·
REVIEWS
·

Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives

Zhangjie Li1 Dingyuan Yu1 Chenyang Zhou1 Feifan Wang1 Kangyi Lu1 Yijun Liu1 Jiaqi Xu1 Lian Xuan2 Xiaolin Wang1,2,3,4*
Show Less
1 Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
2 Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
3 National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China
4 National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
Submitted: 16 January 2024 | Revised: 29 February 2024 | Accepted: 28 March 2024 | Published: 28 March 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

In recent years, advances in microfabrication technology and tissue engineering have propelled the development of a novel drug screening and disease modelling platform known as organoid-on-a-chip. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modelling of human organ physiology. Organoid-on-a-chip devices leverage microfluidic systems to simulate the physiological microenvironment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a significant challenge in this technology. Vascularisation is crucial for the long-term culture and in vitro modelling of organoids, holding important implications for drug development and personalised medical approaches. This review provides an overview of research progress in developing vascularised organoid-on-a-chip models, addressing methods for in vitro vascularisation and advancements in vascularised organoids. The aim is to serve as a reference for future endeavors in constructing fully functional vascularised organoid-on-a-chip platforms.

Keywords
drug screening
microfluidic chip
organoids
tissue engineering
vascularization
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Riedl, A.; Schlederer, M.; Pudelko, K.; Stadler, M.; Walter, S.; Unterleuthner, D.; Unger, C.; Kramer, N.; Hengstschläger, M.; Kenner, L.; Pfeiffer, D.; Krupitza, G.; Dolznig, H. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci. 2017, 130, 203-218.

2. Ekert, J. E.; Johnson, K.; Strake, B.; Pardinas, J.; Jarantow, S.; Perkinson, R.; Colter, D. C. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One. 2014, 9, e92248.

3. Li, Z.; Li, Q.; Zhou, C.; Lu, K.; Liu, Y.; Xuan, L.; Wang, X. Organoid-on-a-chip: current challenges, trends, and future scope toward medicine. Biomicrofluidics. 2023, 17, 051505.

4. Quan, Y.; Sun, M.; Tan, Z.; Eijkel, J. C. T.; van den Berg, A.; van der Meer, A.; Xie, Y. Organ-on-a-chip: the next generation platform for risk assessment of radiobiology. RSC Adv. 2020, 10, 39521-39530.

5. Brancato, V.; Oliveira, J. M.; Correlo, V. M.; Reis, R. L.; Kundu, S. C. Could 3D models of cancer enhance drug screening? Biomaterials. 2020, 232, 119744.

6. Takebe, T.; Zhang, B.; Radisic, M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell. 2017, 21, 297-300.

7. Zhu, Y.; Sun, L.; Wang, Y.; Cai, L.; Zhang, Z.; Shang, Y.; Zhao, Y. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath. Adv Mater. 2022, 34, e2108972.

8. Wang, L.; Tao, T.; Su, W.; Yu, H.; Yu, Y.; Qin, J. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip. 2017, 17, 1749-1760.

9. Marsano, A.; Conficconi, C.; Lemme, M.; Occhetta, P.; Gaudiello, E.; Votta, E.; Cerino, G.; Redaelli, A.; Rasponi, M. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016, 16, 599-610.

10. Crespo, M.; Vilar, E.; Tsai, S. Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N. H.; Chen, H. J.; Witherspoon, M.; Gordillo, M.; Xiang, J. Z.; Maxfield, F. R.; Lipkin, S.; Evans, T.; Chen, S. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 2017, 23, 878-884.

11. Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A. M.; Liu, X.; Xie, X.; Livermore, C.; Zhang, Y. S.; Zarrinpar, A. Liver-on-a-chip models of fatty liver disease. Hepatology. 2020, 71, 733-740.

12. Wu, Y.; Zhou, Y.; Paul, R.; Qin, X.; Islam, K.; Liu, Y. Adaptable microfluidic vessel-on-a-chip platform for investigating tumor metastatic transport in bloodstream. Anal Chem. 2022, 94, 12159-12166.

13. Kilic, O.; Pamies, D.; Lavell, E.; Schiapparelli, P.; Feng, Y.; Hartung, T.; Bal-Price, A.; Hogberg, H. T.; Quinones-Hinojosa, A.; Guerrero-Cazares, H.; Levchenko, A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016, 16, 4152-4162.

14. Lancaster, M. A.; Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014, 345, 1247125.

15. Wang, X.; Yamamoto, Y.; Wilson, L. H.; Zhang, T.; Howitt, B. E.; Farrow, M. A.; Kern, F.; Ning, G.; Hong, Y.; Khor, C. C.; Chevalier, B.; Bertrand, D.; Wu, L.; Nagarajan, N.; Sylvester, F. A.; Hyams, J. S.; Devers, T.; Bronson, R.; Lacy, D. B.; Ho, K. Y.; Crum, C. P.; McKeon, F.; Xian, W. Cloning and variation of ground state intestinal stem cells. Nature. 2015, 522, 173-178.

16. Nie, Y. Z.; Zheng, Y. W.; Miyakawa, K.; Murata, S.; Zhang, R. R.; Sekine, K.; Ueno, Y.; Takebe, T.; Wakita, T.; Ryo, A.; Taniguchi, H. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine. 2018, 35, 114-123.

17. Li, L.; Knutsdottir, H.; Hui, K.; Weiss, M. J.; He, J.; Philosophe, B.; Cameron, A. M.; Wolfgang, C. L.; Pawlik, T. M.; Ghiaur, G.; Ewald, A. J.; Mezey, E.; Bader, J. S.; Selaru, F. M. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight. 2019, 4, e121490.

18. Kretzschmar, K. Cancer research using organoid technology. J Mol Med (Berl). 2021, 99, 501-515.

19. LeSavage, B. L.; Suhar, R. A.; Broguiere, N.; Lutolf, M. P.; Heilshorn, S. C. Next-generation cancer organoids. Nat Mater. 2022, 21, 143-159.

20. Yang, J.; Hirai, Y.; Iida, K.; Ito, S.; Trumm, M.; Terada, S.; Sakai, R.; Tsuchiya, T.; Tabata, O.; Kamei, K. I. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. Commun Biol. 2023, 6, 310.

21. Ronaldson-Bouchard, K.; Teles, D.; Yeager, K.; Tavakol, D. N.; Zhao, Y.; Chramiec, A.; Tagore, S.; Summers, M.; Stylianos, S.; Tamargo, M.; Lee, B. M.; Halligan, S. P.; Abaci, E. H.; Guo, Z.; Jacków, J.; Pappalardo, A.; Shih, J.; Soni, R. K.; Sonar, S.; German, C.; Christiano, A. M.; Califano, A.; Hirschi, K. K.; Chen, C. S.; Przekwas, A.; Vunjak-Novakovic, G. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022, 6, 351-371.

22. Lee, H. R.; Sung, J. H. Multiorgan-on-a-chip for realization of gut-skin axis. Biotechnol Bioeng. 2022, 119, 2590-2601.

23. Zhang, S.; Wan, Z.; Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip. 2021, 21, 473-488.

24. Mandrycky, C. J.; Howard, C. C.; Rayner, S. G.; Shin, Y. J.; Zheng, Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol. 2021, 159, 1-13.

25. Wang, X.; Sun, Q.; Pei, J. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models. Micromachines. 2018, 9, 493.

26. Zhou, J.; Li, Y. S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014, 34, 2191-2198.

27. Chistiakov, D. A.; Orekhov, A. N.; Bobryshev, Y. V. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf). 2017, 219, 382-408.

28. Baeyens, N.; Bandyopadhyay, C.; Coon, B. G.; Yun, S.; Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest. 2016, 126, 821-828.

29. Wu, J.; Shadden, S. C. Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry. Ann Biomed Eng. 2015, 43, 1543-1554.

30. Homan, K. A.; Gupta, N.; Kroll, K. T.; Kolesky, D. B.; Skylar-Scott, M.; Miyoshi, T.; Mau, D.; Valerius, M. T.; Ferrante, T.; Bonventre, J. V.; Lewis, J. A.; Morizane, R. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019, 16, 255-262.

31. Kramer, R. H.; Nicolson, G. L. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci U S A. 1979, 76, 5704-5708.

32. Young, E. W.; Watson, M. W.; Srigunapalan, S.; Wheeler, A. R.; Simmons, C. A. Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem. 2010, 82, 808-816.

33. Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R. M. T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015, 63, 218-231.

34. Hasan, A.; Paul, A.; Vrana, N. E.; Zhao, X.; Memic, A.; Hwang, Y. S.; Dokmeci, M. R.; Khademhosseini, A. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014, 35, 7308-7325.

35. Li, X.; Xu, S.; He, P.; Liu, Y. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i. PLoS One. 2015, 10, e0126797.

36. Huynh, J.; Nishimura, N.; Rana, K.; Peloquin, J. M.; Califano, J. P.; Montague, C. R.; King, M. R.; Schaffer, C. B.; Reinhart-King, C. A. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med. 2011, 3, 112ra122.

37. Qiu, Y.; Ahn, B.; Sakurai, Y.; Hansen, C. E.; Tran, R.; Mimche, P. N.; Mannino, R. G.; Ciciliano, J. C.; Lamb, T. J.; Joiner, C. H.; Ofori-Acquah, S. F.; Lam, W. A. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng. 2018, 2, 453-463.

38. de Graaf, M. N. S.; Cochrane, A.; van den Hil, F. E.; Buijsman, W.; van der Meer, A. D.; van den Berg, A.; Mummery, C. L.; Orlova, V. V. Scalable microphysiological system to model three-dimensional blood vessels. APL Bioeng. 2019, 3, 026105.

39. Wong, K. H.; Truslow, J. G.; Khankhel, A. H.; Chan, K. L.; Tien, J. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J Biomed Mater Res A. 2013, 101, 2181-2190.

40. Mandrycky, C.; Hadland, B.; Zheng, Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci Adv. 2020, 6, eabb3629.

41. Saggiomo, V.; Velders, A. H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci (Weinh). 2015, 2, 1500125.

42. Miller, J. S.; Stevens, K. R.; Yang, M. T.; Baker, B. M.; Nguyen, D. H.; Cohen, D. M.; Toro, E.; Chen, A. A.; Galie, P. A.; Yu, X.; Chaturvedi, R.; Bhatia, S. N.; Chen, C. S. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012, 11, 768-774.

 

43. Shirure, V. S.; Hughes, C. C. W.; George, S. C. Engineering vascularized organoid-on-a-chip models. Annu Rev Biomed Eng. 2021, 23, 141-167.

44. Whisler, J. A.; Chen, M. B.; Kamm, R. D. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng Part C Methods. 2014, 20, 543-552.

45. Takakura, N. Role of intimate interactions between endothelial cells and the surrounding accessory cells in the maturation of blood vessels. J Thromb Haemost. 2011, 9 Suppl 1, 144-150.

46. Shepherd, B. R.; Jay, S. M.; Saltzman, W. M.; Tellides, G.; Pober, J. S. Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells. Tissue Eng Part A. 2009, 15, 165-173.

47. Koike, N.; Fukumura, D.; Gralla, O.; Au, P.; Schechner, J. S.; Jain, R. K. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004, 428, 138-139.

48. Logsdon, E. A.; Finley, S. D.; Popel, A. S.; Mac Gabhann, F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med. 2014, 18, 1491-1508.

49. Zhao, Y.; Adjei, A. A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015, 20, 660-673.

50. Yue, T.; Zhao, D.; Phan, D. T. T.; Wang, X.; Park, J. J.; Biviji, Z.; Hughes, C. C. W.; Lee, A. P. A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks. Microsyst Nanoeng. 2021, 7, 4.

51. Nashimoto, Y.; Hayashi, T.; Kunita, I.; Nakamasu, A.; Torisawa, Y. S.; Nakayama, M.; Takigawa-Imamura, H.; Kotera, H.; Nishiyama, K.; Miura, T.; Yokokawa, R. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb). 2017, 9, 506-518.

52. Phan, D. T. T.; Wang, X.; Craver, B. M.; Sobrino, A.; Zhao, D.; Chen, J. C.; Lee, L. Y. N.; George, S. C.; Lee, A. P.; Hughes, C. C. W. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip. 2017, 17, 511-520.

53. Tan, S. Y.; Jing, Q.; Leung, Z.; Xu, Y.; Cheng, L. K. W.; Tam, S. S. T.; Wu, A. R. Transcriptomic analysis of 3D vasculature-on-a-chip reveals paracrine factors affecting vasculature growth and maturation. Lab Chip. 2022, 22, 3885-3897.

54. Wang, X.; Phan, D. T.; Sobrino, A.; George, S. C.; Hughes, C. C.; Lee, A. P. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip. 2016, 16, 282-290.

55. Park, J. Y.; Mani, S.; Clair, G.; Olson, H. M.; Paurus, V. L.; Ansong, C. K.; Blundell, C.; Young, R.; Kanter, J.; Gordon, S.; Yi, A. Y.; Mainigi, M.; Huh, D. D. A microphysiological model of human trophoblast invasion during implantation. Nat Commun. 2022, 13, 1252.

56. Debbi, L.; Zohar, B.; Shuhmaher, M.; Shandalov, Y.; Goldfracht, I.; Levenberg, S. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. Biomaterials. 2022, 280, 121286.

57. Redd, M. A.; Zeinstra, N.; Qin, W.; Wei, W.; Martinson, A.; Wang, Y.; Wang, R. K.; Murry, C. E.; Zheng, Y. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nat Commun. 2019, 10, 584.

58. Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R. R.; Ueno, Y.; Zheng, Y. W.; Koike, N.; Aoyama, S.; Adachi, Y.; Taniguchi, H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013, 499, 481-484.

59. Shi, Y.; Sun, L.; Wang, M.; Liu, J.; Zhong, S.; Li, R.; Li, P.; Guo, L.; Fang, A.; Chen, R.; Ge, W. P.; Wu, Q.; Wang, X. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 2020, 18, e3000705.

60. Salmon, I.; Grebenyuk, S.; Abdel Fattah, A. R.; Rustandi, G.; Pilkington, T.; Verfaillie, C.; Ranga, A. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022, 22, 1615-1629.

61. Wan, Z.; Floryan, M. A.; Coughlin, M. F.; Zhang, S.; Zhong, A. X.; Shelton, S. E.; Wang, X.; Xu, C.; Barbie, D. A.; Kamm, R. D. New strategy for promoting vascularization in tumor spheroids in a microfluidic assay. Adv Healthc Mater. 2023, 12, e2201784.

62. Cakir, B.; Xiang, Y.; Tanaka, Y.; Kural, M. H.; Parent, M.; Kang, Y. J.; Chapeton, K.; Patterson, B.; Yuan, Y.; He, C. S.; Raredon, M. S. B.; Dengelegi, J.; Kim, K. Y.; Sun, P.; Zhong, M.; Lee, S.; Patra, P.; Hyder, F.; Niklason, L. E.; Lee, S. H.; Yoon, Y. S.; Park, I. H. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019, 16, 1169-1175.

63. Takasato, M.; Er, P. X.; Chiu, H. S.; Maier, B.; Baillie, G. J.; Ferguson, C.; Parton, R. G.; Wolvetang, E. J.; Roost, M. S.; Chuva de Sousa Lopes, S. M.; Little, M. H. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015, 526, 564-568.

64. Song, L.; Yuan, X.; Jones, Z.; Griffin, K.; Zhou, Y.; Ma, T.; Li, Y. Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep. 2019, 9, 5977.

65. Sun, X. Y.; Ju, X. C.; Li, Y.; Zeng, P. M.; Wu, J.; Zhou, Y. Y.; Shen, L. B.; Dong, J.; Chen, Y. J.; Luo, Z. G. Generation of vascularized brain organoids to study neurovascular interactions. Elife. 2022, 11, e76707.

66. Li, M.; Gao, L.; Zhao, L.; Zou, T.; Xu, H. Toward the next generation of vascularized human neural organoids. Med Res Rev. 2023, 43, 31-54.

67. Zhao, X.; Xu, Z.; Xiao, L.; Shi, T.; Xiao, H.; Wang, Y.; Li, Y.; Xue, F.; Zeng, W. Review on the vascularization of organoids and organoids-on-a-chip. Front Bioeng Biotechnol. 2021, 9, 637048.

68. LaMontagne, E.; Muotri, A. R.; Engler, A. J. Recent advancements and future requirements in vascularization of cortical organoids. Front Bioeng Biotechnol. 2022, 10, 1048731.

69. Liu, H.; Zhang, X.; Liu, J.; Qin, J. Vascularization of engineered organoids. BMEMat. 2023, 1, e12031.

70. Sato, Y.; Asahi, T.; Kataoka, K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol. 2023, 21, 245.

71. Nashimoto, Y.; Okada, R.; Hanada, S.; Arima, Y.; Nishiyama, K.; Miura, T.; Yokokawa, R. Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials. 2020, 229, 119547.

72. van den Berg, C. W.; Ritsma, L.; Avramut, M. C.; Wiersma, L. E.; van den Berg, B. M.; Leuning, D. G.; Lievers, E.; Koning, M.; Vanslambrouck, J. M.; Koster, A. J.; Howden, S. E.; Takasato, M.; Little, M. H.; Rabelink, T. J. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports. 2018, 10, 751-765.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top