·
REVIEW
·

Development of porphyrin and titanium dioxide sonosensitizers for sonodynamic cancer therapy

Xiangyu Deng1,2 Zengwu Shao1* Yanli Zhao2*
Show Less
1 Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
2 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore.
Submitted: 25 August 2020 | Revised: 20 October 2020 | Accepted: 4 November 2020 | Published: 28 March 2021
Copyright © 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Sonodynamic therapy for malignant tumours has gained much attention for its deep penetration effect and efficient tumour killing ability. The design, modification, and utilization of sonosensitizers are important aspects of sonodynamic therapy. As an essential factor in this process, highly effective sonosensitizers should be developed to facilitate the clinical applications of sonodynamic therapy. This review takes porphyrin- and titanium dioxide (TiO2)-based systems as representative organic and inorganic sonosensitizers respectively, and summarizes their characteristics and biological effects as sonodynamic therapy. Upon discovery of novel sonosensitizers, sonodynamic therapy becomes an efficient means of adjuvant therapy for the treatment of malignant tumours.

Keywords
cancer treatment
porphyrins
sonodynamic therapy
sonosensitizers
TiO2
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Ferrara P; Agüero F; Masuet-Aumatell C; Ramon-Torrell JM. Burden of cancer mortality attributable to carcinogenic infections in Spain. Med Clin (Barc) 2020;154:394-397.
2. Hu K; Ding P; Wu Y; Tian W; Pan T; Zhang S. Global patterns and trends in the breast cancer incidence and mortality according to sociodemographic indices: an observational study based on the global burden of diseases. BMJ Open 2019;9:e028461.
3. Mahumud RA; Alam K; Dunn J; Gow J. Emerging cancer incidence, mortality, hospitalisation and associated burden among Australian cancer patients, 1982 - 2014: an incidence-based approach in terms of trends, determinants and inequality. BMJ Open 2019;9:e031874.
4. Mattiuzzi C; Lippi G. Epidemiologic burden of red and processed meat intake on colorectal cancer mortality. Nutr Cancer. doi:10.1080/01635581.2020.1765259.
5. Zheng W; Zhang H; Shen C; Zhang S; Wang D; Li W; Jiang G. Trend analysis of lung cancer mortality and years of life lost (YLL) rate from 1999 to 2016 in Tianjin, China: Does the lung cancer burden in rural areas exceed that of urban areas? Thorac Cancer 2020;11:867-874.
6. Bakalova R; Zhelev Z; Miller T; Aoki I; Higashi T. New potential biomarker for stratification of patients for pharmacological vitamin C in adjuvant settings of cancer therapy. Redox Biol 2020;28:101357.
7. König A; Ellenrieder V; Nitschmann S. New milestone in adjuvant therapy for pancreatic cancer. Internist (Berl) 2019;60:881-884.

8. Park YM; Jung CM; Cha D; Kim DH; Kim HR; Keum KC; Cho NH; Kim SH. A new clinical trial of neoadjuvant chemotherapy combined with transoral robotic surgery and customized adjuvant therapy for patients with T3 or T4 oropharyngeal cancer. Ann Surg Oncol 2017;24:3424-3429.
9. Taieb J; André T; Auclin E. Refining adjuvant therapy for non-metastatic colon cancer, new standards and perspectives. Cancer Treat Rev 2019;75:1-11.
10. Chang M; Wang M; Wang M; Shu M; Ding B; Li C; Pang M; Cui S; Hou Z; Lin J. A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy. Adv Mater 2019;31:e1905271.
11. Costa MM; Silva SB; Quinto AL; Pasquinelli PF; de Queiroz dos Santos V; de Cássia Santos G; Veiga DF. Phototherapy 660 nm for the prevention of radiodermatitis in breast cancer patients receiving radiation therapy: study protocol for a randomized controlled trial. Trials 2014;15:330.
12. Wei Z; Liang P; Xie J; Song C; Tang C; Wang Y; Yin X; Cai Y; Han W; Dong X. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. Chem Sci 2019;10:2778-2784.
13. Dougherty TJ; Kaufman JE; Goldfarb A; Weishaupt KR; Boyle D; Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res 1978;38:2628-2635.
14. Piette J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobiol Sci 2015;14:1510-1517.
15. Beltrán Hernández I; Angelier ML; Del Buono D’Ondes T; Di Maggio A; Yu Y; Oliveira S. The potential of nanobody-targeted photodynamic therapy to trigger immune responses. Cancers (Basel) 2020;12:978.
16. Chiarante N; Duhalde Vega M; Valli F; Zotta E; Daghero H; Basika T; Bollati-Fogolin M; García Vior MC; Marino J; Roguin LP. In vivo photodynamic therapy with a lipophilic zinc(II) phthalocyanine inhibits colorectal cancer and induces a Th1/CD8 antitumor immune response. Lasers Surg Med 2020. doi: 10.1002/lsm.23284.
17. Hamblin M; Abrahamse H. Factors affecting photodynamic therapy and anti-tumor immune response. Anticancer Agents Med Chem 2020. doi: 10.2174/1871520620666200318101037.
18. Lobo ACS; Gomes-da-Silva LCC; Rodrigues-Santos PS; Cabrita A; Santos-Rosa M; Arnaut LG. Immune responses after vascular photodynamic therapy with redaporfin. J Clin Med 2019;9:104.
19. Zhang R; Zhu Z; Lv H; Li F; Sun S; Li J; Lee CS. Immune checkpoint blockade mediated by a small-molecule nanoinhibitor targeting the PD-1/PD-L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small 2019;15:e1903881.
20. Champeau M; Vignoud S; Mortier L; Mordon S. Photodynamic therapy for skin cancer: How to enhance drug penetration? J Photochem Photobiol B 2019;197:111544.
21. Kim JK; Byun MR; Maeng CH; Kim YR; Choi JW. Selective targeting of cancer stem cells (CSCs) based on photodynamic therapy (PDT) penetration depth inhibits colon polyp formation in mice. Cancers (Basel) 2020;12:203.

22. Zhu D; Duo Y; Suo M; Zhao Y; Xia L; Zheng Z; Li Y; Tang BZ. Tumor-exocytosed exosome/aggregation-induced emission luminogen hybrid nanovesicles facilitate efficient tumor penetration and photodynamic therapy. Angew Chem Int Ed Engl 2020;59:13836-13843.
23. Luo C; Hu X; Peng R; Huang H; Liu Q; Tan W. Biomimetic carriers based on giant membrane vesicles for targeted drug delivery and photodynamic/photothermal synergistic therapy. ACS Appl Mater Interfaces 2019;11:43811-43819.
24. Wu H; You C; Chen F; Jiao J; Gao Z; An P; Sun B; Chen R. Enhanced cellular uptake of near-infrared triggered targeted nanoparticles by cell-penetrating peptide TAT for combined chemo/photothermal/photodynamic therapy. Mater Sci Eng C Mater Biol Appl 2019;103:109738.
25. Xie M; Zhu Y; Xu S; Xu G; Xiong R; Sun X; Liu C. A nanoplatform with tumor-targeted aggregation and drug-specific release characteristics for photodynamic/photothermal combined antitumor therapy under near-infrared laser irradiation. Nanoscale 2020;12:11497-11509.
26. Lamberti MJ; Morales Vasconsuelo AB; Ferrara MG; Rumie Vittar NB. Recapitulation of hypoxic tumor-stroma microenvironment to study photodynamic therapy implications. Photochem Photobiol 2020;96:897-905.
27. Li N; Xu F; Cheng J; Zhang Y; Huang G; Zhu J; Shen X; He D. Perfluorocarbon nanocapsules improve hypoxic microenvironment for the tumor ultrasound diagnosis and photodynamic therapy. J Biomed Nanotechnol 2018;14:2162-2171.
28. Butzbach K; Konhäuser M; Fach M; Bamberger DN; Breitenbach B; Epe B; Wich PR. Receptor-mediated uptake of folic acid-functionalized dextran nanoparticles for applications in photodynamic therapy. Polymers 2019;11:896.
29. Chen Y; Liu W; Shang Y; Cao P; Cui J; Li Z; Yin X; Li Y. Folic acid-nanoscale gadolinium-porphyrin metal-organic frameworks: fluorescence and magnetic resonance dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Int J Nanomedicine 2019;14:57-74.
30. Oshiro-Junior JA; Sato MR; Boni FI; Santos KLM; de Oliveira KT; de Freitas LM; Fontana CR; Nicholas D; McHale A; Callan JF; Chorilli M. Phthalocyanine-loaded nanostructured lipid carriers functionalized with folic acid for photodynamic therapy. Mater Sci Eng C Mater Biol Appl 2020;108:110462.
31. Deng L; Sheng D; Liu M; Yang L; Ran H; Li P; Cai X; Sun Y; Wang Z. A near-infrared laser and H2O2 activated bio-nanoreactor for enhanced photodynamic therapy of hypoxic tumors. Biomater Sci 2020;8:858-870.
32. Lu KY; Lin PY; Chuang EY; Shih CM; Cheng TM; Lin TY; Sung HW; Mi FL. H2O2-depleting and O2-generating selenium nanoparticles for fluorescence imaging and photodynamic treatment of proinflammatory-activated macrophages. ACS Appl Mater Interfaces 2017;9:5158-5172.
33. Zhang Y; Shen TT; Kirillov AM; Liu WS; Tang Y. NIR light/H2O2-triggered nanocomposites for a highly efficient and selective synergistic photodynamic and photothermal therapy against hypoxic tumor cells. Chem Commun (Camb) 2016;52:7939-7942.
34. He C; Duan X; Guo N; Chan C; Poon C; Weichselbaum R; Lin W. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun 2016;7:12499.

35. Solovieva AB; Vanin AF; Shekhter AB; Glagolev NN; Aksenova NA; Mikoyan VD; Kotova SL; Rudenko TG; Fayzullin AL; Timashev PS. Is it possible to combine photodynamic therapy and application of dinitrosyl iron complexes in the wound treatment? Nitric Oxide 2019;83:24-32.
36. Wang Z; Zhang F; Shao D; Chang Z; Wang L; Hu H; Zheng X; Li X; Chen F; Tu Z; Li M; Sun W; Chen L; Dong WF. Janus nanobullets combine photodynamic therapy and magnetic hyperthermia to potentiate synergetic anti-metastatic immunotherapy. Adv Sci (Weinh) 2019;6:1901690.
37. Garcia MR; Requena MB; Pratavieira S; Moriyama LT; Becker M; Bagnato VS; Kurachi C; Magalhães DV. Development of a system to treat and online monitor photodynamic therapy of skin cancer using PpIX near-infrared fluorescence. Photodiagnosis Photodyn Ther 2020;30:101680.
38. Zhang L; Ji Z; Zhang J; Yang S. Photodynamic therapy enhances skin cancer chemotherapy effects through autophagy regulation. Photodiagnosis Photodyn Ther 2019;28:159-165.
39. Pan X; Bai L; Wang H; Wu Q; Wang H; Liu S; Xu B; Shi X; Liu H. Metal-organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv Mater 2018;30:e1800180.
40. Pan X; Wang H; Wang S; Sun X; Wang L; Wang W; Shen H; Liu H. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci China Life Sci 2018;61:415-426.
41. WanGY; LiuY; ChenBW; LiuYY; WangYS; ZhangN. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med 2016;13:325-338.
42. Zhang Q; Bao C; Cai X; Jin L; Sun L; Lang Y; Li L. Sonodynamic therapy-assisted immunotherapy: A novel modality for cancer treatment. Cancer Sci 2018;109:1330-1345.
43. Bilmin K; Kujawska T; Grieb P. Sonodynamic therapy for gliomas. Perspectives and prospects of selective sonosensitization of glioma cells. Cells 2019;8:1428.
44. Prada F; Sheybani N; Franzini A; Moore D; Cordeiro D; Sheehan J; Timbie K; Xu Z. Fluorescein-mediated sonodynamic therapy in a rat glioma model. J Neurooncol 2020;148:445-454.
45. Xie R; Xu T; Zhu J; Wei X; Zhu W; Li L; Wang Y; Han Y; Zhou J; Bai Y. The combination of glycolytic inhibitor 2-deoxyglucose and microbubbles increases the effect of 5-aminolevulinic acid-sonodynamic therapy in liver cancer cells. Ultrasound Med Biol 2017;43:2640-2650.
46. Li X; Gao L; Zheng L; Kou J; Zhu X; Jiang Y; Zhong Z; Dan J; Xu H; Yang Y; Li H; Shi S; Cao W; Zhao Y; Tian Y; Yang L. The efficacy and mechanism of apoptosis induction by hypericin-mediated sonodynamic therapy in THP-1 macrophages. Int J Nanomedicine 2015;10:821-838.
47. McHale AP; Callan JF; Nomikou N; Fowley C; Callan B. Sonodynamic therapy: concept, mechanism and application to cancer treatment. Adv Exp Med Biol 2016;880:429-450.
48. Song D; Yue W; Li Z; Li J; Zhao J; Zhang N. Study of the mechanism of sonodynamic therapy in a rat glioma model. Onco Targets Ther 2014;7:1801-1810.
49. Li Q; Wang X; Wang P; Zhang K; Wang H; Feng X; Liu Q. Efficacy of chlorin e6-mediated sono-photodynamic therapy on 4T1 cells. Cancer Biother Radiopharm 2014;29:42-52.
50. Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc 2017;139:1275-1284.
51. Li JH, Chen ZQ, Huang Z, Zhan Q, Ren FB, Liu JY, Yue W, Wang Z. In vitro study of low intensity ultrasound combined with different doses of PDT: Effects on C6 glioma cells. Oncol Lett 2013;5:702-706.
52. Li C, Zhang K, Wang P, Hu J, Liu Q, Wang X. Sonodynamic antitumor effect of a novel sonosensitizer on S180 solid tumor. Biopharm Drug Dispos 2014;35:50-59.
53. Ma A, Chen H, Cui Y, Luo Z, Liang R, Wu Z, Chen Z, Yin T, Ni J, Zheng M, Cai L. Metalloporphyrin complex-based nanosonosensitizers for deep-tissue tumor theranostics by noninvasive sonodynamic therapy. Small 2019;15:e1804028.
54. Yue W, Chen L, Yu L, Zhou B, Yin H, Ren W, Liu C, Guo L, Zhang Y, Sun L, Zhang K, Xu H, Chen Y. Checkpoint blockade and nanosonosensitizer-augmented noninvasive sonodynamic therapy combination reduces tumour growth and metastases in mice. Nat Commun 2019;10:2025.
55. Wang L, Hu Y, Hao Y, Li L, Zheng C, Zhao H, Niu M, Yin Y, Zhang Z, Zhang Y. Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy. J Control Release 2018;286:74-84.
56. Arrighetti N, Corbo C, Evangelopoulos M, Pastò A, Zuco V, Tasciotti E. Exosome-like nanovectors for drug delivery in cancer. Curr Med Chem 2019;26:6132-6148.
57. Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. Onco Targets Ther 2018;11:5753-5762.
58. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015;220:727-737.
59. Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, López-López R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J Nanobiotechnology 2019;17:85.
60. Liu Y, Bai L, Guo K, Jia Y, Zhang K, Liu Q, Wang P, Wang X. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics 2019;9:5261-5281.
61. Li G, Wang S, Deng D, Xiao Z, Dong Z, Wang Z, Lei Q, Gao S, Huang G, Zhang E, Zeng G, Wen Z, Wu S, Liu Z. Fluorinated chitosan to enhance transmucosal delivery of sonosensitizer-conjugated catalase for sonodynamic bladder cancer treatment post-intravesical instillation. ACS Nano 2020;14:1586-1599.
62. Ninomiya K, Ogino C, Oshima S, Sonoke S, Kuroda S, Shimizu N. Targeted sonodynamic therapy using protein-modified TiO2 nanoparticles. Ultrason Sonochem 2012;19:607-614.
63. Shen S, Guo X, Wu L, Wang M, Wang X, Kong F, Shen H, Xie M, Ge Y, Jin Y. Dual-core@shell-structured Fe3O4@NaYF4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J Mater Chem B 2014;2:5775-5784.
64. Shen S, Wu L, Liu J, Xie M, Shen H, Qi X, Yan Y, Ge Y, Jin Y. Core-shell structured Fe3O4@TiO2-doxorubicin nanoparticles for targeted chemo-sonodynamic therapy of cancer. Int J Pharm 2015;486:380-388.
65. Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kudo N, Kubota Y, Terasaka S, Houkin K. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason Sonochem 2011;18:1197-1204.
66. You DG, Deepagan VG, Um W, Jeon S, Son S, Chang H, Yoon HI, Cho YW, Swierczewska M, Lee S, Pomper MG, Kwon IC, Kim K, Park JH. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci Rep 2016;6:23200.
67. Gao F, He G, Yin H, Chen J, Liu Y, Lan C, Zhang S, Yang B. Titania-coated 2D gold nanoplates as nanoagents for synergistic photothermal/sonodynamic therapy in the second near-infrared window. Nanoscale 2019;11:2374-2384.
68. Han X, Huang J, Jing X, Yang D, Lin H, Wang Z, Li P, Chen Y. Oxygen-deficient black titania for synergistic/enhanced sonodynamic and photoinduced cancer therapy at near infrared-II biowindow. ACS Nano 2018;12:4545-4555.
69. Harada A, Ono M, Yuba E, Kono K. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater Sci 2013;1:65-73.
70. Dai C, Zhang S, Liu Z, Wu R, Chen Y. Two-dimensional graphene augments nanosonosensitized sonocatalytic tumor eradication. ACS Nano 2017;11:9467-9480.
71. Pan X, Wang W, Huang Z, Liu S, Guo J, Zhang F, Yuan H, Li X, Liu F, Liu H. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angew Chem Int Ed Engl 2020;59:13557-13561.
72. Sugita N, Iwase Y, Yumita N, Ikeda T, Umemura S. Sonodynamically induced cell damage using rose bengal derivative. Anticancer Res 2010;30:3361-3366.
73. Ohmura T, Fukushima T, Shibaguchi H, Yoshizawa S, Inoue T, Kuroki M, Sasaki K, Umemura S. Sonodynamic therapy with 5-aminolevulinic acid and focused ultrasound for deep-seated intracranial glioma in rat. Anticancer Res 2011;31:2527-2533.
74. Wang F, Gao Q, Guo S, Cheng J, Sun X, Li Q, Wang T, Zhang Z, Cao W, Tian Y. The sonodynamic effect of curcumin on THP-1 cell-derived macrophages. Biomed Res Int 2013;2013:737264.
75. Wang J, Guo Y, Liu B, Jin X, Liu L, Xu R, Kong Y, Wang B. Detection and analysis of reactive oxygen species (ROS) generated by nano-sized TiO2 powder under ultrasonic irradiation and application in sonocatalytic degradation of organic dyes. Ultrason Sonochem 2011, 18: 177-183.
76. Chen HJ, Huang XR, Zhou XB, Zheng BY, Huang JD. Potential sonodynamic anticancer activities of artemether and liposome-encapsulated artemether. Chem Commun (Camb) 2015, 51: 4681-4684.

77. Kennedy, J. E. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer 2005;5:321-327.
78. Wan Q, Zou C, Hu D, Zhou J, Chen M, Tie C, Qiao Y, Yan F, Cheng C, Sheng Z, Zhang B, Liu X, Liang D, Zheng H. Imaging-guided focused ultrasound-induced thermal and sonodynamic effects of nanosonosensitizers for synergistic enhancement of glioblastoma therapy. Biomater Sci 2019;7:3007-3015.
79. Liang S, Deng X, Chang Y, Sun C, Shao S, Xie Z, Xiao X, Ma P, Zhang H, Cheng Z, Lin J. Intelligent hollow Pt-CuS Janus architecture for synergistic catalysis-enhanced sonodynamic and photothermal cancer therapy. Nano Lett 2019;19:4134-4145.
80. McEwan C, Kamila S, Owen J, Nesbitt H, Callan B, Borden M, Nomikou N, Hamoudi R, Taylor M, Stride E, McHale AP, Callan JF. Combined sonodynamic and antimetabolite therapy for the improved treatment of pancreatic cancer using oxygen loaded microbubbles as a delivery vehicle. Biomaterials 2016;80:20-32.
81. Prescott M, Mitchell J, Totti S, Lee J, Velliou E, Bussemaker M. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro. Ultrason Sonochem 2018;40:72-80.
82. Ninomiya K, Fukuda A, Ogino C, Shimizu N. Targeted sonocatalytic cancer cell injury using avidin-conjugated titanium dioxide nanoparticles. Ultrason Sonochem 2014;21:1624-1628.
83. Zhang L, Yi H, Song J, Huang J, Yang K, Tan B, Wang D, Yang N, Wang Z, Li X. Mitochondria-targeted and ultrasound-activated nanodroplets for enhanced deep-penetration sonodynamic cancer therapy. ACS Appl Mater Interfaces 2019;11:9355-9366.
84. Peng Y, Jia L, Wang S, Cao W, Zheng J. Sonodynamic therapy improves anti-tumor immune effect by increasing the infiltration of CD8+ T cells and altering tumor blood vessels in murine B16F10 melanoma xenograft. Oncol Rep 2018;40:2163-2170.
85. Guo T, Liu T, Sun Y, Liu X, Xiong R, Li H, Li Z, Zhang Z, Tian Z, Tian Y. Sonodynamic therapy inhibits palmitate-induced beta cell dysfunction via PINK1/Parkin-dependent mitophagy. Cell Death Dis 2019;10:457.
86. Kou JY, Li Y, Zhong ZY, Jiang YQ, Li XS, Han XB, Liu ZN, Tian Y, Yang LM. Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis 2017;8:e2558.
87. Wang H, Yang Y, Sun X, Tian F, Guo S, Wang W, Tian Z, Jin H, Zhang Z, Tian Y. Sonodynamic therapy-induced foam cells apoptosis activates the phagocytic PPARγ-LXRα-ABCA1/ABCG1 pathway and promotes cholesterol efflux in advanced plaque. Theranostics 2018;8:4969-4984.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top