Research and development strategy for biodegradable magnesium-based vascular stents: a review
Magnesium alloys are an ideal material for biodegradable vascular stents, which can be completely absorbed in the human body, and have good biosafety and mechanical properties. However, the rapid corrosion rate and excessive localized corrosion, as well as challenges in the preparation and processing of microtubes for stents, are restricting the clinical application of magnesium-based vascular stents. In the present work we will give an overview of the recent progresses on biodegradable magnesium based vascular stents including magnesium alloy design, high-precision microtubes processing, stent shape optimisation and functional coating preparation. In particular, the Triune Principle in biodegradable magnesium alloy design is proposed based on our research experience, which requires three key aspects to be considered when designing new biodegradable magnesium alloys for vascular stents application, i.e. biocompatibility and biosafety, mechanical properties, and biodegradation. This review hopes to inspire the future studies on the design and development of biodegradable magnesium alloy-based vascular stents.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1.Virani, S. S.; Alonso, A.; Benjamin, E. J.; Bittencourt, M. S.; Callaway, C. W.; Carson, A. P.; Chamberlain, A. M.; Chang, A. R.; Cheng, S.; Delling, F. N.; Djousse, L.; Elkind, M. S. V.; Ferguson, J. F.; Fornage, M.; Khan, S. S.; Kissela, B. M.; Knutson, K. L.; Kwan, T. W.; Lackland, D. T.; Lewis, T. T.; Lichtman, J. H.; Longenecker, C. T.; Loop, M. S.; Lutsey, P. L.; Martin, S. S.; Matsushita, K.; Moran, A. E.; Mussolino, M. E.; Perak, A. M.; Rosamond, W. D.; Roth, G. A.; Sampson, U. K. A.; Satou, G. M.; Schroeder, E. B.; Shah, S. H.; Shay, C. M.; Spartano, N. L.; Stokes, A.; Tirschwell, D. L.; VanWagner, L. B.; Tsao, C. W.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2020 Update: a report from the American Heart Association. Circulation. 2020, 141, e139-e596.
2. Dotter, C. T.; Judkins, M. P. Transluminal treatment of arteriosclerotic obstruction. Description of a new technic and a preliminary report of its application. Radiology. 1989, 172, 904-920.
3. Deb, S.; Wijeysundera, H. C.; Ko, D. T.; Tsubota, H.; Hill, S.; Fremes, S. E. Coronary artery bypass graft surgery vs percutaneous interventions in coronary revascularization: a systematic review. JAMA. 2013, 310, 2086-2095.
4. Sousa, J. E.; Costa, M. A.; Farb, A.; Abizaid, A.; Sousa, A.; Seixas, A. C.; da Silva, L. M.; Feres, F.; Pinto, I.; Mattos, L. A.; Virmani, R. Images in cardiovascular medicine. Vascular healing 4 years after the implantation of sirolimus-eluting stent in humans: a histopathological examination. Circulation. 2004, 110, e5-6.
5. Guagliumi, G.; Farb, A.; Musumeci, G.; Valsecchi, O.; Tespili, M.; Motta, T.; Virmani, R. Images in cardiovascular medicine. Sirolimus-eluting stent implanted in human coronary artery for 16 months: pathological findings. Circulation. 2003, 107, 1340-1341.
6. Camenzind, E.; Steg, P. G.; Wijns, W. Stent thrombosis late after implantation of first-generation drug-eluting stents: a cause for concern. Circulation. 2007, 115, 1440-1455; discussion 1455.
7. Kuchulakanti, P. K.; Chu, W. W.; Torguson, R.; Ohlmann, P.; Rha, S. W.; Clavijo, L. C.; Kim, S. W.; Bui, A.; Gevorkian, N.; Xue, Z.; Smith, K.; Fournadjieva, J.; Suddath, W. O.; Satler, L. F.; Pichard, A. D.; Kent, K. M.; Waksman, R. Correlates and long-term outcomes of angiographically proven stent thrombosis with sirolimus- and paclitaxel-eluting stents. Circulation. 2006, 113, 1108-1113.
8. Kerner, A.; Gruberg, L.; Kapeliovich, M.; Grenadier, E. Late stent thrombosis after implantation of a sirolimus-eluting stent. Catheter Cardiovasc Interv. 2003, 60, 505-508.
9. Im, S. H.; Jung, Y.; Kim, S. H. Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents. Acta Biomater. 2017, 60, 3-22.
10. Mostaed, E.; Sikora-Jasinska, M.; Drelich, J. W.; Vedani, M. Zinc-based alloys for degradable vascular stent applications. Acta Biomater. 2018, 71, 1-23.
11. Bowen, P. K.; Shearier, E. R.; Zhao, S.; Guillory, R. J., 2nd; Zhao, F.; Goldman, J.; Drelich, J. W. Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater. 2016, 5, 1121-1140.
12. Stack, R. S.; Califf, R. M.; Phillips, H. R.; Pryor, D. B.; Quigley, P. J.; Bauman, R. P.; Tcheng, J. E.; Greenfield, J. C., Jr. Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol. 1988, 62, 3f-24f.
13. Wiebe, J.; Nef, H. M.; Hamm, C. W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol. 2014, 64, 2541-2551.
14. Onuma, Y.; Serruys, P. W.; Gomez, J.; de Bruyne, B.; Dudek, D.; Thuesen, L.; Smits, P.; Chevalier, B.; McClean, D.; Koolen, J.; Windecker, S.; Whitbourn, R.; Meredith, I.; Garcia-Garcia, H.; Ormiston, J. A. Comparison of in vivo acute stent recoil between the bioresorbable everolimus-eluting coronary scaffolds (revision 1.0 and 1.1) and the metallic everolimus-eluting stent. Catheter Cardiovasc Interv. 2011, 78, 3-12.
15. Serruys, P. W.; Chevalier, B.; Dudek, D.; Cequier, A.; Carrié, D.; Iniguez, A.; Dominici, M.; van der Schaaf, R. J.; Haude, M.; Wasungu, L.; Veldhof, S.; Peng, L.; Staehr, P.; Grundeken, M. J.; Ishibashi, Y.; Garcia-Garcia, H. M.; Onuma, Y. A bioresorbable everolimus-eluting scaffold versus a metallic everolimus-eluting stent for ischaemic heart disease caused by de-novo native coronary artery lesions (ABSORB II): an interim 1-year analysis of clinical and procedural secondary outcomes from a randomised controlled trial. Lancet. 2015, 385, 43-54.
16. Ellis, S. G.; Kereiakes, D. J.; Metzger, D. C.; Caputo, R. P.; Rizik, D. G.; Teirstein, P. S.; Litt, M. R.; Kini, A.; Kabour, A.; Marx, S. O.; Popma, J. J.; McGreevy, R.; Zhang, Z.; Simonton, C.; Stone, G. W.; ABSORB III Investigators. Everolimus-eluting bioresorbable scaffolds for coronary artery disease. N Engl J Med. 2015, 373, 1905-1915.
17. Ali, Z. A.; Serruys, P. W.; Kimura, T.; Gao, R.; Ellis, S. G.; Kereiakes, D. J.; Onuma, Y.; Simonton, C.; Zhang, Z.; Stone, G. W. 2-year outcomes with the Absorb bioresorbable scaffold for treatment of coronary artery disease: a systematic review and meta-analysis of seven randomised trials with an individual patient data substudy. Lancet. 2017, 390, 760-772.
18. Lipinski, M. J.; Escarcega, R. O.; Baker, N. C.; Benn, H. A.; Gaglia, M. A., Jr.; Torguson, R.; Waksman, R. Scaffold thrombosis after percutaneous coronary intervention with ABSORB bioresorbable vascular scaffold: a systematic review and meta-analysis. JACC Cardiovasc Interv. 2016, 9, 12-24.
19. Serruys, P. W.; Ormiston, J. A.; Onuma, Y.; Regar, E.; Gonzalo, N.; Garcia-Garcia, H. M.; Nieman, K.; Bruining, N.; Dorange, C.; Miquel-Hébert, K.; Veldhof, S.; Webster, M.; Thuesen, L.; Dudek, D. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009, 373, 897-910.
20. Ge, J. Bioresorbable vascular scaffold for the treatment of coronary instent restenosis: New dawn or frost on snow? Catheter Cardiovasc Interv. 2018, 92, 678-679.
21. Laires, M. J.; Monteiro, C. P.; Bicho, M. Role of cellular magnesium in health and human disease. Front Biosci. 2004, 9, 262-276.
22. Byrd, R. P., Jr.; Roy, T. M. Magnesium: its proven and potential clinical significance. South Med J. 2003, 96, 104.
23. Vormann, J. Magnesium: nutrition and metabolism. Mol Aspects Med. 2003, 24, 27-37.
24. Zheng, Y. F.; Gu, X. N.; Witte, F. Biodegradable metals. Mater Sci Eng R Rep. 2014, 77, 1-34.
25. Ang, H. Y.; Huang, Y. Y.; Lim, S. T.; Wong, P.; Joner, M.; Foin, N. Mechanical behavior of polymer-based vs. metallic-based bioresorbable stents. J Thorac Dis. 2017, 9, S923-S934.
26. Heublein, B.; Rohde, R.; Kaese, V.; Niemeyer, M.; Hartung, W.; Haverich, A. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart. 2003, 89, 651-656.
27. Erbel, R.; Di Mario, C.; Bartunek, J.; Bonnier, J.; de Bruyne, B.; Eberli, F. R.; Erne, P.; Haude, M.; Heublein, B.; Horrigan, M.; Ilsley, C.; Böse, D.; Koolen, J.; Lüscher, T. F.; Weissman, N.; Waksman, R.; PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) Investigators. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007, 369, 1869-1875.
28. Peeters, P.; Bosiers, M.; Verbist, J.; Deloose, K.; Heublein, B. Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. J Endovasc Ther. 2005, 12, 1-5.
29. Zartner, P.; Cesnjevar, R.; Singer, H.; Weyand, M. First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheter Cardiovasc Interv. 2005, 66, 590-594.
30. Waksman, R.; Erbel, R.; Di Mario, C.; Bartunek, J.; de Bruyne, B.; Eberli, F. R.; Erne, P.; Haude, M.; Horrigan, M.; Ilsley, C.; Böse, D.; Bonnier, H.; Koolen, J.; Lüscher, T. F.; Weissman, N. J.; PROGRESS-AMS (Clinical Performance Angiographic Results of Coronary Stenting with Absorbable Metal Stents) Investigators. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc Interv. 2009, 2, 312-320.
31. Haude, M.; Erbel, R.; Erne, P.; Verheye, S.; Degen, H.; Böse, D.; Vermeersch, P.; Wijnbergen, I.; Weissman, N.; Prati, F.; Waksman, R.; Koolen, J. Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial. Lancet. 2013, 381, 836-844.
32. Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P. A.; von Birgelen, C.; Christiansen, E. H.; Wijns, W.; Neumann, F. J.; Kaiser, C.; Eeckhout, E.; Lim, S. T.; Escaned, J.; Garcia-Garcia, H. M.; Waksman, R. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016, 387, 31-39.
33. Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P. A.; von Birgelen, C.; Christiansen, E. H.; Wijns, W.; Neumann, F. J.; Kaiser, C.; Eeckhout, E.; Lim, S. T.; Escaned, J.; Onuma, Y.; Garcia-Garcia, H. M.; Waksman, R. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J. 2016, 37, 2701-2709.
34. Wu, W.; Chen, S.; Gastaldi, D.; Petrini, L.; Mantovani, D.; Yang, K.; Tan, L.; Migliavacca, F. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents. Acta Biomater. 2013, 9, 8730-8739.
35. Grogan, J. A.; O’Brien, B. J.; Leen, S. B.; McHugh, P. E. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 2011, 7, 3523-3533.
36. Witte, F.; Kaese, V.; Haferkamp, H.; Switzer, E.; Meyer-Lindenberg, A.; Wirth, C. J.; Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005, 26, 3557-3563.
37. Kong, X.; Wang, L.; Li, G.; Qu, X.; Niu, J.; Tang, T.; Dai, K.; Yuan, G.; Hao, Y. Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model. Mater Sci Eng C Mater Biol Appl. 2018, 86, 42-47.
38. Kuhlmann, J.; Bartsch, I.; Willbold, E.; Schuchardt, S.; Holz, O.; Hort, N.; Höche, D.; Heineman, W. R.; Witte, F. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 2013, 9, 8714-8721.
39. Ohsawa, I.; Ishikawa, M.; Takahashi, K.; Watanabe, M.; Nishimaki, K.; Yamagata, K.; Katsura, K.; Katayama, Y.; Asoh, S.; Ohta, S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007, 13, 688-694.
40. Lu, H. T.; Sun, X. J. Hydrogen medicine: research advance, controversy and challenges. Dier Junyi Daxue Xuebao. 2018, 39, 1181-1187.
41. Qin, S. Role of Hydrogen in Atherosclerotic Disease: From Bench to Bedside. Curr Pharm Des. 2021, 27, 713-722.
42. Mani, G.; Feldman, M. D.; Patel, D.; Agrawal, C. M. Coronary stents: a materials perspective. Biomaterials. 2007, 28, 1689-1710.
43. Zhang, X. B.; Mao, L.; Yuan, G. Y.; Wang, Z. Z. Performances of biodegradable Mg-Nd-Zn-Zr magnesium alloy for cardiovascular stent. Xiyou Jinshu Cailiao yu Gongcheng. 2013, 42, 1300-1305.
44. Mao, L.; Shen, L.; Niu, J.; Zhang, J.; Ding, W.; Wu, Y.; Fan, R.; Yuan, G. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents. Nanoscale. 2013, 5, 9517-9522.
45. Zong, Y.; Yuan, G.; Zhang, X.; Mao, L.; Niu, J.; Ding, W. Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Mater Sci Eng B. 2012, 177, 395-401.
46. Zhang, X.; Yuan, G.; Niu, J.; Fu, P.; Ding, W. Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios. J Mech Behav Biomed Mater. 2012, 9, 153-162.
47. Zhang, X.; Yuan, G.; Mao, L.; Niu, J.; Fu, P.; Ding, W. Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy. J Mech Behav Biomed Mater. 2012, 7, 77-86.
48. Zhang, X.; Wang, Z.; Yuan, G.; Xue, Y. Improvement of mechanical properties and corrosion resistance of biodegradable Mg–Nd–Zn–Zr alloys by double extrusion. Mater Sci Eng B. 2012, 177, 1113-1119.
49. Mao, L.; Yuan, G.; Wang, S.; Niu, J.; Wu, G.; Ding, W. A novel biodegradable Mg–Nd–Zn–Zr alloy with uniform corrosion behavior in artificial plasma. Mater Lett. 2012, 88, 1-4.
50. Bondy, S. C. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology. 2010, 31, 575-581.
51. Verstraeten, S. V.; Aimo, L.; Oteiza, P. I. Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol. 2008, 82, 789-802.
52. El-Rahman, S. S. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol Res. 2003, 47, 189-194.
53. Peacock, M. Calcium metabolism in health and disease. Clin J Am Soc Nephrol. 2010, 5 Suppl 1, S23-30.
54. Cashman, K. D. Calcium intake, calcium bioavailability and bone health. Br J Nutr. 2002, 87 Suppl 2, S169-177.
55. Renkema, K. Y.; Alexander, R. T.; Bindels, R. J.; Hoenderop, J. G. Calcium and phosphate homeostasis: concerted interplay of new regulators. Ann Med. 2008, 40, 82-91.
56. Chasapis, C. T.; Loutsidou, A. C.; Spiliopoulou, C. A.; Stefanidou, M. E. Zinc and human health: an update. Arch Toxicol. 2012, 86, 521-534.
57. Frederickson, C. J.; Koh, J. Y.; Bush, A. I. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005, 6, 449-462.
58. Aschner, M.; Guilarte, T. R.; Schneider, J. S.; Zheng, W. Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol. 2007, 221, 131-147.
59. Erikson, K. M.; Aschner, M. Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int. 2003, 43, 475-480.
60. Erikson, K. M.; Syversen, T.; Aschner, J. L.; Aschner, M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol. 2005, 19, 415-421.
61. Pors Nielsen, S. The biological role of strontium. Bone. 2004, 35, 583-588.
62. Marie, P. J.; Ammann, P.; Boivin, G.; Rey, C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int. 2001, 69, 121-129.
63. Jugdaohsingh, R. Silicon and bone health. J Nutr Health Aging. 2007, 11, 99-110.
64. Pérez-Granados, A. M.; Vaquero, M. P. Silicon, aluminium, arsenic and lithium: essentiality and human health implications. J Nutr Health Aging. 2002, 6, 154-162.
65. Seaborn, C. D.; Nielsen, F. H. Silicon: A Nutritional Beneficence for Bones, Brains and Blood Vessels? Nutr Today. 1993, 28, 13-18.
66. Chevalier, J. What future for zirconia as a biomaterial? Biomaterials. 2006, 27, 535-543.
67. Denry, I.; Kelly, J. R. State of the art of zirconia for dental applications. Dent Mater. 2008, 24, 299-307.
68. Feyerabend, F.; Fischer, J.; Holtz, J.; Witte, F.; Willumeit, R.; Drücker, H.; Vogt, C.; Hort, N. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater. 2010, 6, 1834-1842.
69. Nakamura, Y.; Tsumura, Y.; Tonogai, Y.; Shibata, T.; Ito, Y. Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol. 1997, 37, 106-116.
70. Drynda, A.; Deinet, N.; Braun, N.; Peuster, M. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J Biomed Mater Res A. 2009, 91, 360-369.
71. Willbold, E.; Gu, X.; Albert, D.; Kalla, K.; Bobe, K.; Brauneis, M.; Janning, C.; Nellesen, J.; Czayka, W.; Tillmann, W.; Zheng, Y.; Witte, F. Effect of the addition of low rare earth elements (lanthanum, neodymium, cerium) on the biodegradation and biocompatibility of magnesium. Acta Biomater. 2015, 11, 554-562.
72. Hurley, M. F.; Efaw, C. M.; Davis, P. H.; Croteau, J. R.; Graugnard, E.; Birbilis, N. Volta potentials measured by scanning kelvin probe force microscopy as relevant to corrosion of magnesium alloys. Corrosion. 2014, 71, 160-170.
73. Fu, P. H.; Peng, L. M.; Nie, J. F.; Jiang, H. Y.; Ma, L.; Bourgeois, L. Ductility improvement of Mg-Nd-Zr cast alloy by trace addition of Zn. Mater Sci Forum. 2011, 690, 230-233.
74. Zhang, X.; Yuan, G.; Wang, Z. Mechanical properties and biocorrosion resistance of Mg-Nd-Zn-Zr alloy improved by cyclic extrusion and compression. Mater Lett. 2012, 74, 128-131.
75. Wu, Q.; Zhu, S.; Wang, L.; Liu, Q.; Yue, G.; Wang, J.; Guan, S. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application. J Mech Behav Biomed Mater. 2012, 8, 1-7.
76. Ralston, K. D.; Birbilis, N.; Davies, C. H. J. Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater. 2010, 63, 1201-1204.
77. Cao, C. Principles of electrochemistry of corrosion. Chemistry Industry Press: Beijing, 2008.
78. Chen, L.; Bin, Y.; Zou, W.; Wang, X.; Li, W. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys - ZK40xSr. J Mech Behav Biomed Mater. 2017, 66, 187-200.
79. Werkhoven, R. J.; Sillekens, W. H.; van Lieshout, J. B. J. M. Processing aspects of magnesium alloy stent tube. In Magnesium technology 2011, Sillekens, W. H.; Agnew, S. R.; Neelameggham, N. R.; Mathaudhu, S. N., eds.; Springer International Publishing: Cham, 2016; pp 419-424.
80. Serruys, P. W.; Kutryk, M. J.; Ong, A. T. Coronary-artery stents. N Engl J Med. 2006, 354, 483-495.
81. Lu, W.; Yue, R.; Miao, H.; Pei, J.; Huang, H.; Yuan, G. Enhanced plasticity of magnesium alloy micro-tubes for vascular stents by double extrusion with large plastic deformation. Mater Lett. 2019, 245, 155-157.
82. Fang, G.; Ai, W. J.; Leeflang, S.; Duszczyk, J.; Zhou, J. Multipass cold drawing of magnesium alloy minitubes for biodegradable vascular stents. Mater Sci Eng C Mater Biol Appl. 2013, 33, 3481-3488.
83. Yoshida, K.; Koiwa, A. Cold drawing of magnesium alloy tubes for medical. J Solid Mech Mater Eng. 2011, 5, 1071-1078.
84. Hanada, K.; Matsuzaki, K.; Huang, X.; Chino, Y. Fabrication of Mg alloy tubes for biodegradable stent application. Mater Sci Eng C Mater Biol Appl. 2013, 33, 4746-4750.
85. Liu, F.; Chen, C.; Niu, J.; Pei, J.; Zhang, H.; Huang, H.; Yuan, G. The processing of Mg alloy micro-tubes for biodegradable vascular stents. Mater Sci Eng C Mater Biol Appl. 2015, 48, 400-407.
86. Karanasiou, G. S.; Papafaklis, M. I.; Conway, C.; Michalis, L. K.; Tzafriri, R.; Edelman, E. R.; Fotiadis, D. I. Stents: biomechanics, biomaterials, and insights from computational modeling. Ann Biomed Eng. 2017, 45, 853-872.
87. Bressloff, N. W.; Ragkousis, G.; Curzen, N. Design optimisation of coronary artery stent systems. Ann Biomed Eng. 2016, 44, 357-367.
88. Pant, S.; Limbert, G.; Curzen, N. P.; Bressloff, N. W. Multiobjective design optimisation of coronary stents. Biomaterials. 2011, 32, 7755-7773.
89. Grogan, J. A.; Leen, S. B.; McHugh, P. E. A physical corrosion model for bioabsorbable metal stents. Acta Biomater. 2014, 10, 2313-2322.
90. Wu, W.; Gastaldi, D.; Yang, K.; Tan, L.; Petrini, L.; Migliavacca, F. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Mater Sci Eng B. 2011, 176, 1733-1740.
91. Grogan, J. A.; Leen, S. B.; McHugh, P. E. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials. 2013, 34, 8049-8060.
92. Chen, C.; Chen, J.; Wu, W.; Shi, Y.; Jin, L.; Petrini, L.; Shen, L.; Yuan, G.; Ding, W.; Ge, J.; Edelman, E. R.; Migliavacca, F. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy. Biomaterials. 2019, 221, 119414.
93. Shi, Y.; Zhang, L.; Chen, J.; Zhang, J.; Yuan, F.; Shen, L.; Chen, C.; Pei, J.; Li, Z.; Tan, J.; Yuan, G. In vitro and in vivo degradation of rapamycin-eluting Mg-Nd-Zn-Zr alloy stents in porcine coronary arteries. Mater Sci Eng C Mater Biol Appl. 2017, 80, 1-6.
94. Shi, Y.; Pei, J.; Zhang, L.; Lee, B. K.; Yun, Y.; Zhang, J.; Li, Z.; Gu, S.; Park, K.; Yuan, G. Understanding the effect of magnesium degradation on drug release and anti-proliferation on smooth muscle cells for magnesium-based drug eluting stents. Corros Sci. 2017, 123, 297-309.