·
RESEARCH ARTICLES
·

Enhanced angiogenesis in porous poly(ε-caprolactone) scaffolds fortified with methacrylated hyaluronic acid hydrogel after subcutaneous transplantation

Huaxin Yang1 Mengjia Zheng1 Yuyue Zhang1 Chaochang Li2 Joseph Ho Chi Lai1 Qizheng Zhang1 Kannie WY Chan1 Hao Wang2 Xin Zhao3 Zijiang Yang2* Chenjie Xu1*
Submitted: 11 December 2023 | Revised: 20 January 2024 | Accepted: 8 March 2024 | Published: 28 March 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

A composite scaffold composed of a porous scaffold and hydrogel filling can facilitate engraftment, survival, and retention in cell transplantation processes. This study presents a composite scaffold made of poly(ε-caprolactone) (PCL) and methacrylated hyaluronic acid (MeHA) hydrogel and describes the corresponding physical properties (surface area, porosity, and mechanical strength) and host response (angiogenesis and fibrosis) after subcutaneous transplantation. Specifically, we synthesise MeHA with different degrees of substitution and fabricate a PCL scaffold with different porosities. Subsequently, we construct a series of PCL/MeHA composite scaffolds by combining these hydrogels and scaffolds. In experiments with mice, the scaffold composed of 3% PCL and 10–100 kDa, degree of substitution 70% MeHA results in the least fibrosis and a higher degree of angiogenesis. This study highlights the potential of PCL/MeHA composite scaffolds for subcutaneous cell transplantation, given their desirable physical properties and host response.

Keywords
angiogenesis
cell transplantation
hyaluronic acid
poly(ε-caprolactone)
scaffold
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Liu, D.; Bobrovskaya, L.; Zhou, X. F. Cell Therapy for neurological disorders: the perspective of promising cells. Biology (Basel). 2021, 10, 1142.  
2. Hoang, D. M.; Pham, P. T.; Bach, T. Q.; Ngo, A. T. L.; Nguyen, Q. T.; Phan, T. T. K.; Nguyen, G. H.; Le, P. T. T.; Hoang, V. T.; Forsyth, N. R.; Heke, M.; Nguyen, L. T. Stem cell-based therapy for human diseases. Signal Transduct Target Ther. 2022, 7, 272.  
3. De Pieri, A.; Rochev, Y.; Zeugolis, D. I. Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. NPJ Regen Med. 2021, 6, 18.  
4. Chan, B. P.; Leong, K. W. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008, 17 Suppl 4, 467-479.  
5. Pina, S.; Ribeiro, V. P.; Marques, C. F.; Maia, F. R.; Silva, T. H.; Reis, R. L.; Oliveira, J. M. Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials (Basel). 2019, 12, 1824.  
6. Peña, J.; Corrales, T.; Izquierdo-Barba, I.; Doadrio, A. L.; Vallet-Regí, M. Long term degradation of poly(ɛ-caprolactone) films in biologically related fluids. Polym Degrad Stab. 2006, 91, 1424-1432.  
7. Chang, C. Y.; Chan, A. T.; Armstrong, P. A.; Luo, H. C.; Higuchi, T.; Strehin, I. A.; Vakrou, S.; Lin, X.; Brown, S. N.; O’Rourke, B.; Abraham, T. P.; Wahl, R. L.; Steenbergen, C. J.; Elisseeff, J. H.; Abraham, M. R. Hyaluronic acid-human blood hydrogels for stem cell transplantation. Biomaterials. 2012, 33, 8026-8033.  
8. Mahsa Khatami, S.; Parivar, K.; Naderi Sohi, A.; Soleimani, M.; Hanaee-Ahvaz, H. Acetylated hyaluronic acid effectively enhances chondrogenic differentiation of mesenchymal stem cells seeded on electrospun PCL scaffolds. Tissue Cell. 2020, 65, 101363.  
9. Chang, H.; Zheng, M.; Yu, X.; Than, A.; Seeni, R. Z.; Kang, R.; Tian, J.; Khanh, D. P.; Liu, L.; Chen, P.; Xu, C. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017, 29, 1702243.  
10. Fryhofer, G. W.; Zlotnick, H. M.; Stoeckl, B. D.; Farrell, M. J.; Steinberg, D. R.; Mauck, R. L. Fabrication and maturation of integrated biphasic anatomic mesenchymal stromal cell-laden composite scaffolds for osteochondral repair and joint resurfacing. J Orthop Res. 2021, 39, 2323-2332.  
11. Shin, J.; Lee, J. S.; Lee, C.; Park, H. J.; Yang, K.; Jin, Y.; Ryu, J. H.; Hong, K. S.; Moon, S. H.; Chung, H. M.; Yang, H. S.; Um, S. H.; Oh, J. W.; Kim, D. I.; Lee, H.; Cho, S. W. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv Funct Mater. 2015, 25, 3814-3824.  
12. Trujillo-Lemon, M.; Bowman, C. N.; Stansbury, J. W. pH-responsive hydrogel with controlled swelling and degradation rate. 2005 NSTI Nanotechnology Conference and Trade Show - NSTI Nanotech 2005 Technical Proceedings. 2014.  
13. Smink, A. M.; Rodriquez, S.; Li, S.; Ceballos, B.; Corrales, N.; Alexander, M.; Koster, T.; de Haan, B. J.; Lakey, J. R. T.; de Vos, P. Successful islet transplantation into a subcutaneous polycaprolactone scaffold in mice and pigs. Transplantation direct. 2023, 9, e1417.  
14. Smink, A. M.; Li, S.; Hertsig, D. T.; de Haan, B. J.; Schwab, L.; van Apeldoorn, A. A.; de Koning, E.; Faas, M. M.; Lakey, J. R.; de Vos, P. The efficacy of a prevascularized, retrievable poly(D,L,-lactide-co-ε-caprolactone) subcutaneous scaffold as transplantation site for pancreatic islets. Transplantation. 2017, 101, e112-e119.  
15. Intranuovo, F.; Gristina, R.; Brun, F.; Mohammadi, S.; Ceccone, G.; Sardella, E.; Rossi, F.; Tromba, G.; Favia, P. Plasma modification of PCL porous scaffolds fabricated by solvent-casting/particulate-leaching for tissue engineering. Plasma Process Polym. 2014, 11, 184-195.  
16. Cho, Y. S.; Hong, M. W.; Kim, Y. Y.; Cho, Y. S. Assessment of cell proliferation in salt-leaching using powder (SLUP) scaffolds with penetrated macro-pores. J Appl Polym Sci. 2014, 131, 40240.  
17. Mota, C.; Puppi, D.; Dinucci, D.; Gazzarri, M.; Chiellini, F. Additive manufacturing of star poly(ε-caprolactone) wet-spun scaffolds for bone tissue engineering applications. J Bioact Compat Polym. 2013, 28, 320-340.  
18. Guarino, V.; Causa, F.; Ambrosio, L. Porosity and mechanical properties relationship in PCL porous scaffolds. J Appl Biomater Biomech. 2007, 5, 149-157.  
19. Gupta, B.; Patra, S.; Ray, A. R. Preparation of porous polycaprolactone tubular matrix by salt leaching process. J Appl Polym Sci. 2012, 126, 1505-1510.  
20. Kinney, S. M.; Ortaleza, K.; Vlahos, A. E.; Sefton, M. V. Degradable methacrylic acid-based synthetic hydrogel for subcutaneous islet transplantation. Biomaterials. 2022, 281, 121342.  
21. Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; Tinevez, J. Y.; White, D. J.; Hartenstein, V.; Eliceiri, K.; Tomancak, P.; Cardona, A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012, 9, 676-682.  
22. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675.  
23. Kim, M. H.; Nguyen, H.; Chang, C. Y.; Lin, C. C. Dual functionalization of gelatin for orthogonal and dynamic hydrogel cross-linking. ACS Biomater Sci Eng. 2021, 7, 4196-4208.  
24. Zhang, D.; Chen, Q.; Shi, C.; Chen, M.; Ma, K.; Wan, J.; Liu, R. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv Funct Mater. 2021, 31, 2007226.  
25. Anderson, J. M.; Rodriguez, A.; Chang, D. T. Foreign body reaction to biomaterials. Semin Immunol. 2008, 20, 86-100.  
26. Janmohammadi, M.; Nourbakhsh, M. S.; Bahraminasab, M.; Tayebi, L. Effect of pore characteristics and alkali treatment on the physicochemical and biological properties of a 3D-printed polycaprolactone bone scaffold. ACS Omega. 2023, 8, 7378-7394.  
27. Kim, J. W.; Shin, K. H.; Koh, Y. H.; Hah, M. J.; Moon, J.; Kim, H. E. Production of poly(ε-caprolactone)/hydroxyapatite composite scaffolds with a tailored macro/micro-porous structure, high mechanical properties, and excellent bioactivity. Materials (Basel). 2017, 10, 1123.  
28. Ni, Y.; Qi, H.; Zhang, F.; Jiang, S.; Tang, Q.; Cai, W.; Mo, W.; Miron, R. J.; Zhang, Y. Macrophages modulate stiffness-related foreign body responses through plasma membrane deformation. Proc Natl Acad Sci U S A. 2023, 120, e2213837120.  
29. Sridharan, R.; Cavanagh, B.; Cameron, A. R.; Kelly, D. J.; O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 2019, 89, 47-59.  
30. Zhang, C.; Yuan, Y.; Wu, K.; Wang, Y.; Zhu, S.; Shi, J.; Wang, L.; Li, Q.; Zuo, X.; Fan, C.; Chang, C.; Li, J. Driving DNA origami assembly with a terahertz wave. Nano Lett. 2022, 22, 468-475.  
31. Zhang, C.; Jing, X.; Guo, L.; Cui, C.; Hou, X.; Zuo, T.; Liu, J.; Shi, J.; Liu, X.; Zuo, X.; Li, J.; Chang, C.; Fan, C.; Wang, L. Remote photothermal control of DNA origami assembly in cellular environments. Nano Lett. 2021, 21, 5834-5841.  
32. Pardue, E. L.; Ibrahim, S.; Ramamurthi, A. Role of hyaluronan in angiogenesis and its utility to angiogenic tissue engineering. Organogenesis. 2008, 4, 203-214.  
33. Zhang, C.; Xia, D.; Liu, J.; Huo, D.; Jiang, X.; Hu, Y. Bypassing the immunosuppression of myeloid-derived suppressor cells by reversing tumor hypoxia using a platelet-inspired platform. Adv Funct Mater. 2020, 30, 2000189.  

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top