·
RESEARCH ARTICLE
·

A comparative study of human and porcine–derived decellularised nerve matrices

Rui Li1,2 Shuai Qiu3 Weihong Yang2,4 Zilong Rao1 Jiaxin Chen1 Yuexiong Yang4 Qingtang Zhu3* Xiaolin Liu3 Ying Bai1* Daping Quan1*
Show Less
1 Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat–sen University, Guangzhou, Guangdong Province, China
2 Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat–sen University, Guangzhou, Guangdong Province, China
3 Guangdong Engineering Technology Research Centre for Peripheral Nerve Tissue, Department of Orthopaedic and Microsurgery, The First Affiliated Hospital of Sun Yat–sen University, Guangzhou, Guangdong Province, China
4 Guangzhou Zhongda Medical Equipment Co., Ltd., Guangzhou, Guangdong Province, China
Submitted: 17 November 2022 | Revised: 6 December 2022 | Accepted: 8 March 2023 | Published: 28 September 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Decellularised extracellular matrix (dECM) biomaterials originating from allogeneic and xenogeneic tissues have been broadly studied in the field of regenerative medicine and have already been used in clinical treatments. Allogeneic dECMs are considered more compatible, but they have the drawback of extremely limited human tissue sources. Their availability is also restricted by the health and age of the donors. To investigate the viability of xenogeneic tissues as a substitute for human tissues, we fabricated both porcine decellularised nerve matrix (pDNM) and human decellularised nerve matrix for a comprehensive comparison. Photomicrographs showed that both dECM scaffolds retained the ECM microstructures of native human nerve tissues. Proteomic analysis demonstrated that the protein compositions of both dECMs were also very similar to each other. Their functional ECM contents effectively promoted the proliferation, migration, and maturation of primary human Schwann cells in vitro. However, pDNM contained a few antigens that induced severe host immune responses in humanised mice. Interestingly, after removing the α–galactosidase antigen, the immune responses were highly alleviated and the pre–treated pDNM maintained a human decellularised nerve matrix–like pro–regenerative phenotype. Therefore, we believe that an α–galactosidase–free pDNM may serve as a viable substitute for human decellularised nerve matrix in future clinical applications.

Keywords
allogeneic ; decellularised nerve matrix ; immune response ; xenogeneic ; α–Gal
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1.Krishtul, S.; Baruch, L.; Machluf, M. Processed tissue–derived extracellular matrices: tailored platforms empowering diverse therapeutic applications. Adv Funct Mater. 2020, 30, 1900386.
2. Garreta, E.; Oria, R.; Tarantino, C.; Pla-Roca, M.; Prado, P.; Fernández-Avilés, F.; Campistol, J. M.; Samitier, J.; Montserrat, N. Tissue engineering by decellularization and 3D bioprinting. Mater Today. 2017, 20, 166-178.
3. Hussey, G. S.; Dziki, J. L.; Badylak, S. F. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater. 2018, 3, 159-173.
4. Li, T.; Javed, R.; Ao, Q. Xenogeneic decellularized extracellular matrix-based biomaterials for peripheral nerve repair and regeneration. Curr Neuropharmacol. 2021, 19, 2152-2163.
5. Zouhair, S.; Sasso, E. D.; Tuladhar, S. R.; Fidalgo, C.; Vedovelli, L.; Filippi, A.; Borile, G.; Bagno, A.; Marchesan, M.; Giorgio, R.; Gregori, D.; Wolkers, W. F.; Romanato, F.; Korossis, S.; Gerosa, G.; Iop, L. A comprehensive comparison of bovine and porcine decellularized pericardia: new insights for surgical applications. Biomolecules. 2020, 10, 371.
6. Capella-Monsonís, H.; De Pieri, A.; Peixoto, R.; Korntner, S.; Zeugolis, D. I. Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther. 2020, 11, 510.
7. Bowers, S. L.; Banerjee, I.; Baudino, T. A. The extracellular matrix: at the center of it all. J Mol Cell Cardiol. 2010, 48, 474-482.
8. Keane, T. J.; Londono, R.; Turner, N. J.; Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012, 33, 1771-1781.
9. Badylak, S. F. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004, 12, 367-377.
10. Badylak, S. F.; Gilbert, T. W. Immune response to biologic scaffold materials. Semin Immunol. 2008, 20, 109-116.
11. Kasper, M.; Deister, C.; Beck, F.; Schmidt, C. E. Bench-to-bedside lessons learned: commercialization of an acellular nerve graft. Adv Healthc Mater. 2020, 9, e2000174.
12. Yang, L. M.; Liu, X. L.; Zhu, Q. T.; Zhang, Y.; Xi, T. F.; Hu, J.; He, C. F.; Jiang, L. Human peripheral nerve-derived scaffold for tissue-engineered nerve grafts: histology and biocompatibility analysis. J Biomed Mater Res B Appl Biomater. 2011, 96, 25-33.
13. Colwell, A. S.; Longaker, M. T.; Lorenz, H. P. Mammalian fetal organ regeneration. Adv Biochem Eng Biotechnol. 2005, 93, 83-100.
14. Sicari, B. M.; Johnson, S. A.; Siu, B. F.; Crapo, P. M.; Daly, K. A.; Jiang, H.; Medberry, C. J.; Tottey, S.; Turner, N. J.; Badylak, S. F. The effect of source animal age upon the in vivo remodeling characteristics of an extracellular matrix scaffold. Biomaterials. 2012, 33, 5524-5533.
15. Badylak, S. F. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007, 28, 3587-3593.
16. Seif-Naraghi, S. B.; Singelyn, J. M.; Salvatore, M. A.; Osborn, K. G.; Wang, J. J.; Sampat, U.; Kwan, O. L.; Strachan, G. M.; Wong, J.; Schup-Magoffin, P. J.; Braden, R. L.; Bartels, K.; DeQuach, J. A.; Preul, M.; Kinsey, A. M.; DeMaria, A. N.; Dib, N.; Christman, K. L. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013, 5, 173ra125.
17. Chen, S.; Du, Z.; Zou, J.; Qiu, S.; Rao, Z.; Liu, S.; Sun, X.; Xu, Y.; Zhu, Q.; Liu, X.; Mao, H. Q.; Bai, Y.; Quan, D. Promoting neurite growth and schwann cell migration by the harnessing decellularized nerve matrix onto nanofibrous guidance. ACS Appl Mater Interfaces. 2019, 11, 17167-17176.
18. Zheng, C.; Yang, Z.; Chen, S.; Zhang, F.; Rao, Z.; Zhao, C.; Quan, D.; Bai, Y.; Shen, J. Nanofibrous nerve guidance conduits decorated with decellularized matrix hydrogel facilitate peripheral nerve injury repair. Theranostics. 2021, 11, 2917-2931.
19. Deng, R.; Luo, Z.; Rao, Z.; Lin, Z.; Chen, S.; Zhou, J.; Zhu, Q.; Liu, X.; Bai, Y.; Quan, D. Decellularized extracellular matrix containing electrospun fibers for nerve regeneration: a comparison between core–shell structured and preblended composites. Adv Fiber Mater. 2022, 4, 503-519.
20. Xu, Y.; Zhou, J.; Liu, C.; Zhang, S.; Gao, F.; Guo, W.; Sun, X.; Zhang, C.; Li, H.; Rao, Z.; Qiu, S.; Zhu, Q.; Liu, X.; Guo, X.; Shao, Z.; Bai, Y.; Zhang, X.; Quan, D. Understanding the role of tissue-specific decellularized spinal cord matrix hydrogel for neural stem/progenitor cell microenvironment reconstruction and spinal cord injury. Biomaterials. 2021, 268, 120596.
21. Lin, T.; Liu, S.; Chen, S.; Qiu, S.; Rao, Z.; Liu, J.; Zhu, S.; Yan, L.; Mao, H.; Zhu, Q.; Quan, D.; Liu, X. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater. 2018, 73, 326-338.
22. Rao, Z.; Lin, T.; Qiu, S.; Zhou, J.; Liu, S.; Chen, S.; Wang, T.; Liu, X.; Zhu, Q.; Bai, Y.; Quan, D. Decellularized nerve matrix hydrogel scaffolds with longitudinally oriented and size-tunable microchannels for peripheral nerve regeneration. Mater Sci Eng C Mater Biol Appl. 2021, 120, 111791.
23. Keane, T. J.; Badylak, S. F. The host response to allogeneic and xenogeneic biological scaffold materials. J Tissue Eng Regen Med. 2015, 9, 504-511.
24. Brown, B. N.; Londono, R.; Tottey, S.; Zhang, L.; Kukla, K. A.; Wolf, M. T.; Daly, K. A.; Reing, J. E.; Badylak, S. F. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012, 8, 978-987.

25. Brown, B. N.; Valentin, J. E.; Stewart-Akers, A. M.; McCabe, G. P.; Badylak, S. F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials. 2009, 30, 1482-1491.  
26. Galili, U. Interaction of the natural anti-Gal antibody with alpha-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today. 1993, 14, 480-482.  
27. Mestas, J.; Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004, 172, 2731-2738.  
28. Qiu, S.; Rao, Z.; He, F.; Wang, T.; Xu, Y.; Du, Z.; Yao, Z.; Lin, T.; Yan, L.; Quan, D.; Zhu, Q.; Liu, X. Decellularized nerve matrix hydrogel and glial-derived neurotrophic factor modifications assisted nerve repair with decellularized nerve matrix scaffolds. J Tissue Eng Regen Med. 2020, 14, 931-943.  
29. Devaud, Y. R.; Avilla-Royo, E.; Trachsel, C.; Grossmann, J.; Martin, I.; Lutolf, M. P.; Ehrbar, M. Label-free quantification proteomics for the identification of mesenchymal stromal cell matrisome inside 3D poly(ethylene glycol) hydrogels. Adv Healthc Mater. 2018, 7, e1800534.  
30. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480-D489.  
31. Morfeld, P. Controlling the false discovery rate in many SMR analyses. J Occup Environ Med. 2016, 58, e21-22.  
32. Naba, A.; Clauser, K. R.; Ding, H.; Whittaker, C. A.; Carr, S. A.; Hynes, R. O. The extracellular matrix: Tools and insights for the “omics” era. Matrix Biol. 2016, 49, 10-24.  
33. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675.  
34. Bubner, B.; Baldwin, I. T. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep. 2004, 23, 263-271.  
35. Stone, K. R.; Ayala, G.; Goldstein, J.; Hurst, R.; Walgenbach, A.; Galili, U. Porcine cartilage transplants in the cynomolgus monkey. III. Transplantation of alpha-galactosidase-treated porcine cartilage. Transplantation. 1998, 65, 1577-1583.  
36. Percie du Sert, N.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M. T.; Baker, M.; Browne, W. J.; Clark, A.; Cuthill, I. C.; Dirnagl, U.; Emerson, M.; Garner, P.; Holgate, S. T.; Howells, D. W.; Karp, N. A.; Lazic, S. E.; Lidster, K.; MacCallum, C. J.; Macleod, M.; Pearl, E. J.; Petersen, O. H.; Rawle, F.; Reynolds, P.; Rooney, K.; Sena, E. S.; Silberberg, S. D.; Steckler, T.; Würbel, H. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, e3000410.  
37. Lan, P.; Tonomura, N.; Shimizu, A.; Wang, S.; Yang, Y. G. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood. 2006, 108, 487-492.  
38. Khan, S.; Kaihara, K. A. Single-cell RNA-sequencing of peripheral blood mononuclear cells with ddSEQ. Methods Mol Biol. 2019, 1979, 155-176.  
39. Wang, R. M.; Johnson, T. D.; He, J.; Rong, Z.; Wong, M.; Nigam, V.; Behfar, A.; Xu, Y.; Christman, K. L. Humanized mouse model for assessing the human immune response to xenogeneic and allogeneic decellularized biomaterials. Biomaterials. 2017, 129, 98-110.  
40. Crapo, P. M.; Medberry, C. J.; Reing, J. E.; Tottey, S.; van der Merwe, Y.; Jones, K. E.; Badylak, S. F. Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials. 2012, 33, 3539-3547.  
41. Behan, B. L.; DeWitt, D. G.; Bogdanowicz, D. R.; Koppes, A. N.; Bale, S. S.; Thompson, D. M. Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments. J Biomed Mater Res A. 2011, 96, 46-57.  
42. Aamodt, J. M.; Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016, 86, 68-82.  
43. Walsh, N. C.; Kenney, L. L.; Jangalwe, S.; Aryee, K. E.; Greiner, D. L.; Brehm, M. A.; Shultz, L. D. Humanized mouse models of clinical disease. Annu Rev Pathol. 2017, 12, 187-215.  
44. Kočí, Z.; Výborný, K.; Dubišová, J.; Vacková, I.; Jäger, A.; Lunov, O.; Jiráková, K.; Kubinová, Š. Extracellular matrix hydrogel derived from human umbilical cord as a scaffold for neural tissue repair and its comparison with extracellular matrix from porcine tissues. Tissue Eng Part C Methods. 2017, 23, 333-345.  
45. Tan, Q. W.; Zhang, Y.; Luo, J. C.; Zhang, D.; Xiong, B. J.; Yang, J. Q.; Xie, H. Q.; Lv, Q. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation. J Biomed Mater Res A. 2017, 105, 1756-1764.  
46. Bikhet, M.; Morsi, M.; Hara, H.; Rhodes, L. A.; Carlo, W. F.; Cleveland, D.; Cooper, D. K. C.; Iwase, H. The immune system in infants: Relevance to xenotransplantation. Pediatr Transplant. 2020, 24, e13795.  
47. Yan, L.; Guo, Y.; Qi, J.; Zhu, Q.; Gu, L.; Zheng, C.; Lin, T.; Lu, Y.; Zeng, Z.; Yu, S.; Zhu, S.; Zhou, X.; Zhang, X.; Du, Y.; Yao, Z.; Lu, Y.; Liu, X. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles. J Neurosci Methods. 2017, 287, 58-67.  

48. Spang, M. T.; Christman, K. L. Extracellular matrix hydrogel therapies: in vivo applications and development. Acta Biomater. 2018, 68, 1-14.

49. Bi, H.; Ye, K.; Jin, S. Proteomic analysis of decellularized pancreatic matrix identifies collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells. Biomaterials. 2020, 233, 119673.

50. Choudhury, D.; Yee, M.; Sheng, Z. L. J.; Amirul, A.; Naing, M. W. Decellularization systems and devices: State-of-the-art. Acta Biomater. 2020, 115, 51-59.

51. Xing, H.; Lee, H.; Luo, L.; Kyriakides, T. R. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv. 2020, 42, 107421.

52. Yue, Y.; Xu, W.; Kan, Y.; Zhao, H. Y.; Zhou, Y.; Song, X.; Wu, J.; Xiong, J.; Goswami, D.; Yang, M.; Lamriben, L.; Xu, M.; Zhang, Q.; Luo, Y.; Guo, J.; Mao, S.; Jiao, D.; Nguyen, T. D.; Li, Z.; Layer, J. V.; Li, M.; Paragas, V.; Youd, M. E.; Sun, Z.; Ding, Y.; Wang, W.; Dou, H.; Song, L.; Wang, X.; Le, L.; Fang, X.; George, H.; Anand, R.; Wang, S. Y.; Westlin, W. F.; Güell, M.; Markmann, J.; Qin, W.; Gao, Y.; Wei, H. J.; Church, G. M.; Yang, L. Extensive germline genome engineering in pigs. Nat Biomed Eng. 2021, 5, 134-143.

53. Niu, D.; Wei, H. J.; Lin, L.; George, H.; Wang, T.; Lee, I. H.; Zhao, H. Y.; Wang, Y.; Kan, Y.; Shrock, E.; Lesha, E.; Wang, G.; Luo, Y.; Qing, Y.; Jiao, D.; Zhao, H.; Zhou, X.; Wang, S.; Wei, H.; Güell, M.; Church, G. M.; Yang, L. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science. 2017, 357, 1303-1307.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top