Plant-produced recombinant SARS-CoV-2 receptor-binding domain; an economical, scalable biomaterial source for COVID-19 diagnosis
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread rapidly causing a severe global health burden. The standard COVID-19 diagnosis relies heavily on molecular tests to detect viral RNA in patient samples; however, this method is costly, requires highly-equipped laboratories, multiple reagents, skilled laboratory technicians, and takes 3-6 hours to complete. To overcome these limitations, we developed a plant-based production platform for the SARS-CoV-2 receptor-binding domain as an economical source of detection reagents for a lateral-flow immunoassay strip (LFIA) which is suitable for detection of IgM/IgG antibodies in human samples. Further, we validated the plant-produced SARS-CoV-2 receptor-binding domain-based LFIA as a useful diagnostic tool for COVID-19. A total of 51 confirmed COVID-19 serum samples were tested using the LFIA, and the obtained results were consistent with those from polymerase chain reaction assays, while providing sensitivity and specificity of 94.1% and 98%, respectively. The developed LFIA is rapid, scalable, user-friendly, and relatively inexpensive with a simple test procedure, making it useful for the routine monitoring of COVID-19 in clinical settings. This study was approved on March 19, 2020 by the Ethics Committee of the Faculty of Medicine, Chulalongkorn University (COA No. 354/2020 and IRB No. 236/63).
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. World Health Organization. Statement on the second meeting of the international health regulations emergency committee regarding the outbreak of novel coronavirus (2019-nCoV). 2020.
2. World Health Organization. WHO coronavirus disease (COVID-19) dashboard. 2020.
3. Cheng, M. P.; Papenburg, J.; Desjardins, M.; Kanjilal, S.; Quach, C.; Libman, M.; Dittrich, S.; Yansouni, C. P. Diagnostic testing for severe acute respiratory syndrome-related coronavirus 2: a narrative review. Ann Intern Med. 2020, 172, 726-734.
4. Liu, X.; Liu, C.; Liu, G.; Luo, W.; Xia, N. COVID-19: Progress in diagnostics, therapy and vaccination. Theranostics. 2020, 10, 7821-7835.
5. Loeffelholz, M. J.; Tang, Y. W. Laboratory diagnosis of emerging human coronavirus infections - the state of the art. Emerg Microbes Infect. 2020, 9, 747-756.
6. Phan, J. C.; Pettitt, J.; George, J. S.; Fakoli, L. S. 3rd; Taweh, F. M.; Bateman, S. L.; Bennett, R. S.; Norris, S. L.; Spinnler, D. A.; Pimentel, G.; Sahr, P. K.; Bolay, F. K.; Schoepp, R. J. Lateral flow immunoassays for Ebola virus disease detection in Liberia. J Infect Dis. 2016, 214, S222-228.
7. Ghaffari, A.; Meurant, R.; Ardakani, A. COVID-19 serological tests: how well do they actually perform? Diagnostics (Basel). 2020, 10, 453.
8. Montesinos, I.; Gruson, D.; Kabamba, B.; Dahma, H.; Van den Wijngaert, S.; Reza, S.; Carbone, V.; Vandenberg, O.; Gulbis, B.; Wolff, F.; Rodriguez-Villalobos, H. Evaluation of two automated and three rapid lateral flow immunoassays for the detection of anti-SARS-CoV-2 antibodies. J Clin Virol. 2020, 128, 104413.
9. Shanmugaraj, B.; Siriwattananon, K.; Wangkanont, K.; Phoolcharoen, W. Perspectives on monoclonal antibody therapy as potential therapeutic intervention for coronavirus disease-19 (COVID-19). Asian Pac J Allergy Immunol. 2020, 38, 10-18.
10. Wang, X.; Tu, W. A promising vaccine candidate against COVID-19. Mol Biomed. 2020, 1, 8.
11. Paul, M.; Ma, J. K. Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem. 2011, 58, 58-67.
12. Phoolcharoen, W.; Bhoo, S. H.; Lai, H.; Ma, J.; Arntzen, C. J.; Chen, Q.; Mason, H. S. Expression of an immunogenic Ebola immune complex in Nicotiana benthamiana. Plant Biotechnol J. 2011, 9, 807-816.
13. He, J.; Lai, H.; Brock, C.; Chen, Q. A novel system for rapid and cost-effective production of detection and diagnostic reagents of West Nile virus in plants. J Biomed Biotechnol. 2012, 2012, 106783.
14. Shanmugaraj, B. M.; Ramalingam, S. Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J Biotechnol Bioeng. 2014, 1, 4.
15. Streatfield, S. J.; Kushnir, N.; Yusibov, V. Plant-produced candidate countermeasures against emerging and reemerging infections and bioterror agents. Plant Biotechnol J. 2015, 13, 1136-1159.
16. Moon, K. B.; Park, J. S.; Park, Y. I.; Song, I. J.; Lee, H. J.; Cho, H. S.; Jeon, J. H.; Kim, H. S. Development of systems for the production of plant-derived biopharmaceuticals. Plants (Basel). 2019, 9, 30.
17. Marques L. É., C.; Silva, B. B.; Dutra, R. F.; Florean, E.; Menassa, R.; Guedes, M. I. F. Transient expression of dengue virus NS1 antigen in Nicotiana benthamiana for use as a diagnostic antigen. Front Plant Sci. 2019, 10, 1674.
18. Shanmugaraj, B.; CJ, I. B.; Phoolcharoen, W. Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants (Basel). 2020, 9, 842.
19. Rattanapisit, K.; Shanmugaraj, B.; Manopwisedjaroen, S.; Purwono, P. B.; Siriwattananon, K.; Khorattanakulchai, N.; Hanittinan, O.; Boonyayothin, W.; Thitithanyanont, A.; Smith, D. R.; Phoolcharoen, W. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci Rep. 2020, 10, 17698.
20. Huang, C.; Wen, T.; Shi, F. J.; Zeng, X. Y.; Jiao, Y. J. Rapid detection of IgM antibodies against the SARS-CoV-2 virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega. 2020, 5, 12550-12556.
21. Cavalera, S.; Colitti, B.; Rosati, S.; Ferrara, G.; Bertolotti, L.; Nogarol, C.; Guiotto, C.; Cagnazzo, C.; Denina, M.; Fagioli, F.; Di Nardo, F.; Chiarello, M.; Baggiani, C.; Anfossi, L. A multi-target lateral flow immunoassay enabling the specific and sensitive detection of total antibodies to SARS-CoV-2. Talanta. 2021, 223, 121737.
22. Shanmugaraj, B.; Malla, A.; Phoolcharoen, W. Emergence of novel coronavirus 2019-nCoV: need for rapid vaccine and biologics development. Pathogens. 2020, 9, 148.
23. Malla, A.; Shanmugaraj, B.; Ramalingam, S. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): an emerging zoonotic respiratory pathogen in humans. J Pure Appl Microbiol. 2020, 14, 931-936.
24. Buyel, J. F. Plant molecular farming - integration and exploitation of side streams to achieve sustainable biomanufacturing. Front Plant Sci. 2018, 9, 1893.
25. Obembe, O. O.; Popoola, J. O.; Leelavathi, S.; Reddy, S. V. Advances in plant molecular farming. Biotechnol Adv. 2011, 29, 210-222.
26. Carter, L. J.; Garner, L. V.; Smoot, J. W.; Li, Y.; Zhou, Q.; Saveson, C. J.; Sasso, J. M.; Gregg, A. C.; Soares, D. J.; Beskid, T. R.; Jervey, S. R.; Liu, C. Assay techniques and test development for COVID-19 diagnosis. ACS Cent Sci. 2020, 6, 591-605.
27. Vashist, S. K. In vitro diagnostic assays for COVID-19: recent advances and emerging trends. Diagnostics (Basel). 2020, 10, 202.
28. Lustig, Y.; Keler, S.; Kolodny, R.; Ben-Tal, N.; Atias-Varon, D.; Shlush, E.; Gerlic, M.; Munitz, A.; Doolman, R.; Asraf, K.; Shlush, L. I.; Vivante, A. Potential antigenic cross-reactivity between SARS-CoV-2 and Dengue viruses. Clin Infect Dis. 2020.
29. Wang, Q.; Du, Q.; Guo, B.; Mu, D.; Lu, X.; Ma, Q.; Guo, Y.; Fang, L.; Zhang, B.; Zhang, G.; Guo, X. A method to prevent SARS-CoV-2 IgM false positives in gold immunochromatography and enzyme-linked immunosorbent assays. J Clin Microbiol. 2020, 58, e00375-00320.