Fate and transport of enveloped viruses in indoor built spaces - through understanding vaccinia virus and surface interactions
The current coronavirus disease 2019 (COVID-19) pandemic has reinforced the necessity of understanding and establishing baseline information on the fate and transport mechanisms of viruses under indoor environmental conditions. Mechanisms governing virus interactions in built spaces have thus far been established based on our knowledge on the interaction of inorganic particles in indoor spaces and do not include characteristics specific to viruses. Studies have explored the biological and kinetic processes of microbes’ attachments on surfaces in other fields but not in the built environment. There is also extensive literature on the influence of indoor architecture on air flow, temperature profiles, and forces influencing aerosol transport. Bridging the gap between these fields will lead to the generation of novel frameworks, methodologies and know-how that can identify undiscovered pathways taken by viruses and other microbes in the built environment. Our study summarizes the assessment of the influence of surface properties on the adhesion kinetics of vaccinia virus on gold, silica, glass, and stainless-steel surfaces. We found that on gold the virus layer was more viscoelastic compared to stainless-steel. There was negligible removal of the layer from the stainless-steel surface compared to the others. The results further highlight the importance of converging different fields of research to assess the fate and transport of microbes in indoor built spaces.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Hall, C. B.; Douglas, R. G. Jr.; Geiman, J. M. Possible transmission by fomites of respiratory syncytial virus. J Infect Dis. 1980, 141, 98-102.
2. Chan, K. H.; Peiris, J. S.; Lam, S. Y.; Poon, L. L.; Yuen, K. Y.; Seto, W. H. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol. 2011, 2011, 734690.
3. van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020, 382, 1564-1567.
4. Chin, A. W. H.; Chu, J. T. S.; Perera, M. R. A.; Hui, K. P. Y.; Yen, H. L.; Chan, M. C. W.; Peiris, M.; Poon, L. L. M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020, 1, e10.
5. Azuma, K.; Yanagi, U.; Kagi, N.; Kim, H.; Ogata, M.; Hayashi, M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020, 25, 66.
6. Biryukov, J.; Boydston, J. A.; Dunning, R. A.; Yeager, J. J.; Wood, S.; Reese, A. L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N. E.; Phillips, A.; Freeburger, D.; Hooper, I.; Ratnesar-Shumate, S.; Yolitz, J.; Krause, M.; Williams, G.; Dawson, D. G.; Herzog, A.; Dabisch, P.; Wahl, V.; Hevey, M. C.; Altamura, L. A. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere. 2020, 5:e00441-20.
7. Chen, Y. C.; Huang, L. M.; Chan, C. C.; Su, C. P.; Chang, S. C.; Chang, Y. Y.; Chen, M. L.; Hung, C. C.; Chen, W. J.; Lin, F. Y.; Lee, Y. T. SARS in hospital emergency room. Emerg Infect Dis. 2004, 10, 782-788.
8. Stilianakis, N. I.; Drossinos, Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. J R Soc Interface. 2010, 7, 1355-1366.
9. Wei, J.; Li, Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016, 44, S102-108.
10. Liu, L.; Li, Y.; Nielsen, P. V.; Wei, J.; Jensen, R. L. Short-range airborne transmission of expiratory droplets between two people. Indoor Air. 2017, 27, 452-462.
11. National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. Public health guidance for potential COVID-19 exposure associated with travel. https://www.cdc.gov/coronavirus/2019-ncov/php/risk-assessment.html. Accessed by March 30, 2020.
12. Omer, S. B.; Malani, P.; Del Rio, C. The COVID-19 pandemic in the US: a clinical update. JAMA. 2020, 323, 1767-1768.
13. Read, R. A choir decided to go ahead with rehearsal. Now dozens of members have COVID-19 and two are dead. Los Angeles Times. https://www.latimes.com/world-nation/story/2020-03-29/coronavirus-choir-outbreak. Accessed by March 1, 2021.
14. Correia, G.; Rodrigues, L.; Gameiro da Silva, M.; Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med Hypotheses. 2020, 141, 109781.
15. Morrison, G.; Lakey, P. S. J.; Abbatt, J.; Shiraiwa, M. Indoor boundary layer chemistry modeling. Indoor Air. 2019, 29, 956-967.
16. Lai, A. C.; Nazaroff, W. W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aerosol Sci. 2000, 31, 463-476.
17. Ziskind, G.; Fichman, M.; Gutfinger, C. Effects of shear on particle motion near a surface—application to resuspension. J Aerosol Sci. 1998, 29, 323-338.
18. Göransson, A.; Trägårdh, C. Mechanisms responsible for sub-micron particle deposition in a laminar wall-jet. Colloids Surf Physicochem Eng Aspects. 2002, 211, 133-144.
19. Sjollema, J.; Busscher, H. J.; Weerkamp, A. H. Deposition of oral streptococci and polystyrene latices onto glass in a parallel plate flow cell. Biofouling. 1988, 1, 101-112.
20. Busscher, H. J.; van der Mei, H. C. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 2006, 19, 127-141.
21. Mitik-Dineva, N.; Wang, J.; Truong, V. K.; Stoddart, P.; Malherbe, F.; Crawford, R. J.; Ivanova, E. P. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol. 2009, 58, 268-273.
22. Kesavan, J. S.; Humphreys, P. D.; Bottiger, J. R.; Valdes, E. R.; Rastogi, V. K.; Knox, C. K. Deposition method, relative humidity, and surface property effects of bacterial spore reaerosolization via pulsed air jet. Aerosol Sci Technol. 2017, 51, 1027-1034.
23. Hruby, D. E.; Guarino, L. A.; Kates, J. R. Vaccinia virus replication. I. Requirement for the host-cell nucleus. J Virol. 1979, 29, 705-715.
24. Mendoza, E. J.; Manguiat, K.; Wood, H.; Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr Protoc Microbiol. 2020, 57, ecpmc105.
25. Lee, J.; Jang, J.; Akin, D.; Savran, C. A.; Bashir, R. Real-time detection of airborne viruses on a mass-sensitive device. Appl Phys Lett. 2008, 93, 13901.
26. Peduru Hewa, T. M.; Tannock, G. A.; Mainwaring, D. E.; Harrison, S.; Fecondo, J. V. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods. 2009, 162, 14-21.
27. Jaiswal, A.; Smoukov, S.; Poggi, M.; Grzybowski, B. Quartz crystal microbalance with dissipation monitoring (QCM-D): real-time characterization of nano-scale interactions at surfaces. In Proceedings of the 2008 NSTI Nanotechnology Conference and Trade, Bosten, 2008.
28. Hook, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir. 1998, 14, 729-734.
29. Jordan, J. L.; Fernandez, E. J. QCM-D sensitivity to protein adsorption reversibility. Biotechnol Bioeng. 2008, 101, 837-842.
30. Dixon, M. C. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech. 2008, 19, 151-158.
31. Dunér, G.; Thormann, E.; Dėdinaitė, A. Quartz crystal microbalance with dissipation (QCM-D) studies of the viscoelastic response from a continuously growing grafted polyelectrolyte layer. J Colloid Interface Sci. 2013, 408, 229-234.
32. Doliška, A.; Ribitsch, V.; Stana Kleinschek, K.; Strnad, S. Viscoelastic properties of fibrinogen adsorbed onto poly(ethylene terephthalate) surfaces by QCM-D. Carbohydr Polym. 2013, 93, 246-255.
33. Roberts, K. L.; Smith, G. L. Vaccinia virus morphogenesis and dissemination. Trends Microbiol. 2008, 16, 472-479.
34. Kaufman, H. L.; Kohlhapp, F. J.; Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015, 14, 642-662.
35. Guo, Z. S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W. J.; He, Y.; Liu, Z.; Bartlett, D. L. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019, 7, 6.
36. Dubochet, J.; Adrian, M.; Richter, K.; Garces, J.; Wittek, R. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J Virol. 1994, 68, 1935-1941.
37. Condit, R. C.; Moussatche, N.; Traktman, P. In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res. 2006, 66, 31-124.
38. Michen, B.; Graule, T. Isoelectric points of viruses. J Appl Microbiol. 2010, 109, 388-397.
39. Roberts, P. Efficient removal of viruses by a novel polyvinylidene fluoride membrane filter. J Virol Methods. 1997, 65, 27-31.
40. Cyrklaff, M.; Risco, C.; Fernández, J. J.; Jiménez, M. V.; Estéban, M.; Baumeister, W.; Carrascosa, J. L. Cryo-electron tomography of vaccinia virus. Proc Natl Acad Sci U S A. 2005, 102, 2772-2777.
41. Martin, R. M.; Burke, K.; Verma, D.; Xie, H.; Langer, J.; Schlaberg, R.; Swaminathan, S.; Hanson, K. E. Contact transmission of vaccinia to an infant diagnosed by viral culture and metagenomic sequencing. Open Forum Infect Dis. 2020, 7, ofaa111.
42. Takahashi, K.; Fukuzaki, S. Cleanability of titanium and stainless steel particles in relation to surface charge aspects. Biocontrol Sci. 2008, 13, 9-16.
43. Thatcher, T. L.; Fairchild, W. A.; Nazaroff, W. W. Particle deposition from natural convection enclosure flow onto smooth surfaces. Aerosol Sci Technol. 1996, 25, 359-374.
44. Thatcher, T. L.; Layton, D. W. Deposition, resuspension, and penetration of particles within a residence. Atmos Environ. 1995, 29, 1487-1497.
45. Lai, A. C. Particle deposition indoors: a review. Indoor Air. 2002, 12, 211-214.
46. Zhao, B.; Wu, J. Particle deposition in indoor environments: analysis of influencing factors. J Hazard Mater. 2007, 147, 439-448.
47. Hoque, S.; Omar, F. B. Coupling computational fluid dynamics simulations and statistical moments for designing healthy indoor spaces. Int J Environ Res Public Health. 2019, 16, 800.
48. El Hamdani, S.; Limam, K.; Abadie, M. O.; Bendou, A. Deposition of fine particles on building internal surfaces. Atmos Environ. 2008, 42, 8893-8901.
49. Wang, Y.; Li, A.; Fan, X.; Shang, L.; Lu, S. Effects of surface properties of vertical textiles indoors on particle deposition: a small-scale chamber study. Aerosol Air Qual Res. 2019, 19, 885-895.
50. Nazaroff, W.; Gadgil, A.; Weschler, C. Critique of the use of deposition velocity in modeling indoor air quality. In Modeling of indoor air quality and exposure, Nagda, N., ed. ASTM International: West Conshohocken, PA, 1993; pp 81-104.
51. Abadie, M.; Limam, K.; Allard, F. Indoor particle pollution: effect of wall textures on particle deposition. Build Environ. 2001, 36, 821-827.
52. Lai, A. C. K.; Nazaroff, W. W. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos Environ. 2005, 39, 4893-4900.
53. Wong, L. T.; Chan, W. Y.; Mui, K. W.; Lai, A. C. K. An Experimental and Numerical Study on Deposition of Bioaerosols in a Scaled Chamber. Aerosol Sci Technol. 2010, 44, 117-128.
54. Whyte, W.; Eaton, T. Deposition velocities of airborne microbe-carrying particles. Eur J Parenter Pharm Sci. 2016, 21, 45-49.
55. Seong, D.; Hoque, S. Does the presence of certain bacterial family in the microbiome indicate specific indoor environment characteristics? A factorial design approach for identifying bio-fingerprints. Indoor Built Environ. 2019, 29, 117-131.
56. Ranade, M. B. Adhesion and removal of fine particles on surfaces. Aerosol Sci Technol. 1987, 7, 161-176.
57. Corn, M. The adhesion of solid particles to solid surfaces. I. A review. J Air Pollut Control Assoc. 1961, 11, 523-528.
58. Corn, M. The adhesion of solid particles to solid surfaces. II. J Air Pollut Control Assoc. 1961, 11, 566-575.
59. Visser, J. Particle adhesion and removal: a review. Particulate Sci Technol. 1995, 13, 169-196.
60. Tan, C. L. C.; Gao, S.; Wee, B. S.; Asa-Awuku, A.; Thio, B. J. R. Adhesion of dust particles to common indoor surfaces in an air-conditioned environment. Aerosol Sci Technol. 2014, 48, 541-551.
61. Christenson, H. K. Adhesion and surface energy of mica in air and water. J Phys Chem. 1993, 97, 12034-12041.
62. Goldasteh, I.; Tian, Y.; Ahmadi, G.; Ferro, A. R. Human induced flow field and resultant particle resuspension and transport during gait cycle. Build Environ. 2014, 77, 101-109.
63. Mullins, M. E.; Michaels, L. P.; Menon, V.; Locke, B.; Ranade, M. B. Effect of geometry on particle adhesion. Aerosol Sci Technol. 1992, 17, 105-118.
64. Audry, M. C.; Ramos, S.; Charlaix, E. Adhesion between highly rough alumina surfaces: an atomic force microscope study. J Colloid Interface Sci. 2009, 331, 371-378.
65. Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 1975, 53, 314-326.
66. Nasr, B.; Ahmadi, G.; Ferro, A. R.; Dhaniyala, S. A model for particle removal from surfaces with large-scale roughness in turbulent flows. Aerosol Sci Technol. 2020, 54, 291-303.
67. Kim, Y.; Wellum, G.; Mello, K.; Strawhecker, K. E.; Thoms, R.; Giaya, A.; Wyslouzil, B. E. Effects of relative humidity and particle and surface properties on particle resuspension rates. Aerosol Sci Technol. 2016, 50, 339-352.
68. Jones, R.; Pollock, H. M.; Cleaver, J. A. S.; Hodges, C. S. Adhesion forces between glass and silicon surfaces in air studied by AFM: effects of relative humidity, particle size, roughness, and surface treatment. Langmuir. 2002, 18, 8045-8055.
69. Katainen, J.; Paajanen, M.; Ahtola, E.; Pore, V.; Lahtinen, J. Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci. 2006, 304, 524-529.
70. Bohinc, K.; Dražić, G.; Abram, A.; Jevšnik, M.; Jeršek, B.; Nipič, D.; Kurinčič, M.; Raspor, P. Metal surface characteristics dictate bacterial adhesion capacity. Int J Adhes Adhes. 2016, 68, 39-46.
71. An, Y. H.; Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998, 43, 338-348.
72. Ji, Y. W.; Cho, Y. J.; Lee, C. H.; Hong, S. H.; Chung, D. Y.; Kim, E. K.; Lee, H. K. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses. Eye Contact Lens. 2015, 41, 25-33.
73. Berne, C.; Ellison, C. K.; Ducret, A.; Brun, Y. V. Bacterial adhesion at the single-cell level. Nat Rev Microbiol. 2018, 16, 616-627.
74. Bower, C. K.; McGuire, J.; Daeschel, M. A. The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci Technol. 1996, 7, 152-157.
75. Logan, B. E.; Regan, J. M. Microbial fuel cells–challenges and applications. Environ Sci Technol. 2006, 40, 5172-5180.
76. Jasevičius, R.; Baronas, R.; Kačianauskas, R.; Šimkus, R. Numerical modeling of bacterium-surface interaction by applying DEM. Procedia Eng. 2015, 102, 1408-1414.
77. Katsikogianni, M.; Missirlis, Y. F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004, 8, 37-57.
78. Zhang, X.; Zhang, Q.; Yan, T.; Jiang, Z.; Zhang, X.; Zuo, Y. Y. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environ Sci Technol. 2015, 49, 6164-6171.
79. Bayoudh, S.; Othmane, A.; Mora, L.; Ben Ouada, H. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique. Colloids Surf B Biointerfaces. 2009, 73, 1-9.
80. van Oss, C. J. Hydrophobicity of biosurfaces — Origin, quantitative determination and interaction energies. Colloids Surf B Biointerfaces. 1995, 5, 91-110.
81. Chrysikopoulos, C. V.; Syngouna, V. I. Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: extended-DLVO interactions. Colloids Surf B Biointerfaces. 2012, 92, 74-83.
82. Wang, X.; Şengür-Taşdemir, R.; Koyuncu, İ.; Tarabara, V. V. Lip balm drying promotes virus attachment: Characterization of lip balm coatings and XDLVO modeling. J Colloid Interface Sci. 2021, 581, 884-894.
83. Dang, H. T. T.; Tarabara, V. V. Virus deposition onto polyelectrolyte-coated surfaces: A study with bacteriophage MS2. J Colloid Interface Sci. 2019, 540, 155-166.
84. Joonaki, E.; Hassanpouryouzband, A.; Heldt, C. L.; Areo, O. Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions. Chem. 2020, 6, 2135-2146.
85. Katoh, I.; Tanabe, F.; Kasai, H.; Moriishi, K.; Shimasaki, N.; Shinohara, K.; Uchida, Y.; Koshiba, T.; Arakawa, S.; Morimoto, M. Potential risk of virus carryover by fabrics of personal protective gowns. Front Public Health. 2019, 7, 121.
86. Smither, S. J.; Eastaugh, L. S.; Findlay, J. S.; Lever, M. S. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg Microbes Infect. 2020, 9, 1415-1417.
87. Duan, S. M.; Zhao, X. S.; Wen, R. F.; Huang, J. J.; Pi, G. H.; Zhang, S. X.; Han, J.; Bi, S. L.; Ruan, L.; Dong, X. P. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci. 2003, 16, 246-255.
88. Knoll, J.; Dammert, W. R.; Nirschl, H. Integration of a microscope into a centrifuge for adhesion force measurement of particles. Powder Technol. 2017, 305, 147-155.
89. Kulvanich, P.; Stewart, P. J. Fundamental considerations in the measurement of adhesional forces between particles using the centrifuge method. Int J Pharm. 1987, 35, 111-120.
90. Huang, R.; Yi, P.; Tang, Y. Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: methodology, advantages, and limitations. Environ Sci Process Impacts. 2017, 19, 793-811.
91. Page, K.; Wilson, M.; Mordan, N. J.; Chrzanowski, W.; Knowles, J.; Parkin, I. P. Study of the adhesion of Staphylococcus aureus to coated glass substrates. J Mater Sci. 2011, 46, 6355-6363.
92. Yakub, I.; Soboyejo, W. O. Adhesion of E. coli to silver- or copper-coated porous clay ceramic surfaces. J Appl Phys. 2012, 111, 124324.
93. Liu, Z.; Niu, H.; Rong, R.; Cao, G.; He, B. J.; Deng, Q. An experiment and numerical study of resuspension of fungal spore particles from HVAC ducts. Sci Total Environ. 2020, 708, 134742.
94. Feigley, C.; Khan, J.; Salzberg, D.; Hussey, J.; Attaway, H.; Steed, L.; Schmidt, M.; Michels, H. Experimental tests of copper components in ventilation systems for microbial control. HVAC&R Res. 2013, 19, 53-62.
95. Tamburini, E.; Donegà, V.; Marchetti, M. G.; Pedrini, P.; Monticelli, C.; Balbo, A. Study on microbial deposition and contamination onto six surfaces commonly used in chemical and microbiological laboratories. Int J Environ Res Public Health. 2015, 12, 8295-8311.
96. Villapún, V. M.; Dover, L. G.; Cross, A.; González, S. Antibacterial metallic touch surfaces. Materials (Basel). 2016, 9, 736.
97. Hoang, C. P.; Kinney, K. A.; Corsi, R. L.; Szaniszlo, P. J. Resistance of green building materials to fungal growth. Int Biodeterior Biodegrad. 2010, 64, 104-113.
98. Straub, H.; Bigger, C. M.; Valentin, J.; Abt, D.; Qin, X. H.; Eberl, L.; Maniura-Weber, K.; Ren, Q. Bacterial adhesion on soft materials: passive physicochemical interactions or active bacterial mechanosensing? Adv Healthc Mater. 2019, 8, e1801323.
99. Loosmore, G. A. Evaluation and development of models for resuspension of aerosols at short times after deposition. Atmos Environ. 2003, 37, 639-647.
100. Ibrahim, A. H.; Brach, R. M.; Dunn, P. F. Microparticle detachment from surfaces exposed to turbulent air flow: microparticle motion after detachment. J Aerosol Sci. 2004, 35, 1189-1204.
101. Punrath, J. S.; Heldman, D. R. Mechanisms of small particle re-entrainment from flat surfaces. J Aerosol Sci. 1972, 3, 429-440.
102. Braaten, D. A.; Paw U, K. T.; Shaw, R. H. Particle resuspension in a turbulent boundary layer-observed and modeled. J Aerosol Sci. 1990, 21, 613-628.
103. Ziskind, G. Particle resuspension from surfaces: revisited and reevaluated. Rev Chem Eng. 2006, 22, 1-123.
104. Ziskind, G.; Fichman, M.; Gutfinger, C. Resuspension of particulates from surfaces to turbulent flows—Review and analysis. J Aerosol Sci. 1995, 26, 613-644.
105. Kim, Y.; Gidwani, A.; Wyslouzil, B. E.; Sohn, C. W. Source term models for fine particle resuspension from indoor surfaces. Build Environ. 2010, 45, 1854-1865.
106. Cheng, Z.; Yu, X.; Hsu, T. J.; Balachandar, S. A numerical investigation of fine sediment resuspension in the wave boundary layer—Uncertainties in particle inertia and hindered settling. Comput Geosci. 2015, 83, 176-192.
107. Ji, S.; Ouahsine, A.; Smaoui, H.; Sergent, P. 3D numerical modeling of sediment resuspension induced by the compounding effects of ship-generated waves and the ship propeller. J Eng Mech. 2014, 140, 04014034.
108. Wang, R. Q.; Law, A. W. K.; Adams, E. E. Large-eddy simulation (LES) of settling particle cloud dynamics. Int J Multiphase Flow. 2014, 67, 65-75.
109. Saffman, P. G. The lift on a small sphere in a slow shear flow. J Fluid Mech. 1965, 22, 385-400.
110. Mollinger, A. M.; Nieuwstadt, F. T. M. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer. J Fluid Mech. 1996, 316, 285-306.
111. Leighton, D.; Acrivos, A. The lift on a small sphere touching a plane in the presence of a simple shear flow. Z Angew Math Phys. 1985, 36, 174-178.
112. Shi, L.; Bayless, D. J. Comparison of boundary conditions for predicting the collection efficiency of cyclones. Powder Technol. 2007, 173, 29-37.
113. Benito, J. G.; Aracena, K. A. V.; Uñac, R. O.; Vidales, A. M.; Ippolito, I. Monte Carlo modelling of particle resuspension on a flat surface. J Aerosol Sci. 2015, 79, 126-139.
114. Henry, C.; Minier, J. P. A stochastic approach for the simulation of particle resuspension from rough substrates: Model and numerical implementation. J Aerosol Sci. 2014, 77, 168-192.
115. Ferro, A. R.; Kopperud, R. J.; Hildemann, L. M. Source strengths for indoor human activities that resuspend particulate matter. Environ Sci Technol. 2004, 38, 1759-1764.
116. Krauter, P.; Biermann, A. Reaerosolization of fluidized spores in ventilation systems. Appl Environ Microbiol. 2007, 73, 2165-2172.