·
RESEARCH ARTICLE
·

Plant-produced recombinant SARS-CoV-2 receptor-binding domain; an economical, scalable biomaterial source for COVID-19 diagnosis

Kaewta Rattanapisit1 Gorawit Yusakul2 Balamurugan Shanmugaraj1 Kittinop Kittirotruji1 Phassorn Suwatsrisakul1 Eakachai Prompetchara3,4 Suthira Taychakhoonavud5*
Show Less
1 Baiya Phytopharm Co., Ltd., Bangkok, Thailand
2 School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
3 Centre of Excellence in Vaccine Research and Development (Chula Vaccine Research Centre, Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
4 Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
5 Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
6 Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
7 Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
Submitted: 19 November 2020 | Revised: 12 March 2021 | Accepted: 17 March 2021 | Published: 28 March 2021
Copyright © 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread rapidly causing a severe global health burden. The standard COVID-19 diagnosis relies heavily on molecular tests to detect viral RNA in patient samples; however, this method is costly, requires highly-equipped laboratories, multiple reagents, skilled laboratory technicians, and takes 3-6 hours to complete. To overcome these limitations, we developed a plant-based production platform for the SARS-CoV-2 receptor-binding domain as an economical source of detection reagents for a lateral-flow immunoassay strip (LFIA) which is suitable for detection of IgM/IgG antibodies in human samples. Further, we validated the plant-produced SARS-CoV-2 receptor-binding domain-based LFIA as a useful diagnostic tool for COVID-19. A total of 51 confirmed COVID-19 serum samples were tested using the LFIA, and the obtained results were consistent with those from polymerase chain reaction assays, while providing sensitivity and specificity of 94.1% and 98%, respectively. The developed LFIA is rapid, scalable, user-friendly, and relatively inexpensive with a simple test procedure, making it useful for the routine monitoring of COVID-19 in clinical settings. This study was approved on March 19, 2020 by the Ethics Committee of the Faculty of Medicine, Chulalongkorn University (COA No. 354/2020 and IRB No. 236/63).

Keywords
COVID-19
lateral flow immunoassay
Nicotiana benthamiana
point-of-care testing
recombinant protein
SARS-CoV-2
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. World Health Organization. Statement on the second meeting of the international health regulations emergency committee regarding the outbreak of novel coronavirus (2019-nCoV). 2020.

2. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. 2020.

3. Cheng, M. P.; Papenburg, J.; Desjardins, M.; Kanjilal, S.; Quach, C.; Libman, M.; Dittrich, S.; Yansouni, C. P. Diagnostic testing for severe acute respiratory syndrome-related coronavirus 2: a narrative review. Ann Intern Med. 2020, 172, 726-734.

4. Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics. 2020, 10, 7821-7835.

5. Loeffelholz, M. J.; Tang, Y. W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020, 9, 747-756.

6. Phan, J. C.; Pettitt, J.; George, J. S.; Fakoli, L. S. 3rd; Taweh, F. M.; Bateman, S. L.; Bennett, R. S.; Norris, S. L.; Spinnler, D. A.; Pimentel, G.; Sahr, P. K.; Bolay, F. K.; Schoepp, R. J. Lateral flow immunoassays for Ebola virus disease detection in Liberia. J Infect Dis. 2016, 214, S222-228.

7. Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 serological tests: how well do they actually perform? Diagnostics (Basel). 2020, 10, 453.

8. Montesinos, I.; Gruson, D.; Kabamba, B.; Dahma, H.; Van den Wijngaert, S.; Reza, S.; Carbone, V.; Vandenberg, O.; Gulbis, B.; Wolff, F.; Rodriguez-Villalobos, H. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol. 2020, 128, 104413.

9. Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol. 2020, 38, 10-18.

10. Wang, X.; Tu, W. A promising vaccine candidate against COVID-19. Mol Biomed. 2020, 1, 8.

11. Paul, M.; Ma, J. K. Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem. 2011, 58, 58-67.

12. Phoolcharoen, W.; Bhoo, S. H.; Lai, H.; Ma, J.; Arntzen, C. J.; Chen, Q.; Mason, H. S. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J. 2011, 9, 807-816.

13. He, J.; Lai, H.; Brock, C.; Chen, Q. A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol. 2012, 2012, 106783.

14. Shanmugaraj, B. M.; Ramalingam, S. Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J Biotechnol Bioeng. 2014, 1, 4.

15. Streatfield, S. J.; Kushnir, N.; Yusibov, V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. Plant Biotechnol J. 2015, 13, 1136-1159.

16. Moon, K. B.; Park, J. S.; Park, Y. I.; Song, I. J.; Lee, H. J.; Cho, H. S.; Jeon, J. H.; Kim, H. S. Development of systems for the production of plant-derived biopharmaceuticals. Plants (Basel). 2019, 9, 30.

17. Marques L. É., C.; Silva, B. B.; Dutra, R. F.; Florean, E.; Menassa, R.; Guedes, M. I. F. Transient expression of dengue virus NS1 antigen in Nicotiana benthamiana for use as a diagnostic antigen. Front Plant Sci. 2019, 10, 1674.

18. Shanmugaraj, B.; CJ, I. B.; Phoolcharoen, W. Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants (Basel). 2020, 9, 842.

19. Rattanapisit, K.; Shanmugaraj, B.; Manopwisedjaroen, S.; Purwono, P. B.; Siriwattananon, K.; Khorattanakulchai, N.; Hanittinan, O.; Boonyayothin, W.; Thitithanyanont, A.; Smith, D. R.; Phoolcharoen, W. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci Rep. 2020, 10, 17698.

20. Huang, C.; Wen, T.; Shi, F. J.; Zeng, X. Y.; Jiao, Y. J. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega. 2020, 5, 12550-12556.

21. Cavalera, S.; Colitti, B.; Rosati, S.; Ferrara, G.; Bertolotti, L.; Nogarol, C.; Guiotto, C.; Cagnazzo, C.; Denina, M.; Fagioli, F.; Di Nardo, F.; Chiarello, M.; Baggiani, C.; Anfossi, L. A multi-target lateral flow immunoassay enabling the specific and sensitive detection of total antibodies to SARS-CoV-2. Talanta. 2021, 223, 121737.

22. Shanmugaraj, B.; Malla, A.; Phoolcharoen, W. Emergence of novel coronavirus 2019-nCoV: need for rapid vaccine and biologics development. Pathogens. 2020, 9, 148.

23. Malla, A.; Shanmugaraj, B.; Ramalingam, S. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an emerging zoonotic respiratory pathogen in humans. J Pure Appl Microbiol. 2020, 14, 931-936.

24. Buyel, J. F. Plant molecular farming - integration and exploitation of side streams to achieve sustainable biomanufacturing. Front Plant Sci. 2018, 9, 1893.

25. Obembe, O. O.; Popoola, J. O.; Leelavathi, S.; Reddy, S. V. Advances in plant molecular farming. Biotechnol Adv. 2011, 29, 210-222.

26. Carter, L. J.; Garner, L. V.; Smoot, J. W.; Li, Y.; Zhou, Q.; Saveson, C. J.; Sasso, J. M.; Gregg, A. C.; Soares, D. J.; Beskid, T. R.; Jervey, S. R.; Liu, C. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci. 2020, 6, 591-605.

27. Vashist, S. K. In vitro diagnostic assays for COVID-19: recent advances and emerging trends. Diagnostics (Basel). 2020, 10, 202.

28. Lustig, Y.; Keler, S.; Kolodny, R.; Ben-Tal, N.; Atias-Varon, D.; Shlush, E.; Gerlic, M.; Munitz, A.; Doolman, R.; Asraf, K.; Shlush, L. I.; Vivante, A. Potential antigenic cross-reactivity between SARS-CoV-2 and Dengue viruses. Clin Infect Dis. 2020.

29. Wang, Q.; Du, Q.; Guo, B.; Mu, D.; Lu, X.; Ma, Q.; Guo, Y.; Fang, L.; Zhang, B.; Zhang, G.; Guo, X. A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzyme-linked immunosorbent assays. J Clin Microbiol. 2020, 58, e00375-00320.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top