Engineering immune-responsive biomaterials for skin regeneration
The progress of biomaterials and tissue engineering has led to significant advances in wound healing, but the clinical therapy to regenerate perfect skin remains a great challenge. The implantation of biomaterial scaffolds to heal wounds inevitably leads to a host immune response. Many recent studies revealed that the immune system plays a significant role in both the healing process and the outcome. Immunomodulation or immuno-engineering has thus become a promising approach to develop pro-regenerative scaffolds for perfect skin regeneration. In this paper, we will review recent advancements in immunomodulating biomaterials in the field of skin repair and regeneration, and discuss strategies to modulate the immune response by tailoring the chemical, physical and biological properties of the biomaterials. Understanding the important role of immune responses and manipulating the inherent properties of biomaterials to regulate the immune reaction are approaches to overcome the current bottleneck of skin repair and regeneration.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Schulz, J. T. 3rd; Tompkins, R. G.; Burke, J. F. Artificial skin. Annu Rev Med. 2000, 51, 231-244.
2. Sun, G.; Mao, J. J. Engineering dextran-based scaffolds for drug delivery and tissue repair. Nanomedicine (Lond). 2012, 7, 1771-1784.
3. Dalgard, F. J.; Gieler, U.; Tomas-Aragones, L.; Lien, L.; Poot, F.; Jemec, G. B. E.; Misery, L.; Szabo, C.; Linder, D.; Sampogna, F.; Evers, A. W. M.; Halvorsen, J. A.; Balieva, F.; Szepietowski, J.; Romanov, D.; Marron, S. E.; Altunay, I. K.; Finlay, A. Y.; Salek, S. S.; Kupfer, J. The psychological burden of skin diseases: a cross-sectional multicenter study among dermatological out-patients in 13 European countries. J Invest Dermatol. 2015, 135, 984-991.
4. Chua, A. W.; Khoo, Y. C.; Tan, B. K.; Tan, K. C.; Foo, C. L.; Chong, S. J. Skin tissue engineering advances in severe burns: review and therapeutic applications. Burns Trauma. 2016, 4, 3.
5. Balieva, F.; Kupfer, J.; Lien, L.; Gieler, U.; Finlay, A. Y.; Tomás-Aragonés, L.; Poot, F.; Misery, L.; Sampogna, F.; van Middendorp, H.; Halvorsen, J. A.; Szepietowski, J. C.; Lvov, A.; Marrón, S. E.; Salek, M. S.; Dalgard, F. J. The burden of common skin diseases assessed with the EQ5DTM: a European multicentre study in 13 countries. Br J Dermatol. 2017, 176, 1170-1178.
6. Sun, B. K.; Siprashvili, Z.; Khavari, P. A. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014, 346, 941-945.
7. Hall, A. H.; Mathieu, L.; Maibach, H. I. Acute chemical skin injuries in the United States: a review. Crit Rev Toxicol. 2018, 48, 540-554.
8. Reinke, J. M.; Sorg, H. Wound repair and regeneration. Eur Surg Res. 2012, 49, 35-43.
9. Rippa, A. L.; Kalabusheva, E. P.; Vorotelyak, E. A. Regeneration of dermis: Scarring and cells involved. Cells. 2019, 8, 607.
10. Weng, T.; Wu, P.; Zhang, W.; Zheng, Y.; Li, Q.; Jin, R.; Chen, H.; You, C.; Guo, S.; Han, C.; Wang, X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med. 2020, 18, 53.
11. Andorko, J. I.; Jewell, C. M. Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Transl Med. 2017, 2, 139-155.
12. Chung, L.; Maestas, D. R. Jr.; Housseau, F.; Elisseeff, J. H. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev. 2017, 114, 184-192.
13. Christman, K. L. Biomaterials for tissue repair. Science. 2019, 363, 340-341.
14. Kim, M. H.; Liu, W.; Borjesson, D. L.; Curry, F. R.; Miller, L. S.; Cheung, A. L.; Liu, F. T.; Isseroff, R. R.; Simon, S. I. Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J Invest Dermatol. 2008, 128, 1812-1820.
15. Rodero, M. P.; Khosrotehrani, K. Skin wound healing modulation by macrophages. Int J Clin Exp Pathol. 2010, 3, 643-653.
16. Brancato, S. K.; Albina, J. E. Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol. 2011, 178, 19-25.
17. Sun, G.; Owens, D.; Mao, J. Scarless skin regeneration - are we there yet? JSM Regen Med Bio Eng. 2013, 1, 1007.
18. Gurtner, G. C.; Werner, S.; Barrandon, Y.; Longaker, M. T. Wound repair and regeneration. Nature. 2008, 453, 314-321.
19. Eming, S. A.; Hammerschmidt, M.; Krieg, T.; Roers, A. Interrelation of immunity and tissue repair or regeneration. Semin Cell Dev Biol. 2009, 20, 517-527.
20. Vagnozzi, R. J.; Maillet, M.; Sargent, M. A.; Khalil, H.; Johansen, A. K. Z.; Schwanekamp, J. A.; York, A. J.; Huang, V.; Nahrendorf, M.; Sadayappan, S.; Molkentin, J. D. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020, 577, 405-409.
21. Sadtler, K.; Estrellas, K.; Allen, B. W.; Wolf, M. T.; Fan, H.; Tam, A. J.; Patel, C. H.; Luber, B. S.; Wang, H.; Wagner, K. R.; Powell, J. D.; Housseau, F.; Pardoll, D. M.; Elisseeff, J. H. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science. 2016, 352, 366-370.
22. Matzinger, P.; Kamala, T. Tissue-based class control: the other side of tolerance. Nat Rev Immunol. 2011, 11, 221-230.
23. Moore, L. B.; Kyriakides, T. R. Molecular characterization of macrophage-biomaterial interactions. Adv Exp Med Biol. 2015, 865, 109-122.
24. Eming, S. A.; Krieg, T.; Davidson, J. M. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007, 127, 514-525.
25. Murray, P. J.; Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011, 11, 723-737.
26. Willenborg, S.; Eming, S. A. Macrophages - sensors and effectors coordinating skin damage and repair. J Dtsch Dermatol Ges. 2014, 12, 214-221, 214-223.
27. Garg, K.; Pullen, N. A.; Oskeritzian, C. A.; Ryan, J. J.; Bowlin, G. L. Macrophage functional polarization (M1/M2) in response to varying fiber and pore dimensions of electrospun scaffolds. Biomaterials. 2013, 34, 4439-4451.
28. Kreimendahl, F.; Marquardt, Y.; Apel, C.; Bartneck, M.; Zwadlo-Klarwasser, G.; Hepp, J.; Jockenhoevel, S.; Baron, J. M. Macrophages significantly enhance wound healing in a vascularized skin model. J Biomed Mater Res A. 2019, 107, 1340-1350.
29. Mahdavian Delavary, B.; van der Veer, W. M.; van Egmond, M.; Niessen, F. B.; Beelen, R. H. Macrophages in skin injury and repair. Immunobiology. 2011, 216, 753-762.
30. Vishwakarma, A.; Bhise, N. S.; Evangelista, M. B.; Rouwkema, J.; Dokmeci, M. R.; Ghaemmaghami, A. M.; Vrana, N. E.; Khademhosseini, A. Engineering immunomodulatory biomaterials to tune the inflammatory response. Trends Biotechnol. 2016, 34, 470-482.
31. Lucas, T.; Waisman, A.; Ranjan, R.; Roes, J.; Krieg, T.; Müller, W.; Roers, A.; Eming, S. A. Differential roles of macrophages in diverse phases of skin repair. J Immunol. 2010, 184, 3964-3977.
32. Bouaziz, J. D.; Yanaba, K.; Tedder, T. F. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev. 2008, 224, 201-214.
33. Groth, T.; Altankov, G.; Klosz, K. Adhesion of human peripheral blood lymphocytes is dependent on surface wettability and protein preadsorption. Biomaterials. 1994, 15, 423-428.
34. Rodriguez, A.; Anderson, J. M. Evaluation of clinical biomaterial surface effects on T lymphocyte activation. J Biomed Mater Res A. 2010, 92, 214-220.
35. Jameson, J.; Ugarte, K.; Chen, N.; Yachi, P.; Fuchs, E.; Boismenu, R.; Havran, W. L. A role for skin gammadelta T cells in wound repair. Science. 2002, 296, 747-749.
36. Steinman, R. M. Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med. 2001, 68, 160-166.
37. Rani, M.; Schwacha, M. G. The composition of T-cell subsets are altered in the burn wound early after injury. PLoS One. 2017, 12, e0179015.
38. Qi, C.; Xu, L.; Deng, Y.; Wang, G.; Wang, Z.; Wang, L. Sericin hydrogels promote skin wound healing with effective regeneration of hair follicles and sebaceous glands after complete loss of epidermis and dermis. Biomater Sci. 2018, 6, 2859-2870.
39. Rahmani, W.; Liu, Y.; Rosin, N. L.; Kline, A.; Raharjo, E.; Yoon, J.; Stratton, J. A.; Sinha, S.; Biernaskie, J. Macrophages promote wound-induced hair follicle regeneration in a CX(3)CR1- and TGF-β1-dependent manner. J Invest Dermatol. 2018, 138, 2111-2122.
40. Kasuya, A.; Ito, T.; Tokura, Y. M2 macrophages promote wound-induced hair neogenesis. J Dermatol Sci. 2018, 91, 250-255.
41. Gay, D.; Kwon, O.; Zhang, Z.; Spata, M.; Plikus, M. V.; Holler, P. D.; Ito, M.; Yang, Z.; Treffeisen, E.; Kim, C. D.; Nace, A.; Zhang, X.; Baratono, S.; Wang, F.; Ornitz, D. M.; Millar, S. E.; Cotsarelis, G. Fgf9 from dermal γδ T cells induces hair follicle neogenesis after wounding. Nat Med. 2013, 19, 916-923.
42. Havran, W. L.; Jameson, J. M. Epidermal T cells and wound healing. J Immunol. 2010, 184, 5423-5428.
43. Veltri, A.; Lang, C.; Lien, W. H. Concise review: Wnt signaling pathways in skin development and epidermal stem cells. Stem Cells. 2018, 36, 22-35.
44. Newick, K.; Moon, E.; Albelda, S. M. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics. 2016, 3, 16006.
45. Shin, J. U.; Abaci, H. E.; Herron, L.; Guo, Z.; Sallee, B.; Pappalardo, A.; Jackow, J.; Wang, E. H. C.; Doucet, Y.; Christiano, A. M. Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing. Sci Rep. 2020, 10, 4123.
46. Jahoda, C. A.; Reynolds, A. J. Hair follicle dermal sheath cells: unsung participants in wound healing. Lancet. 2001, 358, 1445-1448.
47. Abbasi, S.; Sinha, S.; Labit, E.; Rosin, N. L.; Yoon, G.; Rahmani, W.; Jaffer, A.; Sharma, N.; Hagner, A.; Shah, P.; Arora, R.; Yoon, J.; Islam, A.; Uchida, A.; Chang, C. K.; Stratton, J. A.; Scott, R. W.; Rossi, F. M. V.; Underhill, T. M.; Biernaskie, J. Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell. 2020, 27, 396-412.e6.
48. Graney, P. L.; Ben-Shaul, S.; Landau, S.; Bajpai, A.; Singh, B.; Eager, J.; Cohen, A.; Levenberg, S.; Spiller, K. L. Macrophages of diverse phenotypes drive vascularization of engineered tissues. Sci Adv. 2020, 6, eaay6391.
49. Blais, M.; Parenteau-Bareil, R.; Cadau, S.; Berthod, F. Concise review: tissue-engineered skin and nerve regeneration in burn treatment. Stem Cells Transl Med. 2013, 2, 545-551.
50. Gemici, B.; Elsheikh, W.; Feitosa, K. B.; Costa, S. K.; Muscara, M. N.; Wallace, J. L. H2S-releasing drugs: anti-inflammatory, cytoprotective and chemopreventative potential. Nitric Oxide. 2015, 46, 25-31.
51. Wallace, J. L.; Blackler, R. W.; Chan, M. V.; Da Silva, G. J.; Elsheikh, W.; Flannigan, K. L.; Gamaniek, I.; Manko, A.; Wang, L.; Motta, J. P.; Buret, A. G. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: translation to therapeutics. Antioxid Redox Signal. 2015, 22, 398-410.
52. Wu, J.; Chen, A.; Zhou, Y.; Zheng, S.; Yang, Y.; An, Y.; Xu, K.; He, H.; Kang, J.; Luckanagul, J. A.; Xian, M.; Xiao, J.; Wang, Q. Novel H(2)S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials. 2019, 222, 119398.
53. Crossley, G. H.; Brinker, J. A.; Reynolds, D.; Spencer, W.; Johnson, W. B.; Hurd, H.; Tonder, L.; Zmijewski, M. Steroid elution improves the stimulation threshold in an active-fixation atrial permanent pacing lead. A randomized, controlled study. Model 4068 Investigators. Circulation. 1995, 92, 2935-2939.
54. Udipi, K.; Ornberg, R. L.; Thurmond, K. B., 2nd; Settle, S. L.; Forster, D.; Riley, D. Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. J Biomed Mater Res. 2000, 51, 549-560.
55. Zhong, Y.; Bellamkonda, R. V. Dexamethasone-coated neural probes elicit attenuated inflammatory response and neuronal loss compared to uncoated neural probes. Brain Res. 2007, 1148, 15-27.
56. Mercanzini, A.; Reddy, S. T.; Velluto, D.; Colin, P.; Maillard, A.; Bensadoun, J. C.; Hubbell, J. A.; Renaud, P. Controlled release nanoparticle-embedded coatings reduce the tissue reaction to neuroprostheses. J Control Release. 2010, 145, 196-202.
57. Kim, D. H.; Martin, D. C. Sustained release of dexamethasone from hydrophilic matrices using PLGA nanoparticles for neural drug delivery. Biomaterials. 2006, 27, 3031-3037.
58. Zlotnik, A.; Yoshie, O. The chemokine superfamily revisited. Immunity. 2012, 36, 705-716.
59. Boehler, R. M.; Graham, J. G.; Shea, L. D. Tissue engineering tools for modulation of the immune response. BioTechniques. 2011, 51, 239-240, 242, 244 passim.
60. Hume, P. S.; He, J.; Haskins, K.; Anseth, K. S. Strategies to reduce dendritic cell activation through functional biomaterial design. Biomaterials. 2012, 33, 3615-3625.
61. Johnston, C. J.; Smyth, D. J.; Dresser, D. W.; Maizels, R. M. TGF-β in tolerance, development and regulation of immunity. Cell Immunol. 2016, 299, 14-22.
62. Morris, A. H.; Chang, J.; Kyriakides, T. R. Inadequate processing of decellularized dermal matrix reduces cell viability in vitro and increases apoptosis and acute inflammation in vivo. Biores Open Access. 2016, 5, 177-187.
63. Keane, T. J.; Londono, R.; Turner, N. J.; Badylak, S. F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials. 2012, 33, 1771-1781.
64. Keane, T. J.; Swinehart, I. T.; Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015, 84, 25-34.
65. Badylak, S. F.; Valentin, J. E.; Ravindra, A. K.; McCabe, G. P.; Stewart-Akers, A. M. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008, 14, 1835-1842.
66. van der Smissen, A.; Hintze, V.; Scharnweber, D.; Moeller, S.; Schnabelrauch, M.; Majok, A.; Simon, J. C.; Anderegg, U. Growth promoting substrates for human dermal fibroblasts provided by artificial extracellular matrices composed of collagen I and sulfated glycosaminoglycans. Biomaterials. 2011, 32, 8938-8946.
67. Kajahn, J.; Franz, S.; Rueckert, E.; Forstreuter, I.; Hintze, V.; Moeller, S.; Simon, J. C. Artificial extracellular matrices composed of collagen I and high sulfated hyaluronan modulate monocyte to macrophage differentiation under conditions of sterile inflammation. Biomatter. 2012, 2, 226-236.
68. Wolf, M. T.; Dearth, C. L.; Ranallo, C. A.; LoPresti, S. T.; Carey, L. E.; Daly, K. A.; Brown, B. N.; Badylak, S. F. Macrophage polarization in response to ECM coated polypropylene mesh. Biomaterials. 2014, 35, 6838-6849.
69. Huleihel, L.; Hussey, G. S.; Naranjo, J. D.; Zhang, L.; Dziki, J. L.; Turner, N. J.; Stolz, D. B.; Badylak, S. F. Matrix-bound nanovesicles within ECM bioscaffolds. Sci Adv. 2016, 2, e1600502.
70. Sridharan, R.; Cavanagh, B.; Cameron, A. R.; Kelly, D. J.; O’Brien, F. J. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 2019, 89, 47-59.
71. Okamoto, T.; Takagi, Y.; Kawamoto, E.; Park, E. J.; Usuda, H.; Wada, K.; Shimaoka, M. Reduced substrate stiffness promotes M2-like macrophage activation and enhances peroxisome proliferator-activated receptor γ expression. Exp Cell Res. 2018, 367, 264-273.
72. Jiang, S.; Lyu, C.; Zhao, P.; Li, W.; Kong, W.; Huang, C.; Genin, G. M.; Du, Y. Cryoprotectant enables structural control of porous scaffolds for exploration of cellular mechano-responsiveness in 3D. Nat Commun. 2019, 10, 3491.
73. Wang, Z.; Cui, Y.; Wang, J.; Yang, X.; Wu, Y.; Wang, K.; Gao, X.; Li, D.; Li, Y.; Zheng, X. L.; Zhu, Y.; Kong, D.; Zhao, Q. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials. 2014, 35, 5700-5710.
74. Sridharan, R.; Cameron, A. R.; Kelly, D. J.; Kearney, C. J.; O’Brien, F. J. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater Today. 2015, 18, 313-325.
75. McWhorter, F. Y.; Wang, T.; Nguyen, P.; Chung, T.; Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 2013, 110, 17253-17258.
76. Li, W.; Wu, P.; Zhang, Y.; Midgley, A. C.; Yuan, X.; Wu, Y.; Wang, L.; Wang, Z.; Zhu, M.; Kong, D. Bilayered polymeric micro- and nanofiber vascular grafts as abdominal aorta replacements: Long-term in vivo studies in a rat model. ACS Appl Bio Mater. 2019, 2, 4493-4502.
77. Wu, P.; Wang, L.; Li, W.; Zhang, Y.; Wu, Y.; Zhi, D.; Wang, H.; Wang, L.; Kong, D.; Zhu, M. Construction of vascular graft with circumferentially oriented microchannels for improving artery regeneration. Biomaterials. 2020, 242, 119922.
78. Zhu, M.; Wu, Y.; Li, W.; Dong, X.; Chang, H.; Wang, K.; Wu, P.; Zhang, J.; Fan, G.; Wang, L.; Liu, J.; Wang, H.; Kong, D. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials. 2018, 183, 306-318.
79. Blankenbaker, D. G.; Ullrick, S. R.; Davis, K. W.; De Smet, A. A.; Haaland, B.; Fine, J. P. Correlation of MRI findings with clinical findings of trochanteric pain syndrome. Skeletal Radiol. 2008, 37, 903-909.
80. Sun, G. Pro-regenerative hydrogel restores scarless skin during cutaneous wound healing. Adv Healthc Mater. 2017, 6.
81. Sun, G.; Shen, Y. I.; Kusuma, S.; Fox-Talbot, K.; Steenbergen, C. J.; Gerecht, S. Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials. 2011, 32, 95-106.
82. Sun, G.; Zhang, X.; Shen, Y. I.; Sebastian, R.; Dickinson, L. E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J. W.; Gerecht, S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci U S A. 2011, 108, 20976-20981.
83. Jackson, W. M.; Nesti, L. J.; Tuan, R. S. Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. Stem Cell Res Ther. 2012, 3, 20.
84. Rahimnejad, M.; Derakhshanfar, S.; Zhong, W. Biomaterials and tissue engineering for scar management in wound care. Burns Trauma. 2017, 5, 4.
85. Bertozzi, N.; Simonacci, F.; Grieco, M. P.; Grignaffini, E.; Raposio, E. The biological and clinical basis for the use of adipose-derived stem cells in the field of wound healing. Ann Med Surg (Lond). 2017, 20, 41-48.
86. Maggini, J.; Mirkin, G.; Bognanni, I.; Holmberg, J.; Piazzón, I. M.; Nepomnaschy, I.; Costa, H.; Cañones, C.; Raiden, S.; Vermeulen, M.; Geffner, J. R. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One. 2010, 5, e9252.
87. Scharp, D. W.; Marchetti, P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv Drug Deliv Rev. 2014, 67-68, 35-73.
88. Kanki-Horimoto, S.; Horimoto, H.; Mieno, S.; Kishida, K.; Watanabe, F.; Furuya, E.; Katsumata, T. Synthetic vascular prosthesis impregnated with mesenchymal stem cells overexpressing endothelial nitric oxide synthase. Circulation. 2006, 114, I327-330.
89. Merino-González, C.; Zuñiga, F. A.; Escudero, C.; Ormazabal, V.; Reyes, C.; Nova-Lamperti, E.; Salomón, C.; Aguayo, C. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potential clinical application. Front Physiol. 2016, 7, 24.
90. Noishiki, Y.; Tomizawa, Y.; Yamane, Y.; Matsumoto, A. Autocrine angiogenic vascular prosthesis with bone marrow transplantation. Nat Med. 1996, 2, 90-93.
91. Liang, X.; Ding, Y.; Zhang, Y.; Tse, H. F.; Lian, Q. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant. 2014, 23, 1045-1059.
92. Swartzlander, M. D.; Blakney, A. K.; Amer, L. D.; Hankenson, K. D.; Kyriakides, T. R.; Bryant, S. J. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels. Biomaterials. 2015, 41, 79-88.
93. Kim, J.; Hematti, P. Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol. 2009, 37, 1445-1453.
94. Dayan, V.; Yannarelli, G.; Billia, F.; Filomeno, P.; Wang, X. H.; Davies, J. E.; Keating, A. Mesenchymal stromal cells mediate a switch to alternatively activated monocytes/macrophages after acute myocardial infarction. Basic Res Cardiol. 2011, 106, 1299-1310.
95. Adutler-Lieber, S.; Ben-Mordechai, T.; Naftali-Shani, N.; Asher, E.; Loberman, D.; Raanani, E.; Leor, J. Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells. J Cardiovasc Pharmacol Ther. 2013, 18, 78-86.
96. Nambu, M.; Kishimoto, S.; Nakamura, S.; Mizuno, H.; Yanagibayashi, S.; Yamamoto, N.; Azuma, R.; Nakamura, S.; Kiyosawa, T.; Ishihara, M.; Kanatani, Y. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg. 2009, 62, 317-321.
97. Park, B. S.; Jang, K. A.; Sung, J. H.; Park, J. S.; Kwon, Y. H.; Kim, K. J.; Kim, W. S. Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg. 2008, 34, 1323-1326.
98. Hassan, W. U.; Greiser, U.; Wang, W. Role of adipose-derived stem cells in wound healing. Wound Repair Regen. 2014, 22, 313-325.
99. Fraser, J. K.; Wulur, I.; Alfonso, Z.; Hedrick, M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 2006, 24, 150-154.
100. Hass, R.; Kasper, C.; Böhm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011, 9, 12.
101. Yoshimura, K.; Suga, H.; Eto, H. Adipose-derived stem/progenitor cells: roles in adipose tissue remodeling and potential use for soft tissue augmentation. Regen Med. 2009, 4, 265-273.
102. Phinney, D. G.; Pittenger, M. F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017, 35, 851-858.
103. Kourembanas, S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015, 77, 13-27.
104. Li, T.; Yan, Y.; Wang, B.; Qian, H.; Zhang, X.; Shen, L.; Wang, M.; Zhou, Y.; Zhu, W.; Li, W.; Xu, W. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013, 22, 845-854.
105. Hyun, J.; Wang, S.; Kim, J.; Kim, G. J.; Jung, Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015, 5, 14135.
106. Wei, Y.; Wu, Y.; Zhao, R.; Zhang, K.; Midgley, A. C.; Kong, D.; Li, Z.; Zhao, Q. MSC-derived sEVs enhance patency and inhibit calcification of synthetic vascular grafts by immunomodulation in a rat model of hyperlipidemia. Biomaterials. 2019, 204, 13-24.
107. Chen, Z.; Wu, C.; Gu, W.; Klein, T.; Crawford, R.; Xiao, Y. Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway. Biomaterials. 2014, 35, 1507-1518.
108. Abaci, H. E.; Coffman, A.; Doucet, Y.; Chen, J.; Jacków, J.; Wang, E.; Guo, Z.; Shin, J. U.; Jahoda, C. A.; Christiano, A. M. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat Commun. 2018, 9, 5301.
109. Plikus, M. V.; Guerrero-Juarez, C. F.; Ito, M.; Li, Y. R.; Dedhia, P. H.; Zheng, Y.; Shao, M.; Gay, D. L.; Ramos, R.; Hsi, T. C.; Oh, J. W.; Wang, X.; Ramirez, A.; Konopelski, S. E.; Elzein, A.; Wang, A.; Supapannachart, R. J.; Lee, H. L.; Lim, C. H.; Nace, A.; Guo, A.; Treffeisen, E.; Andl, T.; Ramirez, R. N.; Murad, R.; Offermanns, S.; Metzger, D.; Chambon, P.; Widgerow, A. D.; Tuan, T. L.; Mortazavi, A.; Gupta, R. K.; Hamilton, B. A.; Millar, S. E.; Seale, P.; Pear, W. S.; Lazar, M. A.; Cotsarelis, G. Regeneration of fat cells from myofibroblasts during wound healing. Science. 2017, 355, 748-752.