Engineering vascularised organoid-on-a-chip: strategies, advances and future perspectives
In recent years, advances in microfabrication technology and tissue engineering have propelled the development of a novel drug screening and disease modelling platform known as organoid-on-a-chip. This platform integrates organoids and organ-on-a-chip technologies, emerging as a promising approach for in vitro modelling of human organ physiology. Organoid-on-a-chip devices leverage microfluidic systems to simulate the physiological microenvironment of specific organs, offering a more dynamic and flexible setting that can mimic a more comprehensive human biological context. However, the lack of functional vasculature has remained a significant challenge in this technology. Vascularisation is crucial for the long-term culture and in vitro modelling of organoids, holding important implications for drug development and personalised medical approaches. This review provides an overview of research progress in developing vascularised organoid-on-a-chip models, addressing methods for in vitro vascularisation and advancements in vascularised organoids. The aim is to serve as a reference for future endeavors in constructing fully functional vascularised organoid-on-a-chip platforms.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Riedl, A.; Schlederer, M.; Pudelko, K.; Stadler, M.; Walter, S.; Unterleuthner, D.; Unger, C.; Kramer, N.; Hengstschläger, M.; Kenner, L.; Pfeiffer, D.; Krupitza, G.; Dolznig, H. Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. J Cell Sci. 2017, 130, 203-218.
2. Ekert, J. E.; Johnson, K.; Strake, B.; Pardinas, J.; Jarantow, S.; Perkinson, R.; Colter, D. C. Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro--implication for drug development. PLoS One. 2014, 9, e92248.
3. Li, Z.; Li, Q.; Zhou, C.; Lu, K.; Liu, Y.; Xuan, L.; Wang, X. Organoid-on-a-chip: current challenges, trends, and future scope toward medicine. Biomicrofluidics. 2023, 17, 051505.
4. Quan, Y.; Sun, M.; Tan, Z.; Eijkel, J. C. T.; van den Berg, A.; van der Meer, A.; Xie, Y. Organ-on-a-chip: the next generation platform for risk assessment of radiobiology. RSC Adv. 2020, 10, 39521-39530.
5. Brancato, V.; Oliveira, J. M.; Correlo, V. M.; Reis, R. L.; Kundu, S. C. Could 3D models of cancer enhance drug screening? Biomaterials. 2020, 232, 119744.
6. Takebe, T.; Zhang, B.; Radisic, M. Synergistic engineering: organoids meet organs-on-a-chip. Cell Stem Cell. 2017, 21, 297-300.
7. Zhu, Y.; Sun, L.; Wang, Y.; Cai, L.; Zhang, Z.; Shang, Y.; Zhao, Y. A biomimetic human lung-on-a-chip with colorful display of microphysiological breath. Adv Mater. 2022, 34, e2108972.
8. Wang, L.; Tao, T.; Su, W.; Yu, H.; Yu, Y.; Qin, J. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice. Lab Chip. 2017, 17, 1749-1760.
9. Marsano, A.; Conficconi, C.; Lemme, M.; Occhetta, P.; Gaudiello, E.; Votta, E.; Cerino, G.; Redaelli, A.; Rasponi, M. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip. 2016, 16, 599-610.
10. Crespo, M.; Vilar, E.; Tsai, S. Y.; Chang, K.; Amin, S.; Srinivasan, T.; Zhang, T.; Pipalia, N. H.; Chen, H. J.; Witherspoon, M.; Gordillo, M.; Xiang, J. Z.; Maxfield, F. R.; Lipkin, S.; Evans, T.; Chen, S. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing. Nat Med. 2017, 23, 878-884.
11. Hassan, S.; Sebastian, S.; Maharjan, S.; Lesha, A.; Carpenter, A. M.; Liu, X.; Xie, X.; Livermore, C.; Zhang, Y. S.; Zarrinpar, A. Liver-on-a-chip models of fatty liver disease. Hepatology. 2020, 71, 733-740.
12. Wu, Y.; Zhou, Y.; Paul, R.; Qin, X.; Islam, K.; Liu, Y. Adaptable microfluidic vessel-on-a-chip platform for investigating tumor metastatic transport in bloodstream. Anal Chem. 2022, 94, 12159-12166.
13. Kilic, O.; Pamies, D.; Lavell, E.; Schiapparelli, P.; Feng, Y.; Hartung, T.; Bal-Price, A.; Hogberg, H. T.; Quinones-Hinojosa, A.; Guerrero-Cazares, H.; Levchenko, A. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016, 16, 4152-4162.
14. Lancaster, M. A.; Knoblich, J. A. Organogenesis in a dish: modeling development and disease using organoid technologies. Science. 2014, 345, 1247125.
15. Wang, X.; Yamamoto, Y.; Wilson, L. H.; Zhang, T.; Howitt, B. E.; Farrow, M. A.; Kern, F.; Ning, G.; Hong, Y.; Khor, C. C.; Chevalier, B.; Bertrand, D.; Wu, L.; Nagarajan, N.; Sylvester, F. A.; Hyams, J. S.; Devers, T.; Bronson, R.; Lacy, D. B.; Ho, K. Y.; Crum, C. P.; McKeon, F.; Xian, W. Cloning and variation of ground state intestinal stem cells. Nature. 2015, 522, 173-178.
16. Nie, Y. Z.; Zheng, Y. W.; Miyakawa, K.; Murata, S.; Zhang, R. R.; Sekine, K.; Ueno, Y.; Takebe, T.; Wakita, T.; Ryo, A.; Taniguchi, H. Recapitulation of hepatitis B virus-host interactions in liver organoids from human induced pluripotent stem cells. EBioMedicine. 2018, 35, 114-123.
17. Li, L.; Knutsdottir, H.; Hui, K.; Weiss, M. J.; He, J.; Philosophe, B.; Cameron, A. M.; Wolfgang, C. L.; Pawlik, T. M.; Ghiaur, G.; Ewald, A. J.; Mezey, E.; Bader, J. S.; Selaru, F. M. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight. 2019, 4, e121490.
18. Kretzschmar, K. Cancer research using organoid technology. J Mol Med (Berl). 2021, 99, 501-515.
19. LeSavage, B. L.; Suhar, R. A.; Broguiere, N.; Lutolf, M. P.; Heilshorn, S. C. Next-generation cancer organoids. Nat Mater. 2022, 21, 143-159.
20. Yang, J.; Hirai, Y.; Iida, K.; Ito, S.; Trumm, M.; Terada, S.; Sakai, R.; Tsuchiya, T.; Tabata, O.; Kamei, K. I. Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease. Commun Biol. 2023, 6, 310.
21. Ronaldson-Bouchard, K.; Teles, D.; Yeager, K.; Tavakol, D. N.; Zhao, Y.; Chramiec, A.; Tagore, S.; Summers, M.; Stylianos, S.; Tamargo, M.; Lee, B. M.; Halligan, S. P.; Abaci, E. H.; Guo, Z.; Jacków, J.; Pappalardo, A.; Shih, J.; Soni, R. K.; Sonar, S.; German, C.; Christiano, A. M.; Califano, A.; Hirschi, K. K.; Chen, C. S.; Przekwas, A.; Vunjak-Novakovic, G. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022, 6, 351-371.
22. Lee, H. R.; Sung, J. H. Multiorgan-on-a-chip for realization of gut-skin axis. Biotechnol Bioeng. 2022, 119, 2590-2601.
23. Zhang, S.; Wan, Z.; Kamm, R. D. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. Lab Chip. 2021, 21, 473-488.
24. Mandrycky, C. J.; Howard, C. C.; Rayner, S. G.; Shin, Y. J.; Zheng, Y. Organ-on-a-chip systems for vascular biology. J Mol Cell Cardiol. 2021, 159, 1-13.
25. Wang, X.; Sun, Q.; Pei, J. Microfluidic-based 3D engineered microvascular networks and their applications in vascularized microtumor models. Micromachines. 2018, 9, 493.
26. Zhou, J.; Li, Y. S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014, 34, 2191-2198.
27. Chistiakov, D. A.; Orekhov, A. N.; Bobryshev, Y. V. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol (Oxf). 2017, 219, 382-408.
28. Baeyens, N.; Bandyopadhyay, C.; Coon, B. G.; Yun, S.; Schwartz, M. A. Endothelial fluid shear stress sensing in vascular health and disease. J Clin Invest. 2016, 126, 821-828.
29. Wu, J.; Shadden, S. C. Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry. Ann Biomed Eng. 2015, 43, 1543-1554.
30. Homan, K. A.; Gupta, N.; Kroll, K. T.; Kolesky, D. B.; Skylar-Scott, M.; Miyoshi, T.; Mau, D.; Valerius, M. T.; Ferrante, T.; Bonventre, J. V.; Lewis, J. A.; Morizane, R. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat Methods. 2019, 16, 255-262.
31. Kramer, R. H.; Nicolson, G. L. Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci U S A. 1979, 76, 5704-5708.
32. Young, E. W.; Watson, M. W.; Srigunapalan, S.; Wheeler, A. R.; Simmons, C. A. Technique for real-time measurements of endothelial permeability in a microfluidic membrane chip using laser-induced fluorescence detection. Anal Chem. 2010, 82, 808-816.
33. Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R. M. T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 2015, 63, 218-231.
34. Hasan, A.; Paul, A.; Vrana, N. E.; Zhao, X.; Memic, A.; Hwang, Y. S.; Dokmeci, M. R.; Khademhosseini, A. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials. 2014, 35, 7308-7325.
35. Li, X.; Xu, S.; He, P.; Liu, Y. In vitro recapitulation of functional microvessels for the study of endothelial shear response, nitric oxide and [Ca2+]i. PLoS One. 2015, 10, e0126797.
36. Huynh, J.; Nishimura, N.; Rana, K.; Peloquin, J. M.; Califano, J. P.; Montague, C. R.; King, M. R.; Schaffer, C. B.; Reinhart-King, C. A. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med. 2011, 3, 112ra122.
37. Qiu, Y.; Ahn, B.; Sakurai, Y.; Hansen, C. E.; Tran, R.; Mimche, P. N.; Mannino, R. G.; Ciciliano, J. C.; Lamb, T. J.; Joiner, C. H.; Ofori-Acquah, S. F.; Lam, W. A. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng. 2018, 2, 453-463.
38. de Graaf, M. N. S.; Cochrane, A.; van den Hil, F. E.; Buijsman, W.; van der Meer, A. D.; van den Berg, A.; Mummery, C. L.; Orlova, V. V. Scalable microphysiological system to model three-dimensional blood vessels. APL Bioeng. 2019, 3, 026105.
39. Wong, K. H.; Truslow, J. G.; Khankhel, A. H.; Chan, K. L.; Tien, J. Artificial lymphatic drainage systems for vascularized microfluidic scaffolds. J Biomed Mater Res A. 2013, 101, 2181-2190.
40. Mandrycky, C.; Hadland, B.; Zheng, Y. 3D curvature-instructed endothelial flow response and tissue vascularization. Sci Adv. 2020, 6, eabb3629.
41. Saggiomo, V.; Velders, A. H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv Sci (Weinh). 2015, 2, 1500125.
42. Miller, J. S.; Stevens, K. R.; Yang, M. T.; Baker, B. M.; Nguyen, D. H.; Cohen, D. M.; Toro, E.; Chen, A. A.; Galie, P. A.; Yu, X.; Chaturvedi, R.; Bhatia, S. N.; Chen, C. S. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012, 11, 768-774.
43. Shirure, V. S.; Hughes, C. C. W.; George, S. C. Engineering vascularized organoid-on-a-chip models. Annu Rev Biomed Eng. 2021, 23, 141-167.
44. Whisler, J. A.; Chen, M. B.; Kamm, R. D. Control of perfusable microvascular network morphology using a multiculture microfluidic system. Tissue Eng Part C Methods. 2014, 20, 543-552.
45. Takakura, N. Role of intimate interactions between endothelial cells and the surrounding accessory cells in the maturation of blood vessels. J Thromb Haemost. 2011, 9 Suppl 1, 144-150.
46. Shepherd, B. R.; Jay, S. M.; Saltzman, W. M.; Tellides, G.; Pober, J. S. Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells. Tissue Eng Part A. 2009, 15, 165-173.
47. Koike, N.; Fukumura, D.; Gralla, O.; Au, P.; Schechner, J. S.; Jain, R. K. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004, 428, 138-139.
48. Logsdon, E. A.; Finley, S. D.; Popel, A. S.; Mac Gabhann, F. A systems biology view of blood vessel growth and remodelling. J Cell Mol Med. 2014, 18, 1491-1508.
49. Zhao, Y.; Adjei, A. A. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015, 20, 660-673.
50. Yue, T.; Zhao, D.; Phan, D. T. T.; Wang, X.; Park, J. J.; Biviji, Z.; Hughes, C. C. W.; Lee, A. P. A modular microfluidic system based on a multilayered configuration to generate large-scale perfusable microvascular networks. Microsyst Nanoeng. 2021, 7, 4.
51. Nashimoto, Y.; Hayashi, T.; Kunita, I.; Nakamasu, A.; Torisawa, Y. S.; Nakayama, M.; Takigawa-Imamura, H.; Kotera, H.; Nishiyama, K.; Miura, T.; Yokokawa, R. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb). 2017, 9, 506-518.
52. Phan, D. T. T.; Wang, X.; Craver, B. M.; Sobrino, A.; Zhao, D.; Chen, J. C.; Lee, L. Y. N.; George, S. C.; Lee, A. P.; Hughes, C. C. W. A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip. 2017, 17, 511-520.
53. Tan, S. Y.; Jing, Q.; Leung, Z.; Xu, Y.; Cheng, L. K. W.; Tam, S. S. T.; Wu, A. R. Transcriptomic analysis of 3D vasculature-on-a-chip reveals paracrine factors affecting vasculature growth and maturation. Lab Chip. 2022, 22, 3885-3897.
54. Wang, X.; Phan, D. T.; Sobrino, A.; George, S. C.; Hughes, C. C.; Lee, A. P. Engineering anastomosis between living capillary networks and endothelial cell-lined microfluidic channels. Lab Chip. 2016, 16, 282-290.
55. Park, J. Y.; Mani, S.; Clair, G.; Olson, H. M.; Paurus, V. L.; Ansong, C. K.; Blundell, C.; Young, R.; Kanter, J.; Gordon, S.; Yi, A. Y.; Mainigi, M.; Huh, D. D. A microphysiological model of human trophoblast invasion during implantation. Nat Commun. 2022, 13, 1252.
56. Debbi, L.; Zohar, B.; Shuhmaher, M.; Shandalov, Y.; Goldfracht, I.; Levenberg, S. Integrating engineered macro vessels with self-assembled capillaries in 3D implantable tissue for promoting vascular integration in-vivo. Biomaterials. 2022, 280, 121286.
57. Redd, M. A.; Zeinstra, N.; Qin, W.; Wei, W.; Martinson, A.; Wang, Y.; Wang, R. K.; Murry, C. E.; Zheng, Y. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nat Commun. 2019, 10, 584.
58. Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R. R.; Ueno, Y.; Zheng, Y. W.; Koike, N.; Aoyama, S.; Adachi, Y.; Taniguchi, H. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013, 499, 481-484.
59. Shi, Y.; Sun, L.; Wang, M.; Liu, J.; Zhong, S.; Li, R.; Li, P.; Guo, L.; Fang, A.; Chen, R.; Ge, W. P.; Wu, Q.; Wang, X. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 2020, 18, e3000705.
60. Salmon, I.; Grebenyuk, S.; Abdel Fattah, A. R.; Rustandi, G.; Pilkington, T.; Verfaillie, C.; Ranga, A. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022, 22, 1615-1629.
61. Wan, Z.; Floryan, M. A.; Coughlin, M. F.; Zhang, S.; Zhong, A. X.; Shelton, S. E.; Wang, X.; Xu, C.; Barbie, D. A.; Kamm, R. D. New strategy for promoting vascularization in tumor spheroids in a microfluidic assay. Adv Healthc Mater. 2023, 12, e2201784.
62. Cakir, B.; Xiang, Y.; Tanaka, Y.; Kural, M. H.; Parent, M.; Kang, Y. J.; Chapeton, K.; Patterson, B.; Yuan, Y.; He, C. S.; Raredon, M. S. B.; Dengelegi, J.; Kim, K. Y.; Sun, P.; Zhong, M.; Lee, S.; Patra, P.; Hyder, F.; Niklason, L. E.; Lee, S. H.; Yoon, Y. S.; Park, I. H. Engineering of human brain organoids with a functional vascular-like system. Nat Methods. 2019, 16, 1169-1175.
63. Takasato, M.; Er, P. X.; Chiu, H. S.; Maier, B.; Baillie, G. J.; Ferguson, C.; Parton, R. G.; Wolvetang, E. J.; Roost, M. S.; Chuva de Sousa Lopes, S. M.; Little, M. H. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015, 526, 564-568.
64. Song, L.; Yuan, X.; Jones, Z.; Griffin, K.; Zhou, Y.; Ma, T.; Li, Y. Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3-D brain-like tissues. Sci Rep. 2019, 9, 5977.
65. Sun, X. Y.; Ju, X. C.; Li, Y.; Zeng, P. M.; Wu, J.; Zhou, Y. Y.; Shen, L. B.; Dong, J.; Chen, Y. J.; Luo, Z. G. Generation of vascularized brain organoids to study neurovascular interactions. Elife. 2022, 11, e76707.
66. Li, M.; Gao, L.; Zhao, L.; Zou, T.; Xu, H. Toward the next generation of vascularized human neural organoids. Med Res Rev. 2023, 43, 31-54.
67. Zhao, X.; Xu, Z.; Xiao, L.; Shi, T.; Xiao, H.; Wang, Y.; Li, Y.; Xue, F.; Zeng, W. Review on the vascularization of organoids and organoids-on-a-chip. Front Bioeng Biotechnol. 2021, 9, 637048.
68. LaMontagne, E.; Muotri, A. R.; Engler, A. J. Recent advancements and future requirements in vascularization of cortical organoids. Front Bioeng Biotechnol. 2022, 10, 1048731.
69. Liu, H.; Zhang, X.; Liu, J.; Qin, J. Vascularization of engineered organoids. BMEMat. 2023, 1, e12031.
70. Sato, Y.; Asahi, T.; Kataoka, K. Integrative single-cell RNA-seq analysis of vascularized cerebral organoids. BMC Biol. 2023, 21, 245.
71. Nashimoto, Y.; Okada, R.; Hanada, S.; Arima, Y.; Nishiyama, K.; Miura, T.; Yokokawa, R. Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid. Biomaterials. 2020, 229, 119547.
72. van den Berg, C. W.; Ritsma, L.; Avramut, M. C.; Wiersma, L. E.; van den Berg, B. M.; Leuning, D. G.; Lievers, E.; Koning, M.; Vanslambrouck, J. M.; Koster, A. J.; Howden, S. E.; Takasato, M.; Little, M. H.; Rabelink, T. J. Renal subcapsular transplantation of PSC-derived kidney organoids induces neo-vasculogenesis and significant glomerular and tubular maturation in vivo. Stem Cell Reports. 2018, 10, 751-765.