·
REVIEWS
·

Advanced nanoparticles in osteoarthritis treatment

Qiushi Liang1,2 Zhiliang Cheng1* Ling Qin2*
Show Less
1 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
2 Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
Submitted: 9 January 2024 | Revised: 21 February 2024 | Accepted: 11 April 2024 | Published: 28 June 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Osteoarthritis (OA) is the most prevalent degenerative joint disorder, affecting hundreds of millions of people globally. Current clinical approaches are confined to providing only symptomatic relief. Research over the past two decades has established that OA is not merely a process of wear and tear of the articular cartilage but involves abnormal remodelling of all joint tissues. Although many new mechanisms of disease have been identified in the past several decades, the efficient and sustainable delivery of drugs targeting these mechanisms in joint tissues remains a major challenge. Nanoparticles recently emerged as favoured delivery vehicles in OA treatment, offering extended drug retention, enhanced drug targeting, and improved drug stability and solubility. In this review, we consider OA as a disease affecting the entire joint and initially explore the pathophysiology of OA across multiple joint tissues, including the articular cartilage, synovium, fat pad, bone, and meniscus. We then classify nanoparticles based on their composition and structure, such as lipids, polymers, inorganic materials, peptides/proteins, and extracellular vesicles. We summarise the recent advances in their use for treatment and diagnosis of OA. Finally, we discuss the current challenges and future directions in this field. In conclusion, nanoparticle-based nanosystems are promising carriers that advance OA treatment and diagnosis.

Keywords
cartilage
liposome
micelle
nanoparticles
osteoarthritis
synovium
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Hunter, D. J.; March, L.; Chew, M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet. 2020, 396, 1711-1712.
2. Quicke, J. G.; Conaghan, P. G.; Corp, N.; Peat, G. Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthritis Cartilage. 2022, 30, 196-206.
3. Leifer, V. P.; Katz, J. N.; Losina, E. The burden of OA-health services and economics. Osteoarthritis Cartilage. 2022, 30, 10-16.
4. Thomas, A. C.; Hubbard-Turner, T.; Wikstrom, E. A.; Palmieri-Smith, R. M. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017, 52, 491-496.
5. Øiestad, B. E.; Engebretsen, L.; Storheim, K.; Risberg, M. A. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009, 37, 1434-1443.
6. Yao, Q.; Wu, X.; Tao, C.; Gong, W.; Chen, M.; Qu, M.; Zhong, Y.; He, T.; Chen, S.; Xiao, G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023, 8, 56.
7. Hunter, D. J.; McDougall, J. J.; Keefe, F. J. The symptoms of osteoarthritis and the genesis of pain. Rheum Dis Clin North Am. 2008, 34, 623-643.
8. Deng, S.; Gu, J.; Jiang, Z.; Cao, Y.; Mao, F.; Xue, Y.; Wang, J.; Dai, K.; Qin, L.; Liu, K.; Wu, K.; He, Q.; Cai, K. Application of nanotechnology in the early diagnosis and comprehensive treatment of gastrointestinal cancer. J Nanobiotechnology. 2022, 20, 415.
9. Landowski, L. M.; Niego, B.; Sutherland, B. A.; Hagemeyer, C. E.; Howells, D. W. Applications of nanotechnology in the diagnosis and therapy of stroke. Semin Thromb Hemost. 2020, 46, 592-605.
10. Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, S.; Pandey, S.; Kang, M. Recent advances in nanotechnology-based diagnosis and treatments of human osteosarcoma. Biosensors (Basel). 2021, 11, 55.
11. Loeser, R. F.; Goldring, S. R.; Scanzello, C. R.; Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012, 64, 1697-1707.
12. Silva, J. C.; Carvalho, M. S.; Han, X.; Xia, K.; Mikael, P. E.; Cabral, J. M. S.; Ferreira, F. C.; Linhardt, R. J. Compositional and structural analysis of glycosaminoglycans in cell-derived extracellular matrices. Glycoconj J2019, 36, 141-154.
13. Danalache, M.; Beutler, K. R.; Rolauffs, B.; Wolfgart, J. M.; Bonnaire, F. C.; Fischer, S.; Greving, I.; Hofmann, U. K. Exploration of changes in spatial chondrocyte organisation in human osteoarthritic cartilage by means of 3D imaging. Sci Rep. 2021, 11, 9783.
14. Akkiraju, H.; Nohe, A. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol. 2015, 3, 177-192.
15. Lin, W.; Klein, J. Recent progress in cartilage lubrication. Adv Mater. 2021, 33, e2005513.
16. Jiang, Y.; Tuan, R. S. Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol. 2015, 11, 206-212.
17. Sophia Fox, A. J.; Bedi, A.; Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009, 1, 461-468.
18. Gilbert, S. J.; Bonnet, C. S.; Blain, E. J. Mechanical cues: bidirectional reciprocity in the extracellular matrix drives mechano-signalling in articular cartilage. Int J Mol Sci. 2021, 22, 13595.
19. Primorac, D.; Molnar, V.; Rod, E.; Jeleč, Ž.; Čukelj, F.; Matišić, V.; Vrdoljak, T.; Hudetz, D.; Hajsok, H.; Borić, I. Knee osteoarthritis: a review of pathogenesis and state-of-the-art non-operative therapeutic considerations. Genes (Basel). 2020, 11, 854.
20. Hossain, M. A.; Adithan, A.; Alam, M. J.; Kopalli, S. R.; Kim, B.; Kang, C. W.; Hwang, K. C.; Kim, J. H. IGF-1 facilitates cartilage reconstruction by regulating PI3K/AKT, MAPK, and NF-kB signaling in rabbit osteoarthritis. J Inflamm Res. 2021, 14, 3555-3568.
21. Tang, Y.; Hong, F.; Ding, S.; Yang, J.; Zhang, M.; Ma, Y.; Zheng, Q.; Yang, D.; Jin, Y.; Ma, C. METTL3-mediated m(6)A modification of IGFBP7-OT promotes osteoarthritis progression by regulating the DNMT1/DNMT3a-IGFBP7 axis. Cell Rep. 2023, 42, 112589.
22. Wen, C.; Xu, L.; Xu, X.; Wang, D.; Liang, Y.; Duan, L. Insulin-like growth factor-1 in articular cartilage repair for osteoarthritis treatment. Arthritis Res Ther. 2021, 23, 277.
23. Yao, X.; Zhang, J.; Jing, X.; Ye, Y.; Guo, J.; Sun, K.; Guo, F. Fibroblast growth factor 18 exerts anti-osteoarthritic effects through PI3K-AKT signaling and mitochondrial fusion and fission. Pharmacol Res. 2019, 139, 314-324.
24. Lu, H.; Jia, C.; Wu, D.; Jin, H.; Lin, Z.; Pan, J.; Li, X.; Wang, W. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis. 2021, 12, 865.
25. Hurley, M. M.; Coffin, J. D.; Doetschman, T.; Valera, C.; Clarke, K.; Xiao, L. FGF receptor inhibitor BGJ398 partially rescues osteoarthritis-like phenotype in older high molecular weight FGF2 transgenic mice via multiple mechanisms. Sci Rep. 2022, 12, 15968.
26. Su, W.; Zheng, X.; Zhou, H.; Yang, S.; Zhu, X. Fibroblast growth factor 10 delays the progression of osteoarthritis by attenuating synovial fibrosis via inhibition of IL-6/JAK2/STAT3 signaling in vivo and in vitro. Mol Immunol. 2023, 159, 46-57.
27. Du, X.; Cai, L.; Xie, J.; Zhou, X. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res. 2023, 11, 2.
28. Zhen, G.; Guo, Q.; Li, Y.; Wu, C.; Zhu, S.; Wang, R.; Guo, X. E.; Kim, B. C.; Huang, J.; Hu, Y.; Dan, Y.; Wan, M.; Ha, T.; An, S.; Cao, X. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat Commun. 2021, 12, 1706.
29. Jaswal, A. P.; Kumar, B.; Roelofs, A. J.; Iqbal, S. F.; Singh, A. K.; Riemen, A. H. K.; Wang, H.; Ashraf, S.; Nanasaheb, S. V.; Agnihotri, N.; De Bari, C.; Bandyopadhyay, A. BMP signaling: A significant player and therapeutic target for osteoarthritis. Osteoarthritis Cartilage. 2023, 31, 1454-1468.
30. Luyten, F. P.; Chen, P.; Paralkar, V.; Reddi, A. H. Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro. Exp Cell Res. 1994, 210, 224-229.
31. Zhou, N.; Li, Q.; Lin, X.; Hu, N.; Liao, J. Y.; Lin, L. B.; Zhao, C.; Hu, Z. M.; Liang, X.; Xu, W.; Chen, H.; Huang, W. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells. Cell Tissue Res. 2016, 366, 101-111.
32. Montaseri, A.; Busch, F.; Mobasheri, A.; Buhrmann, C.; Aldinger, C.; Rad, J. S.; Shakibaei, M. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One. 2011, 6, e28663.
33. Cai, Y.; Wang, Z.; Liao, B.; Sun, Z.; Zhu, P. Anti-inflammatory and chondroprotective effects of platelet-derived growth factor-BB on osteoarthritis rat models. J Gerontol A Biol Sci Med Sci. 2023, 78, 51-59.
34. Cui, Z.; Wu, H.; Xiao, Y.; Xu, T.; Jia, J.; Lin, H.; Lin, R.; Chen, K.; Lin, Y.; Li, K.; Wu, X.; Li, C.; Yu, B. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res. 2022, 10, 58.
35. Appleton, C. T.; Usmani, S. E.; Bernier, S. M.; Aigner, T.; Beier, F. Transforming growth factor alpha suppression of articular chondrocyte phenotype and Sox9 expression in a rat model of osteoarthritis. Arthritis Rheum. 2007, 56, 3693-3705.
36. Usmani, S. E.; Ulici, V.; Pest, M. A.; Hill, T. L.; Welch, I. D.; Beier, F. Context-specific protection of TGFα null mice from osteoarthritis. Sci Rep. 2016, 6, 30434.
37. Gui, T.; Wei, Y.; Luo, L.; Li, J.; Zhong, L.; Yao, L.; Beier, F.; Nelson, C. L.; Tsourkas, A.; Liu, X. S.; Enomoto-Iwamoto, M.; Yu, F.; Cheng, Z.; Qin, L. Activating EGFR signaling attenuates osteoarthritis development following loading injury in mice. J Bone Miner Res. 2022, 37, 2498-2511.
38. Wei, Y.; Ma, X.; Sun, H.; Gui, T.; Li, J.; Yao, L.; Zhong, L.; Yu, W.; Han, B.; Nelson, C. L.; Han, L.; Beier, F.; Enomoto-Iwamoto, M.; Ahn, J.; Qin, L. EGFR signaling is required for maintaining adult cartilage homeostasis and attenuating osteoarthritis progression. J Bone Miner Res. 2022, 37, 1012-1023.
39. Geiger, B. C.; Wang, S.; Padera, R. F., Jr.; Grodzinsky, A. J.; Hammond, P. T. Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med. 2018, 10, eaat8800.
40. Loffredo, F. S.; Pancoast, J. R.; Cai, L.; Vannelli, T.; Dong, J. Z.; Lee, R. T.; Patwari, P. Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis Rheumatol. 2014, 66, 1247-1255.
41. Wei, Y.; Luo, L.; Gui, T.; Yu, F.; Yan, L.; Yao, L.; Zhong, L.; Yu, W.; Han, B.; Patel, J. M.; Liu, J. F.; Beier, F.; Levin, L. S.; Nelson, C.; Shao, Z.; Han, L.; Mauck, R. L.; Tsourkas, A.; Ahn, J.; Cheng, Z.; Qin, L. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med. 2021, 13, eabb3946.
42. Kurowska-Stolarska, M.; Alivernini, S. Synovial tissue macrophages in joint homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol. 2022, 18, 384-397.
43. Abu-Hakmeh, A. E.; Fleck, A. K. M.; Wan, L. Q. Temporal effects of cytokine treatment on lubricant synthesis and matrix metalloproteinase activity of fibroblast-like synoviocytes. J Tissue Eng Regen Med. 2019, 13,87-98.
44. Huang, Z. Y.; Luo, Z. Y.; Cai, Y. R.; Chou, C. H.; Yao, M. L.; Pei, F. X.; Kraus, V. B.; Zhou, Z. K. Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing. Osteoarthritis Cartilage. 2022, 30, 475 - 480.
45. Li, J.; Gui, T.; Yao, L.; Guo, H.; Lin, Y. L.; Lu, J.; Duffy, M.; Zgonis, M.; Mauck, R.; Dyment, N.; Zhang, Y.; Scanzello, C.; Seale, P.; Qin, L. Synovium and infrapatellar fat pad share common mesenchymal progenitors and undergo coordinated changes in osteoarthritis. J Bone Miner Res. 2024. doi: 10.1093/jbmr/zjad009.
46. Tang, S.; Yao, L.; Ruan, J.; Kang, J.; Cao, Y.; Nie, X.; Lan, W.; Zhu, Z.; Han, W.; Liu, Y.; Tian, J.; Seale, P.; Qin, L.; Ding, C. Single - cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci Transl Med. 2024, 16, eadf4590.
47. Knights, A. J.; Farrell, E. C.; Ellis, O. M.; Song, M. J.; Appleton, C. T.; Maerz, T. Synovial macrophage diversity and activation of M - CSF signaling in post - traumatic osteoarthritis. bioRxiv. 2023, 2023.2010.2003.559514.
48. Cao, M.; Ong, M. T. Y.; Yung, P. S. H.; Tuan, R. S.; Jiang, Y. Role of synovial lymphatic function in osteoarthritis. Osteoarthritis Cartilage. 2022, 30, 1186 - 1197.
49. Mathiessen, A.; Conaghan, P. G. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. 2017, 19, 18.
50. Sanchez - Lopez, E.; Coras, R.; Torres, A.; Lane, N. E.; Guma, M. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 2022, 18, 258 - 275.
51. Lieberthal, J.; Sambamurthy, N.; Scanzello, C. R. Inflammation in joint injury and post - traumatic osteoarthritis. Osteoarthritis Cartilage. 2015, 23, 1825 - 1834.
52. Luo, P.; Yuan, Q.; Wan, X.; Yang, M.; Xu, P. Effects of immune cells and cytokines on different cells in OA. J Inflamm Res. 2023, 16, 2329 - 2343.
53. Brito, R.; Costa, D.; Dias, C.; Cruz, P.; Barros, P. Chondroitin sulfate supplements for osteoarthritis: a critical review. Cureus. 2023, 15, e40192.
54. Gui, T.; Luo, L.; Chhay, B.; Zhong, L.; Wei, Y.; Yao, L.; Yu, W.; Li, J.; Nelson, C. L.; Tsourkas, A.; Qin, L.; Cheng, Z. Superoxide dismutase - loaded porous polymersomes as highly efficient antioxidant nanoparticles targeting synovium for osteoarthritis therapy. Biomaterials. 2022, 283, 121437.
55. Liu, Y.; Hao, R.; Lv, J.; Yuan, J.; Wang, X.; Xu, C.; Ma, D.; Duan, Z.; Zhang, B.; Dai, L.; Cheng, Y.; Lu, W.; Zhang, X. Targeted knockdown of PGAM5 in synovial macrophages efficiently alleviates osteoarthritis. Bone Res. 2024, 12, 15.
56. Lv, Z.; Xu, X.; Sun, Z.; Yang, Y. X.; Guo, H.; Li, J.; Sun, K.; Wu, R.; Xu, J.; Jiang, Q.; Ikegawa, S.; Shi, D. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca(2 + )/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 2021, 12, 504.
57. Zhu, X.; Chan, Y. T.; Yung, P. S. H.; Tuan, R. S.; Jiang, Y. Subchondral bone remodeling: a therapeutic target for osteoarthritis. Front Cell Dev Biol. 2020, 8, 607764.
58. Hu, Y.; Chen, X.; Wang, S.; Jing, Y.; Su, J. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021, 9, 20.
59. Burr, D. B.; Gallant, M. A. Bone remodelling in osteoarthritis. Nat Rev Rheumatol. 2012, 8, 665 - 673.
60. Li, G.; Yin, J.; Gao, J.; Cheng, T. S.; Pavlos, N. J.; Zhang, C.; Zheng, M. H. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013, 15, 223.
61. Bailey, A. J.; Mansell, J. P.; Sims, T. J.; Banse, X. Biochemical and mechanical properties of subchondral bone in osteoarthritis. Biorheology. 2004, 41, 349 - 358.
62. Bettica, P.; Cline, G.; Hart, D. J.; Meyer, J.; Spector, T. D. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum. 2002, 46, 3178 - 3184.
63. Funck - Brentano, T.; Cohen - Solal, M. Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev. 2011, 22, 91 - 97.
64. Gobbi, A.; Dallo, I.; Frank, R. M.; Bradsell, H.; Saenz, I.; Murrel, W. A review of bone marrow lesions in the arthritic knee and description of a technique for treatment. J Cartil Jt Preserv. 2021, 1, 100021.
65. Funck - Brentano, T.; Cohen - Solal, M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol. 2015, 27, 420 - 426.
66. McDevitt, C. A.; Mukherjee, S.; Kambic, H.; Parker, R. Emerging concepts of the cell biology of the meniscus. Curr Opin Orthop. 2002, 13, 345 - 350.
67. Day, B.; Mackenzie, W. G.; Shim, S. S.; Leung, G. The vascular and nerve supply of the human meniscus. Arthroscopy. 1985, 1, 58 - 62.
68. Gupta, T.; Zielinska, B.; McHenry, J.; Kadmiel, M.; Haut Donahue, T. L. IL - 1 and iNOS gene expression and NO synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains. Osteoarthritis Cartilage. 2008, 16, 1213 - 1219.
69. Crema, M. D.; Roemer, F. W.; Felson, D. T.; Englund, M.; Wang, K.; Jarraya, M.; Nevitt, M. C.; Marra, M. D.; Torner, J. C.; Lewis, C. E.; Guermazi, A. Factors associated with meniscal extrusion in knees with or at risk for osteoarthritis: the Multicenter Osteoarthritis study. Radiology. 2012, 264, 494 - 503.
70. Eymard, F.; Chevalier, X. Inflammation of the infrapatellar fat pad. Joint Bone Spine. 2016, 83, 389 - 393.
71. Belluzzi, E.; Stocco, E.; Pozzuoli, A.; Granzotto, M.; Porzionato, A.; Vettor, R.; De Caro, R.; Ruggieri, P.; Ramonda, R.; Rossato, M.; Favero, M.; Macchi, V. Contribution of infrapatellar fat pad and synovial membrane to knee osteoarthritis pain. Biomed Res Int. 2019, 2019, 6390182.
72. Edama, M.; Otsuki, T.; Yokota, H.; Hirabayashi, R.; Sekine, C.; Maruyama, S.; Kageyama, I. Morphological characteristics of the infrapatellar fat pad. Sci Rep. 2022, 12, 8923.
73. Schulze - Tanzil, G. Intraarticular ligament degeneration is interrelated with cartilage and bone destruction in osteoarthritis. Cells. 2019, 8, 990.
74. Binks, D. A.; Bergin, D.; Freemont, A. J.; Hodgson, R. J.; Yonenaga, T.; McGonagle, D.; Radjenovic, A. Potential role of the posterior cruciate ligament synovio - entheseal complex in joint effusion in early osteoarthritis: a magnetic resonance imaging and histological evaluation of cadaveric tissue and data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2014, 22, 1310 - 1317.
75. Abraham, A. C.; Pauly, H. M.; Donahue, T. L. Deleterious effects of osteoarthritis on the structure and function of the meniscal enthesis. Osteoarthritis Cartilage. 2014, 22, 275 - 283.
76. Nakahara, H.; Hasegawa, A.; Otabe, K.; Ayabe, F.; Matsukawa, T.; Onizuka, N.; Ito, Y.; Ozaki, T.; Lotz, M. K.; Asahara, H. Transcription factor Mohawk and the pathogenesis of human anterior cruciate ligament degradation. Arthritis Rheum. 2013, 65, 2081 - 2089.
77. Kumagai, K.; Sakai, K.; Kusayama, Y.; Akamatsu, Y.; Sakamaki, K.; Morita, S.; Sasaki, T.; Saito, T.; Sakai, T. The extent of degeneration of cruciate ligament is associated with chondrogenic differentiation inpatients with osteoarthritis of the knee. Osteoarthritis Cartilage. 2012, 20, 1258 - 1267.
78. Lorda - Diez, C. I.; Canga - Villegas, A.; Cerezal, L.; Plaza, S.; Hurlé, J. M.; García - Porrero, J. A.; Montero, J. A. Comparative transcriptional analysis of three human ligaments with distinct biomechanical properties. J Anat. 2013, 223, 593 - 602.
79. Nagelli, C. V.; Cook, J. L.; Kuroki, K.; Bozynski, C.; Ma, R.; Hewett, T. E. Does anterior cruciate ligament innervation matter for joint function and development of osteoarthritis? J Knee Surg. 2017, 30, 364 - 371.
80. Salaffi, F.; Ciapetti, A.; Carotti, M. The sources of pain in osteoarthritis: a pathophysiological review. Reumatismo. 2014, 66, 57 - 71.
81. Altman, R. D.; Gold, G. E. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage. 2007, 15 Suppl A, A1 - 56.
82. Hayashi, D.; Roemer, F. W.; Guermazi, A. Imaging for osteoarthritis. Ann Phys Rehabil Med. 2016, 59, 161 - 169.
83. Wang, X.; Oo, W. M.; Linklater, J. M. What is the role of imaging in the clinical diagnosis of osteoarthritis and disease management? Rheumatology (Oxford). 2018, 57, iv51 - iv60.
84. Domb, B. G.; Gui, C.; Lodhia, P. How much arthritis is too much for hip arthroscopy: a systematic review. Arthroscopy. 2015, 31, 520 - 529.
85. Gay, C.; Chabaud, A.; Guilley, E.; Coudeyre, E. Educating patients about the benefits of physical activity and exercise for their hip and knee osteoarthritis. Systematic literature review. Ann Phys Rehabil Med. 2016, 59, 174 - 183.
86. Corbett, M. S.; Rice, S. J.; Madurasinghe, V.; Slack, R.; Fayter, D. A.; Harden, M.; Sutton, A. J.; Macpherson, H.; Woolacott, N. F. Acupuncture and other physical treatments for the relief of pain due to osteoarthritis of the knee: network meta - analysis. Osteoarthritis Cartilage. 2013, 21, 1290 - 1298.
87. Maudens, P.; Jordan, O.; Allémann, E. Recent advances in intra - articular drug delivery systems for osteoarthritis therapy. Drug Discov Today. 2018, 23, 1761 - 1775.
88. Savvidou, O.; Milonaki, M.; Goumenos, S.; Flevas, D.; Papagelopoulos, P.; Moutsatsou, P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol. 2019, 480, 153 - 166.
89. Zhou, J.; Liu, B.; Li, C.; Luo, Y.; Liu, T.; Wang, W. Treatment of hip osteoarthritis with glucocorticoids. Ann Rheum Dis. 2019, 78, e100.
90. Deyle, G. D.; Allen, C. S.; Allison, S. C.; Gill, N. W.; Hando, B. R.; Petersen, E. J.; Dusenberry, D. I.; Rhon, D. I. Physical therapy versus glucocorticoid injection for osteoarthritis of the knee. N Engl J Med. 2020, 382, 1420 - 1429.
91. Shep, D.; Khanwelkar, C.; Gade, P.; Karad, S. Safety and efficacy of curcumin versus diclofenac in knee osteoarthritis: a randomized open - label parallel - arm study. Trials. 2019, 20, 214.
92. Liang, Q.; Ma, Y.; Yao, X.; Wei, W. Advanced 3D - printing bioinks for articular cartilage repair. Int J Bioprint. 2022, 8, 511.
93. Paget, L. D. A.; Reurink, G.; de Vos, R. J.; Weir, A.; Moen, M. H.; Bierma - Zeinstra, S. M. A.; Stufkens, S. A. S.; Kerkhoffs, G.; Tol, J. L.; PRIMA Study Group. Effect of platelet - rich plasma injections vs placebo on ankle symptoms and function in patients with ankle osteoarthritis: a randomized clinical trial. JAMA. 2021, 326, 1595 - 1605.
94. Harrell, C. R.; Markovic, B. S.; Fellabaum, C.; Arsenijevic, A.; Volarevic, V. Mesenchymal stem cell - based therapy of osteoarthritis: current knowledge and future perspectives. Biomed Pharmacother. 2019, 109, 2318 - 2326.
95. Frehner, F.; Benthien, J. P. Microfracture: state of the art in cartilage surgery? Cartilage. 2018, 9, 339 - 345.
96. Li MH, Xiao R, Li JB, Zhu Q. Regenerative approaches for cartilage repair in the treatment of osteoarthritis. Osteoarthritis Cartilage. 2017;25(10):1577 - 1587.
97. Beard DJ, Davies LJ, Cook JA, MacLennan G, Price A, Kent S, Hudson J, Carr A, Leal J, Campbell H, Fitzpatrick R, Arden N, Murray D, Campbell MK, TOPKAT Study Group. The clinical and cost - effectiveness of total versus partial knee replacement in patients with medial compartment osteoarthritis (TOPKAT): 5 - year outcomes of a randomised controlled trial. Lancet. 2019;394(10202):746 - 756.
98. Zeng C, Wei J, Persson MSM, Sarmanova A, Doherty M, Xie D, Wang Y, Li X, Li J, Long H, Lei G, Zhang W. Relative efficacy and safety of topical non - steroidal anti - inflammatory drugs for osteoarthritis: a systematic review and network meta - analysis of randomised controlled trials and observational studies. Br J Sports Med. 2018;52(10):642 - 650.
99. Wei W, Ma Y, Zhang X, Zhou W, Wu H, Zhang J, Lin J, Tang C, Liao Y, Li C, Wang X, Yao X, Koh YW, Huang W, Ouyang H. Biomimetic joint paint for efficient cartilage repair by simultaneously regulating cartilage degeneration and regeneration in pigs. ACS Appl Mater Interfaces. 2021;13(48):54801 - 54816.
100. Xiong F, Qin Z, Chen H, Lan Q, Wang Z, Lan N, Yang Y, Zheng L, Zhao J, Kai D. pH - responsive and hyaluronic acid - functionalized metal - organic frameworks for therapy of osteoarthritis. J Nanobiotechnology. 2020;18(1):139.
101. Loo SJQ, Wong NK. Advantages and challenges of stem cell therapy for osteoarthritis (Review). Biomed Rep. 2021;15(1):67.
102. Ruano - Ravina A, Jato Díaz M. Autologous chondrocyte implantation: a systematic review. Osteoarthritis Cartilage. 2006;14(1):47 - 51.
103. Brown S, Kumar S, Sharma B. Intra - articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 2019;93:239 - 257.
104. Ma L, Zheng X, Lin R, Sun AR, Song J, Ye Z, Liang D, Zhang M, Tian J, Zhou X, Cui L, Liu Y, Liu Y. Knee Osteoarthritis Therapy: Recent Advances in Intra - Articular Drug Delivery Systems. Drug Des Devel Ther. 2022;16:1311 - 1347.
105. Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58(3):226 - 242.
106. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and osteoarthritis. Instr Course Lect. 2005;54:465 - 480.
107. Nasir A, Khan A, Li J, Naeem M, Khalil AAK, Khan K, Qasim M. Nanotechnology, a tool for diagnostics and treatment of cancer. Curr Top Med Chem. 2021;21(11):1360 - 1376.
108. Kamiya M, Matsumoto M, Yamashita K, Izumi T, Kawaguchi M, Mizukami S, Tsurumaru M, Mukai H, Kawakami S. Stability study of mRNA - lipid nanoparticles exposed to various conditions based on the evaluation between physicochemical properties and their relation with protein expression ability. Pharmaceutics. 2022;14(11):2357.
109. Immordino ML, Dosio F, Cattel L. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine. 2006;1(3):297 - 315.
110. Akbarzadeh A, Rezaei - Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati - Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.
111. Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res. 2007;24(1):1 - 16.
112. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6(5):714 - 729.
113. Kahraman E, Güngör S, Özsoy Y. Potential enhancement and targeting strategies of polymeric and lipid - based nanocarriers in dermal drug delivery. Ther Deliv. 2017;8(12):967 - 985.
114. Fonseca M, Jarak I, Victor F, Domingues C, Veiga F, Figueiras A. Polymersomes as the next attractive generation of drug delivery systems: definition, synthesis and applications. Materials (Basel). 2024;17(1):319.
115. Discher DE, Eisenberg A. Polymer vesicles. Science. 2002;297(5583):967 - 973.
116. Rafael D, Andrade F, Arranja A, Luís S, Videira M. Lipoplexes and polyplexes: gene therapy. In: Mishra M, ed. Encyclopedia of biomedical polymers and polymeric biomaterials, 11 - volume set. CRC Press; 2015.
117. Milligan JJ, Saha SA. A nanoparticle’s journey to the tumor: strategies to overcome first - pass metabolism and their limitations. Cancers (Basel). 2022;14(7):1741.
118. Lamberti M, Zappavigna S, Sannolo N, Porto S, Caraglia M. Advantages and risks of nanotechnologies in cancer patients and occupationally exposed workers. Expert Opin Drug Deliv. 2014;11(7):1087 - 1101.
119. Jain A, Cheng K. The principles and applications of avidin - based nanoparticles in drug delivery and diagnosis. J Control Release. 2017;245:27 - 40.
120. Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell - derived exosomes: opportunities and challenges in cell - free therapy. Stem Cells Int. 2017;2017:6305295.
121. de la Torre P, Pérez - Lorenzo MJ, Alcázar - Garrido Á, Flores AI. Cell - based nanoparticles delivery systems for targeted cancer therapy: lessons from anti - angiogenesis treatments. Molecules. 2020;25(3):715.
122. Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent progress in bioconjugation strategies for liposome - mediated drug delivery. Molecules. 2020;25(23):5672.
123. Corciulo C, Castro CM, Coughlin T, Jacob S, Li Z, Fenyö D, Rifkin DB, Kennedy OD, Cronstein BN. Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci Rep. 2020;10(1):13477.
124. Dravid AA, Dhanabalan KM, Naskar S, Vashistha A, Agarwal S, Padhan B, Dewani M, Agarwal R. Sustained release resolvin D1 liposomes are effective in the treatment of osteoarthritis in obese mice. J Biomed Mater Res A. 2023;111(3):765 - 777.
125. Zhong Y, Zhou Y, Ding R, Zou L, Zhang H, Wei X, He D. Intra - articular treatment of temporomandibular joint osteoarthritis by injecting actively - loaded meloxicam liposomes with dual - functions of anti - inflammation and lubrication. Mater Today Bio. 2023;19:100573.
126. Esparza K, Jayawardena D, Onyuksel H. Phospholipid micelles for peptide drug delivery. Methods Mol Biol. 2019;2000:43 - 57.
127. Gill KK, Kaddoumi A, Nazzal S. PEG - lipid micelles as drug carriers: physiochemical attributes, formulation principles and biological implication. J Drug Target. 2015;23(3):222 - 231.
128. Wei Y, Yan L, Luo L, Gui T, Jang B, Amirshaghaghi A, You T, Tsourkas A, Qin L, Cheng Z. Phospholipase A(2) inhibitor - loaded micellar nanoparticles attenuate inflammation and mitigate osteoarthritis progression. Sci Adv. 2021;7(47):eabe6374.
129. Perumal S, Atchudan R, Lee W. A review of polymeric micelles and their applications. Polymers (Basel). 2022;14(12):2510.
130. Kotta S, Aldawsari HM, Badr - Eldin SM, Nair AB, Yt K. Progress in polymeric micelles for drug delivery applications. Pharmaceutics. 2022;14(8):1636.
131. Kang C, Jung E, Hyeon H, Seon S, Lee D. Acid - activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine. 2020;23:102104.
132. Shen C, Gao M, Chen H, Zhan Y, Lan Q, Li Z, Xiong W, Qin Z, Zheng L, Zhao J. Reactive oxygen species (ROS) - responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnology. 2021;19(1):395.
133. Urich J, Cucchiarini M, Rey - Rico A. Therapeutic delivery of rAAV sox9 via polymeric micelles counteracts the effects of osteoarthritis - associated inflammatory cytokines in human articular chondrocytes. Nanomaterials (Basel). 2020;10(6):1238.
134. Deng J, Fukushima Y, Nozaki K, Nakanishi H, Yada E, Terai Y, Fueki K, Itaka K. Anti - inflammatory therapy for temporomandibular joint osteoarthritis using mrna medicine encoding interleukin - 1 receptor antagonist. Pharmaceutics. 2022;14(9):1785.
135. Duan X, Cai L, Pham CTN, Abu - Amer Y, Pan H, Brophy RH, Wickline SA, Rai MF. Amelioration of posttraumatic osteoarthritis in mice using intraarticular silencing of periostin via nanoparticle - based small interfering RNA. Arthritis Rheumatol. 2021;73(12):2249 - 2260.
136. Hu Q, Ding B, Yan X, Peng L, Duan J, Yang S, Cheng L, Chen D. Polyethylene glycol modified PAMAM dendrimer delivery of kartogenin to induce chondrogenic differentiation of mesenchymal stem cells. Nanomedicine. 2017;13(7):2189 - 2198.
137. Shin HJ, Park H, Shin N, Shin J, Gwon DH, Kwon HH, Yin Y, Hwang JA, Hong J, Heo JY, Kim CS, Joo Y, Kim Y, Kim J, Beom J, Kim DW. p66shc siRNA nanoparticles ameliorate chondrocytic mitochondrial dysfunction in osteoarthritis. Int J Nanomedicine. 2020;15:2379 - 2390.
138. Shin HJ, Park H, Shin N, Kwon HH, Yin Y, Hwang JA, Kim SI, Kim SR, Kim S, Joo Y, Kim Y, Kim J, Beom J, Kim DW. p47phox siRNA - loaded PLGA nanoparticles suppress ROS/oxidative stress - induced chondrocyte damage in osteoarthritis. Polymers (Basel). 2020;12(2):443.
139. Chen X, Liu Y, Wen Y, Yu Q, Liu J, Zhao Y, Liu J, Ye G. A photothermal - triggered nitric oxide nanogenerator combined with siRNA for precise therapy of osteoarthritis by suppressing macrophage inflammation. Nanoscale. 2019;11(15):6693 - 6709.
140. He T, Zhang C, Vedadghavami A, Mehta S, Clark HA, Porter RM, Bajpayee AG. Multi - arm Avidin nano - construct for intra - cartilage delivery of small molecule drugs. J Control Release. 2020;318:109 - 123.
141. Liang Y, Xu X, Xu L, Iqbal Z, Ouyang K, Zhang H, Wen C, Duan L, Xia J. Chondrocyte - specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment. Theranostics. 2022;12(11):4866 - 4878.
142. Jin Z, Ren J, Qi S. Exosomal miR - 9 - 5p secreted by bone marrow - derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan - 1. Cell Tissue Res. 2020;381(1):99 - 114.
143. Meng F, Zhong Z. Polymersomes spanning from nano - to microscales: advanced vehicles for controlled drug delivery and robust vesicles for virus and cell mimicking. J Phys Chem Lett. 2011;2(12):1533 - 1539.
144. Sharma AK, Prasher P, Aljabali AA, Mishra V, Gandhi H, Kumar S, Mutalik S, Chellappan DK, Tambuwala MM, Dua K, Kapoor DN. Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv Transl Res. 2020;10(4):1171 - 1190.
145. Singh K, Biharee A, Vyas A, Thareja S, Jain AK. Recent advancement of polymersomes as drug delivery carrier. Curr Pharm Des. 2022;28(13):1621 - 1631.
146. Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release. 2012;161(2):473 - 483.
147. Jackson DA, Juranek S, Lipps HJ. Designing nonviral vectors for efficient gene transfer and long - term gene expression. Mol Ther. 2006;14(5):613 - 626.
148. Fernandez CA, Rice KG. Engineered nanoscaled polyplex gene delivery systems. Mol Pharm. 2009;6(5):1277 - 1289.
149. Jin GZ. Current nanoparticle - based technologies for osteoarthritis therapy. Nanomaterials (Basel). 2020;10(12):2368.
150. Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci. 2020;278:102125.
151. Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica - Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982.
152. Hu X, Zhang Y, Ding T, Liu J, Zhao H. Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol. 2020;8:990.
153. Contini C, Hindley JW, Macdonald TJ, Barritt JD, Ces O, Quirke N. Size dependency of gold nanoparticles interacting with model membranes. Commun Chem. 2020;3(1):130.
154. Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 2018;19(7):1979.
155. Fan J, Cheng Y, Sun M. Functionalized gold nanoparticles: synthesis, properties and biomedical applications. Chem Rec. 2020;20(8):1474 - 1504.
156. Snider C, Grant D, Grant SA. Investigation of an injectable gold nanoparticle extracellular matrix. J Biomater Appl. 2022;36(10):1289 - 1300.
157. Filho MCB, Dos Santos Haupenthal DP, Zaccaron RP, de Bem Silveira G, de Roch Casagrande L, Lupselo FS, Alves N, de Sousa Mariano S, do Bomfim FRC, de Andrade TAM, Machado - de - Ávila RA, Silveira PCL. Intra - articular treatment with hyaluronic acid associated with gold nanoparticles in a mechanical osteoarthritis model in Wistar rats. J Orthop Res. 2021;39(12):2546 - 2555.
158. Sarkar A, Carvalho E, D’Souza A, Banerjee R. Liposome - encapsulated fish oil protein - tagged gold nanoparticles for intra - articular therapy in osteoarthritis. Nanomedicine (Lond). 2019;14(7):871 - 887.
159. Pitou M, Papi RM, Tzavellas AN, Choli - Papadopoulou T. ssDNA - modified gold nanoparticles as a tool to detect miRNA biomarkers in osteoarthritis. ACS Omega. 2023;8(9):7529 - 7535.
160. Livnah O, Bayer EA, Wilchek M, Sussman JL. Three - dimensional structures of avidin and the avidin - biotin complex. Proc Natl Acad Sci U S A. 1993;90(11):5076 - 5080.
161. Bajpayee AG, Wong CR, Bawendi MG, Frank EH, Grodzinsky AJ. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post - traumatic osteoarthritis. Biomaterials. 2014;35(2):538 - 549.
162. He T, Shaw I, Vedadghavami A, Bajpayee AG. Single - dose intra - cartilage delivery of kartogenin using a cationic multi - arm avidin nanocarrier suppresses cytokine - induced osteoarthritis - related catabolism. Cartilage. 2022;13(11):19476035221093072.
163. Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727.
164. Zhou L, Ye H, Liu L, Chen Y. Human bone mesenchymal stem cell - derived exosomes inhibit IL - 1β - induced inflammation in osteoarthritis chondrocytes. Cell J. 2021;23(6):485 - 494.
165. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905.
166. Yu H, Huang C, Kong X, Ma J, Ren P, Chen J, Zhang X, Luo H, Chen G. Nanoarchitectonics of cartilage - targeting hydrogel microspheres with reactive oxygen species responsiveness for the repair of osteoarthritis. ACS Appl Mater Interfaces. 2022;14(37):40711 - 40723.
167. Zhang YS, Khademhosseini A. Advances in engineering hydrogels. Science. 2017;356(6333):eaaf3627.
168. Lei Y, Wang Y, Shen J, Cai Z, Zhao C, Chen H, Luo X, Hu N, Cui W, Huang W. Injectable hydrogel microspheres with self - renewable hydration layers alleviate osteoarthritis. Sci Adv. 2022;8(22):eabl6449.
169. Zhou T, Ran J, Xu P, Shen L, He Y, Ye J, Wu L, Gao C. A hyaluronic acid/platelet - rich plasma hydrogel containing MnO₂ nanozymes efficiently alleviates osteoarthritis in vivo. Carbohydr Polym. 2022;292:119667.
170. Jin J, Liu Y, Jiang C, Shen Y, Chu G, Liu C, Jiang L, Huang G, Qin Y, Zhang Y, Zhang C, Wang Y. Arbutin - modified microspheres prevent osteoarthritis progression by mobilizing local anti - inflammatory and antioxidant responses. Mater Today Bio. 2022;16:100370.
171. Wang S, Su S, Yu C, Gopinath SCB, Yang Z. Immunodetection of urinary C - terminal telopeptide fragment of type II collagen: An osteoarthritis biomarker analysis. Biotechnol Appl Biochem. 2021;68(4):726 - 731.
172. Xu S, Li W, Zhao X, Wu T, Cui Y, Fan X, Wang W, Luo X. Ultrahighly efficient and stable fluorescent gold nanoclusters coated with screened peptides of unique sequences for effective protein and serum discrimination. Anal Chem. 2019;91(22):13947 - 13952.
173. Liu Z, Hu X, Yang P, Zhang J, Zhou C, Ao Y. Diagnostic utility of fluorogenic peptide - conjugated Au nanoparticle probe corroborated by rabbit model of mild cartilage injury and panel of osteoarthritic patients. Am J Transl Res. 2018;10(7):2277 - 2289.
174. Zhang C, Vedadghavami A, He T, Charles JF, Bajpayee AG. Cationic carrier mediated delivery of anionic contrast agents in low doses enable enhanced computed tomography imaging of cartilage for early osteoarthritis diagnosis. ACS Nano. 2023;17(9):6649 - 6663.
175. Chen L, Ji Y, Hu X, Cui C, Liu H, Tang Y, Qi B, Niu Y, Hu X, Yu A, Fan Q. Cationic poly - l - lysine - encapsulated melanin nanoparticles as efficient photoacoustic agents targeting to glycosaminoglycans for the early diagnosis of articular cartilage degeneration in osteoarthritis. Nanoscale. 2018;10(30):13471 - 13484.
176. Rahman M. Magnetic resonance imaging and iron - oxide nanoparticles in the era of personalized medicine. Nanotheranostics. 2023;7(4):424 - 449.
177. Jin R, Lin B, Li D, Ai H. Superparamagnetic iron oxide nanoparticles for MR imaging and therapy: design considerations and clinical applications. Curr Opin Pharmacol. 2014;18:18 - 27.
178. Mohammadinejad R, Ashrafizadeh M, Pardakhty A, Uzieliene I, Denkovskij J, Bernotiene E, Janssen L, Lorite GS, Saarakkala S, Mobasheri A. Nanotechnological strategies for osteoarthritis diagnosis, monitoring, clinical management, and regenerative medicine: recent advances and future opportunities. Curr Rheumatol Rep. 2020;22(1):12.
179. Wu J, Wu C, Cai Z, Gu H, Liu L, Xia C, Lui S, Gong Q, Song B, Ai H. Ultra - small superparamagnetic iron oxide nanoparticles for intra - articular targeting of cartilage in early osteoarthritis. Regen Biomater. 2023;10:rbad052.
180. Bolander J, Moviglia Brandolina MT, Poehling G, Jochl O, Parsons E, Vaughan W, Moviglia G, Atala A. The synovial environment steers cartilage deterioration and regeneration. Sci Adv. 2023;9(33):eade4645.
181. Zeng J, Huang L, Xiong H, Li Q, Wu C, Huang Y, Xie H, Shen B. Injectable decellularized cartilage matrix hydrogel encapsulating urine - derived stem cells for immunomodulatory and cartilage defect regeneration. NPJ Regen Med. 2022;7(1):75.
182. Jin T, Wu D, Liu XM, Xu JT, Ma BJ, Ji Y, Jin YY, Wu SY, Wu T, Ma K. Intra - articular delivery of celastrol by hollow mesoporous silica nanoparticles for pH - sensitive anti - inflammatory therapy against knee osteoarthritis. J Nanobiotechnology. 2020;18(1):94.
183. Xiong P, Huang X, Ye N, Lu Q, Zhang G, Peng S, Wang H, Liu Y. Cytotoxicity of metal - based nanoparticles: from mechanisms and methods of evaluation to pathological manifestations. Adv Sci (Weinh). 2022;9(15):e2106049.
184. Buchman JT, Hudson - Smith NV, Landy KM, Haynes CL. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc Chem Res. 2019;52(6):1632 - 1642.
185. Bhargava A, Dev A, Mohanbhai SJ, Pareek V, Jain N, Choudhury SR, Panwar J, Karmakar S. Pre - coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. Sci Total Environ. 2021;772:144797.
186. Elmowafy M, Shalaby K, Elkomy MH, Alsaidan OA, Gomaa HAM, Abdelgawad MA, Mostafa EM. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges. Polymers (Basel). 2023;15(5):1123.
187. Chen X, Chen Y, Zou L, Zhang X, Dong Y, Tang J, McClements DJ, Liu W. Plant - based nanoparticles prepared from proteins and phospholipids consisting of a core - multilayer - shell structure: fabrication, stability, and foamability. J Agric Food Chem. 2019;67(23):6574 - 6584.
188. Joseph TM, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin MS, Kattali M, Haponiuk J, Thomas S. Nanoparticles: taking a unique position in medicine. Nanomaterials (Basel). 2023;13(4):574.
189. Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther. 2024;9(1):34.
190. Li X, Shen L, Deng Z, Huang Z. New treatment for osteoarthritis: Gene therapy. Precis Clin Med. 2023;6:pbad014.
191. Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered nano - bio interfaces for stem cell therapy. Precis Chem. 2023;1(4):341 - 356.
192. Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale. 2019;11(2):799 - 819.
193. Oei EHG, Runhaar J. Imaging of early - stage osteoarthritis: the needs and challenges for diagnosis and classification. Skeletal Radiol. 2023;52(12):2031 - 2036.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top