a. physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. *Stem Cells Int.* 2015, 2015, 167025.
31. Ghilan, A.; Chiriac, A. P.; Nita, L. E.; Rusu, A. G.; Neamtu, I.; Chiriac, V. M. Trends in 3D printing processes for biomedical field: opportunities and challenges. *J Polym Environ.* 2020, 28, 1345-1367.