Mesenchymal stem cells and COVID-19: the process of discovery and of translation
Mesenchymal stem cells were developed as a cell-based therapeutic in the 1990’s. The translation of culture expanded mesenchymal stem cells from a basic science focus into a modern therapeutic has taken 30 years. The current state of the basic science information argues that mesenchymal stem cells may be curative for coronavirus disease 2019 (COVID-19). Indeed, early small-scale clinical trials have shown positive results. The issue raised is how to assemble the resources to get this cell-based therapy approved for clinical use. The technology is complex, the COVID-19 viral infections are life threatening, the cost is high, but human life is precious. What will it take to perfect this potentially curative technology?
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Caplan, A. I. Mesenchymal stem cells. J Orthop Res. 1991, 9, 641-650.
2. Guimarães-Camboa, N.; Cattaneo, P.; Sun, Y.; Moore-Morris, T.; Gu, Y.; Dalton, N. D.; Rockenstein, E.; Masliah, E.; Peterson, K. L.; Stallcup, W. B.; Chen, J.; Evans, S. M. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017, 20:345-359.e5.
3. Levy, O.; Kuai, R.; Siren, E. M. J.; Bhere, D.; Milton, Y.; Nissar, N.; De Biasio, M.; Heinelt, M.; Reeve, B.; Abdi, R.; Alturki, M.; Fallatah, M.; Almalik, A.; Alhasan, A. H.; Shah, K.; Karp, J. M. Shattering barriers toward clinically meaningful MSC therapies. Sci Adv. 2020, 6, eaba6884.
4. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8, 315-317.
5. Caplan, A. I. What’s in a name? Tissue Eng Part A. 2010, 16, 2415-2417.
6. Crisan, M.; Yap, S.; Casteilla, L.; Chen, C. W.; Corselli, M.; Park, T. S.; Andriolo, G.; Sun, B.; Zheng, B.; Zhang, L.; Norotte, C.; Teng, P. N.; Traas, J.; Schugar, R.; Deasy, B. M.; Badylak, S.; Buhring, H. J.; Giacobino, J. P.; Lazzari, L.; Huard, J.; Péault, B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008, 3, 301-313.
7. Caplan, A. I. All MSCs are pericytes? Cell Stem Cell. 2008, 3, 229-230.
8. Bernardo, M. E.; Fibbe, W. E. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013, 13, 392-402.
9. de Witte, S. F. H.; Luk, F.; Sierra Parraga, J. M.; Gargesha, M.; Merino, A.; Korevaar, S. S.; Shankar, A. S.; O’Flynn, L.; Elliman, S. J.; Roy, D.; Betjes, M. G. H.; Newsome, P. N.; Baan, C. C.; Hoogduijn, M. J. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells. 2018, 36, 602-615.
10. Vasandan, A. B.; Jahnavi, S.; Shashank, C.; Prasad, P.; Kumar, A.; Prasanna, S. J. Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE(2)-dependent mechanism. Sci Rep. 2016, 6, 38308.
11. Lin, P.; Correa, D.; Kean, T. J.; Awadallah, A.; Dennis, J. E.; Caplan, A. I. Serial transplantation and long-term engraftment of intra-arterially delivered clonally derived mesenchymal stem cells to injured bone marrow. Mol Ther. 2014, 22, 160-168.
12. Caplan, A. I.; Dennis, J. E. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006, 98, 1076-1084.
13. Guo, W.; Wang, H.; Zou, S.; Gu, M.; Watanabe, M.; Wei, F.; Dubner, R.; Huang, G. T.; Ren, K. Bone marrow stromal cells produce long-term pain relief in rat models of persistent pain. Stem Cells. 2011, 29, 1294-1303.
14. Bonfield, T. L.; Koloze, M.; Lennon, D. P.; Zuchowski, B.; Yang, S. E.; Caplan, A. I. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol. 2010, 299, L760-770.
15. Meirelles Lda, S.; Fontes, A. M.; Covas, D. T.; Caplan, A. I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009, 20, 419-427.
16. Krasnodembskaya, A.; Song, Y.; Fang, X.; Gupta, N.; Serikov, V.; Lee, J. W.; Matthay, M. A. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010, 28, 2229-2238.
17. Sutton, M. T.; Fletcher, D.; Ghosh, S. K.; Weinberg, A.; van Heeckeren, R.; Kaur, S.; Sadeghi, Z.; Hijaz, A.; Reese, J.; Lazarus, H. M.; Lennon, D. P.; Caplan, A. I.; Bonfield, T. L. Antimicrobial properties of mesenchymal stem cells: therapeutic potential for cystic fibrosis infection, and treatment. Stem Cells Int. 2016, 2016, 5303048.
18. Mascharak, S.; desJardins-Park, H. E.; Davitt, M. F.; Griffin, M.; Borrelli, M. R.; Moore, A. L.; Chen, K.; Duoto, B.; Chinta, M.; Foster, D. S.; Shen, A. H.; Januszyk, M.; Kwon, S. H.; Wernig, G.; Wan, D. C.; Lorenz, H. P.; Gurtner, G. C.; Longaker, M. T. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science. 2021, 372, eaba2374.
19. Zhang, L.; Ghosh, S. K.; Basavarajappa, S. C.; Muller-Greven, J.; Penfield, J.; Brewer, A.; Ramakrishnan, P.; Buck, M.; Weinberg, A. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells. bioRxiv. 2021. doi: 10.1101/2021.01.07.425621.
20. Wang, C.; Wang, S.; Li, D.; Chen, P.; Han, S.; Zhao, G.; Chen, Y.; Zhao, J.; Xiong, J.; Qiu, J.; Wei, D. Q.; Zhao, J.; Wang, J. Human cathelicidin inhibits SARS-CoV-2 infection: killing two birds with one stone. ACS Infect Dis. 2021, 7, 1545-1554.
21. Caplan, A. I. Cell-based therapies: the nonresponder. Stem Cells Transl Med. 2018, 7, 762-766.
22. Becker, A. J.; Mc, C. E.; Till, J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature. 1963, 197, 452-454.
23. Hosoda, T.; Zheng, H.; Cabral-da-Silva, M.; Sanada, F.; Ide-Iwata, N.; Ogorek, B.; Ferreira-Martins, J.; Arranto, C.; D’Amario, D.; del Monte, F.; Urbanek, K.; D’Alessandro, D. A.; Michler, R. E.; Anversa, P.; Rota, M.; Kajstura, J.; Leri, A. Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation. 2011, 123, 1287-1296.
24. Retraction of: Human Cardiac Stem Cell Differentiation Is Regulated by a Mircrine Mechanism. Circulation. 2019, 139, e38.
25. Singh, S.; Chakravarty, T.; Chen, P.; Akhmerov, A.; Falk, J.; Friedman, O.; Zaman, T.; Ebinger, J. E.; Gheorghiu, M.; Marbán, L.; Marbán, E.; Makkar, R. R. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res Cardiol. 2020, 115, 36.
26. Caplan, A. I. Medicinal signalling cells: they work, so use them. Nature. 2019, 566, 39.
27. Caplan, A. I. There is no “stem cell mess”. Tissue Eng Part B Rev. 2019, 25, 291-293.
28. Leng, Z.; Zhu, R.; Hou, W.; Feng, Y.; Yang, Y.; Han, Q.; Shan, G.; Meng, F.; Du, D.; Wang, S.; Fan, J.; Wang, W.; Deng, L.; Shi, H.; Li, H.; Hu, Z.; Zhang, F.; Gao, J.; Liu, H.; Li, X.; Zhao, Y.; Yin, K.; He, X.; Gao, Z.; Wang, Y.; Yang, B.; Jin, R.; Stambler, I.; Lim, L. W.; Su, H.; Moskalev, A.; Cano, A.; Chakrabarti, S.; Min, K. J.; Ellison-Hughes, G.; Caruso, C.; Jin, K.; Zhao, R. C. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020, 11, 216-228.
29. Lanzoni, G.; Linetsky, E.; Correa, D.; Messinger Cayetano, S.; Alvarez, R. A.; Kouroupis, D.; Alvarez Gil, A.; Poggioli, R.; Ruiz, P.; Marttos, A. C.; Hirani, K.; Bell, C. A.; Kusack, H.; Rafkin, L.; Baidal, D.; Pastewski, A.; Gawri, K.; Leñero, C.; Mantero, A. M. A.; Metalonis, S. W.; Wang, X.; Roque, L.; Masters, B.; Kenyon, N. S.; Ginzburg, E.; Xu, X.; Tan, J.; Caplan, A. I.; Glassberg, M. K.; Alejandro, R.; Ricordi, C. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021, 10, 660-673.
30. Kaushal, S.; Khan, A.; Deatrick, K.; Ng, D. K.; Snyder, A.; Shah, A.; Caceres, L. V.; Bacallao, K.; Bembea, M.; Everett, A.; Zhu, J.; Kaczorowski, D.; Madathil, R.; Tabatabai, A.; Rosenthal, G.; Brooks, A.; Longsomboon, B.; Mishra, R.; Saha, P.; Desire, Y.; Saltzman, R.; Hankey, K. G.; Arias, S. A.; Ayoade, F.; Tovar, J. A.; Lamazares, R.; Gershengorn, H. B.; Fontaine, M. J.; Klein, M.; Mullins, K.; Gunasekaran, M.; Loebe, M.; Karakeshishyan, V.; Jayaweera, D. T.; Atala, A.; Ghodsizad, A.; Hare, J. M. Intravenous mesenchymal stem cells in extracorporeal oxygenation patients with severe COVID-19 acute respiratory distress syndrome. medRxiv. 2020. doi:10.1101/2020.10.15.20122523.