HIF-1α: linking subchondral bone and cartilage as a therapeutic target in osteoarthritis
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Hu, W.; Chen, Y.; Dou, C.; Dong, S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis. 2021, 80, 413-422.
2. Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021, 9, 20.
3. Lampropoulou-Adamidou, K.; Dontas, I.; Stathopoulos, I. P.; Khaldi, L.; Lelovas, P.; Vlamis, J.; Triantafillopoulos, I. K.; Papaioannou, N. A. Chondroprotective effect of high-dose zoledronic acid: An experimental study in a rabbit model of osteoarthritis. J Orthop Res. 2014, 32, 1646-1651.
4. Cai, G.; Aitken, D.; Laslett, L. L.; Pelletier, J. P.; Martel-Pelletier, J.; Hill, C.; March, L.; Wluka, A. E.; Wang, Y.; Antony, B.; Blizzard, L.; Winzenberg, T.; Cicuttini, F.; Jones, G. Effect of intravenous zoledronic acid on tibiofemoral cartilage volume among patients with knee osteoarthritis with bone marrow lesions: a randomized clinical trial. JAMA. 2020, 323, 1456-1466.
5. Cui, Z.; Crane, J.; Xie, H.; Jin, X.; Zhen, G.; Li, C.; Xie, L.; Wang, L.; Bian, Q.; Qiu, T.; Wan, M.; Xie, M.; Ding, S.; Yu, B.; Cao, X. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 2016, 75, 1714-1721.
6. Hu, Y.; Wu, H.; Xu, T.; Wang, Y.; Qin, H.; Yao, Z.; Chen, P.; Xie, Y.; Ji, Z.; Yang, K.; Chai, Y.; Zhang, X.; Yu, B.; Cui, Z. Defactinib attenuates osteoarthritis by inhibiting positive feedback loop between H-type vessels and MSCs in subchondral bone. J Orthop Translat. 2020, 24, 12-22.
7. Cui, Z.; Wu, H.; Xiao, Y.; Xu, T.; Jia, J.; Lin, H.; Lin, R.; Chen, K.; Lin, Y.; Li, K.; Wu, X.; Li, C.; Yu, B. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res. 2022, 10, 58.
8. Zhang, H.; Wang, L.; Cui, J.; Wang, S.; Han, Y.; Shao, H.; Wang, C.; Hu, Y.; Li, X.; Zhou, Q.; Guo, J.; Zhuang, X.; Sheng, S.; Zhang, T.; Zhou, D.; Chen, J.; Wang, F.; Gao, Q.; Jing, Y.; Chen, X.; Su, J. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci Adv. 2023, 9, eabo7868.
9. Li, X.; Wang, L.; Huang, B.; Gu, Y.; Luo, Y.; Zhi, X.; Hu, Y.; Zhang, H.; Gu, Z.; Cui, J.; Cao, L.; Guo, J.; Wang, Y.; Zhou, Q.; Jiang, H.; Fang, C.; Weng, W.; Chen, X.; Chen, X.; Su, J. Targeting actin-bundling protein L-plastin as an anabolic therapy for bone loss. Sci Adv. 2020, 6, eabb7135.
10. Zeng, C. Y.; Wang, X. F.; Hua, F. Z. HIF-1α in osteoarthritis: from pathogenesis to therapeutic implications. Front Pharmacol. 2022, 13, 927126.
11. Hannah, S. S.; McFadden, S.; McNeilly, A.; McClean, C. “Take my bone away?” hypoxia and bone: a narrative review. J Cell Physiol. 2021, 236, 721-740.
12. Al Hadi, H.; Smerdon, G. R.; Fox, S. W. Hyperbaric oxygen therapy suppresses osteoclast formation and bone resorption. J Orthop Res. 2013, 31, 1839-1844.
13. Maruotti, N.; Corrado, A.; Cantatore, F. P. Osteoblast role in osteoarthritis pathogenesis. J Cell Physiol. 2017, 232, 2957-2963.