·
RESEARCH ARTICLE
·

Focal adhesion regulates osteogenic differentiation of mesenchymal stem cells and osteoblasts

Yang Zhao1 Qing Sun1 Bo Huo1*
Show Less
1 Biomechanics Lab, Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Submitted: 30 September 2021 | Revised: 29 November 2021 | Accepted: 10 December 2021 | Published: 28 December 2021
Copyright © 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Focal adhesions are large macromolecular assemblies through which cells are connected with the extracellular matrix so that extracellular signals can be transmitted inside cells. Some studies have focused on the effect of cell shape on the differentiation of stem cells, but little attention has been paid to focal adhesion. In the present study, mesenchymal stem cells (MSCs) and osteoblast-like MC3T3-E1 cells were seeded onto micropatterned substrates on which circular adhesive islands with different spacing and area were created for focal adhesion. Results showed that the patterns of focal adhesion changed cell morphology but did not affect cell survival. For MSCs cultured for 3 days, patterns with small circles and large spacing promoted osteogenesis. For MSCs cultured for 7 days, patterns with large circles and spacing enhanced osteogenesis. For MC3T3-E1 cells, the patterns of focal adhesion had no effect on cell differentiation after 3 days of culture, but patterns with small circles and spacing improved osteogenic differentiation after 7 days. Moreover, the assembly of F-actin, phosphorylation of myosin, and nuclear translocation of yes-associated proteins (YAP) were consistent with the expression of differentiation markers, indicating that the pattern of focal adhesion may affect the osteogenesis of MSCs and osteoblasts through changes in cytoskeletal tension and nuclear localisation of YAP.

Keywords
F-actin ; focal adhesion ; micropattern ; osteogenesis ; YAP
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Zachar, L.; Bačenková, D.; Rosocha, J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res. 2016, 9, 231-240.  
2. Qiu, J.; Guo, J.; Geng, H.; Qian, W.; Liu, X. Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells. Carbon. 2017, 125, 227-235.  
3. Shahrousvand, M.; Sadeghi, G. M. M.; Shahrousvand, E.; Ghollasi, M.; Salimi, A. Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf B Biointerfaces. 2017, 156, 292-304.  
4. Yang, W.; Han, W.; He, W.; Li, J.; Wang, J.; Feng, H.; Qian, Y. Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2016, 60, 45-53.  
5. Faia-Torres, A. B.; Guimond-Lischer, S.; Rottmar, M.; Charnley, M.; Goren, T.; Maniura-Weber, K.; Spencer, N. D.; Reis, R. L.; Textor, M.; Neves, N. M. Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. Biomaterials. 2014, 35, 9023-9032.  
6. Bajpai, I.; Rukini, A.; Jung, K. J.; Song, I. H.; Kim, S. Surface morphological influence on the in vitro bioactivity and response of mesenchymal stem cells. Mater Technol. 2017, 32, 535-542.  
7. Liu, X.; Liu, R.; Cao, B.; Ye, K.; Li, S.; Gu, Y.; Pan, Z.; Ding, J. Subcellular cell geometry on micropillars regulates stem cell differentiation. Biomaterials. 2016, 111, 27-39.  
8. Carvalho, A.; Pelaez-Vargas, A.; Hansford, D. J.; Fernandes, M. H.; Monteiro, F. J. Effects of line and pillar array microengineered SiO2 thin films on the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Langmuir. 2016, 32, 1091-1100.  
9. Li, S.; Kuddannaya, S.; Chuah, Y. J.; Bao, J.; Zhang, Y.; Wang, D. Combined effects of multi-scale topographical cues on stable cell sheet formation and differentiation of mesenchymal stem cells. Biomater Sci. 2017, 5, 2056-2067.  
10. Kaivosoja, E.; Suvanto, P.; Barreto, G.; Aura, S.; Soininen, A.; Franssila, S.; Konttinen, Y. T. Cell adhesion and osteogenic differentiation on three-dimensional pillar surfaces. J Biomed Mater Res A. 2013, 101, 842-852.  
11. Li, J.; Li, J. J.; Zhang, J.; Wang, X.; Kawazoe, N.; Chen, G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale. 2016, 8, 7992-8007.  
12. Li, J.; Zhang, J.; Chen, Y.; Kawazoe, N.; Chen, G. TEMPO-conjugated gold nanoparticles for reactive oxygen species scavenging and regulation of stem cell differentiation. ACS Appl Mater Interfaces. 2017, 9, 35683-35692.  
13. Peng, R.; Yao, X.; Cao, B.; Tang, J.; Ding, J. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces. Biomaterials. 2012, 33, 6008-6019.  
14. Wang, X.; Hu, X.; Dulińska-Molak, I.; Kawazoe, N.; Yang, Y.; Chen, G. Discriminating the independent influence of cell adhesion and spreading area on stem cell fate determination using micropatterned surfaces. Sci Rep. 2016, 6, 28708.  
15. McBeath, R.; Pirone, D. M.; Nelson, C. M.; Bhadriraju, K.; Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004, 6, 483-495.  
16. Both, S. K.; van der Muijsenberg, A. J.; van Blitterswijk, C. A.; de Boer, J.; de Bruijn, J. D. A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng. 2007, 13, 3-9.  
17. Kilian, K. A.; Bugarija, B.; Lahn, B. T.; Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010, 107, 4872-4877.  
18. Naganuma, T. The relationship between cell adhesion force activation on nano/micro-topographical surfaces and temporal dependence of cell morphology. Nanoscale. 2017, 9, 13171-13186.  
19. Yourek, G.; Hussain, M. A.; Mao, J. J. Cytoskeletal changes of mesenchymal stem cells during differentiation. ASAIO J. 2007, 53, 219-228.  
20. Rodríguez, J. P.; González, M.; Ríos, S.; Cambiazo, V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem. 2004, 93, 721-731.  
21. Cao, B.; Peng, Y.; Liu, X.; Ding, J. Effects of functional groups of materials on nonspecific adhesion and chondrogenic induction of mesenchymal stem cells on free and micropatterned surfaces. ACS Appl Mater Interfaces. 2017, 9, 23574-23585.  
22. Chang, B.; Ma, C.; Liu, X. Nanofibers regulate single bone marrow stem cell osteogenesis via FAK/RhoA/YAP1 pathway. ACS Appl Mater Interfaces. 2018, 10, 33022-33031.  
23. Fu, R.; Liu, Q.; Song, G.; Baik, A.; Hu, M.; Sun, S.; Guo, X. E.; Long, M.; Huo, B. Spreading area and shape regulate apoptosis and differentiation of osteoblasts. Biomed Mater. 2013, 8, 055005.  
24. Huo, B.; Lu, X. L.; Costa, K. D.; Xu, Q.; Guo, X. E. An ATP-dependent mechanism mediates intercellular calcium signaling in bone cell network under single cell nanoindentation. Cell Calcium. 2010, 47, 234-241.  
25. Huo, B.; Lu, X. L.; Hung, C. T.; Costa, K. D.; Xu, Q.; Whitesides, G. M.; Guo, X. E. Fluid Flow Induced Calcium Response in Bone Cell Network. Cell Mol Bioeng. 2008, 1, 58-66.  
26. Lu, X. L.; Huo, B.; Chiang, V.; Guo, X. E. Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res. 2012, 27, 563-574.  
27. He, S.; Liu, C.; Li, X.; Ma, S.; Huo, B.; Ji, B. Dissecting Collective Cell Behavior in Polarization and Alignment on Micropatterned Substrates. Biophys J. 2015, 109, 489-500.  
28. Ma, H.; Hyun, J.; Zhang, Z.; Beebe Jr, T. P.; Chilkoti, A. Fabrication of biofunctionalized quasi-three-dimensional microstructures of a nonfouling comb polymer using soft lithography. Adv Funct Mater. 2005, 15, 529-540.  
29. Pantic, I.; Nesic, D.; Basailovic, M.; Cetkovic, M.; Mazic, S.; Suzic-Lazic, J.; Popevic, M. Chromatin fractal organization, textural patterns, and circularity of nuclear envelope in adrenal zona fasciculata cells. Microsc Microanal. 2016, 22, 1120-1127.  
30. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675.  
31. Rezakhaniha, R.; Agianniotis, A.; Schrauwen, J. T.; Griffa, A.; Sage, D.; Bouten, C. V.; van de Vosse, F. N.; Unser, M.; Stergiopulos, N. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 2012, 11, 461-473.  
32. Ohashi, K.; Fujiwara, S.; Mizuno, K. Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem. 2017, 161, 245-254.  
33. Liu, C.; He, S.; Li, X.; Huo, B.; Ji, B. Mechanics of cell mechanosensing on patterned substrate. J Appl Mech. 2016, 83, 051014.  
34. Wang, X.; Li, S.; Yan, C.; Liu, P.; Ding, J. Fabrication of RGD micro/nanopattern and corresponding study of stem cell differentiation. Nano Lett. 2015, 15, 1457-1467.  
35. Dupont, S.; Morsut, L.; Aragona, M.; Enzo, E.; Giulitti, S.; Cordenonsi, M.; Zanconato, F.; Le Digabel, J.; Forcato, M.; Bicciato, S.; Elvassore, N.; Piccolo, S. Role of YAP/TAZ in mechanotransduction. Nature. 2011, 474, 179-183.  
36. Bertrand, A. T.; Ziaei, S.; Ehret, C.; Duchemin, H.; Mamchaoui, K.; Bigot, A.; Mayer, M.; Quijano-Roy, S.; Desguerre, I.; Lainé, J.; Ben Yaou, R.; Bonne, G.; Coirault, C. Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci. 2014, 127, 2873-2884.  
37. Zhao, Y.; Sun, Q.; Wang, S.; Huo, B. Spreading shape and area regulate the osteogenesis of mesenchymal stem cells. Tissue Eng Regen Med. 2019, 16, 573-583.  
38. Chen, C. S.; Alonso, J. L.; Ostuni, E.; Whitesides, G. M.; Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem Biophys Res Commun. 2003, 307, 355-361.  
39. Kim, D. H.; Wirtz, D. Focal adhesion size uniquely predicts cell migration. FASEB J. 2013, 27, 1351-1361.  
40. Bilem, I.; Chevallier, P.; Plawinski, L.; Sone, E. D.; Durrieu, M. C.; Laroche, G. Interplay of geometric cues and RGD/BMP-2 crosstalk in directing stem cell fate. ACS Biomater Sci Eng. 2017, 3, 2514-2523.  
41. Gao, L.; McBeath, R.; Chen, C. S. Stem cell shape regulates a chondrogenic versus myogenic fate through Rac1 and N-cadherin. Stem Cells. 2010, 28, 564-572.  
42. Wada, K.; Itoga, K.; Okano, T.; Yonemura, S.; Sasaki, H. Hippo pathway regulation by cell morphology and stress fibers. Development. 2011, 138, 3907-3914.  
43. Zhang, Y. Y.; Sun, Y.; Huang, Y.; Gong, H. Effect of cell geometry on yap localization of mesenchymal stem cells on micropatterned surfaces. Zhongguo Ke Xue. 2016, 46, 321-329.  
44. Lee, S. W.; Lee, H. J.; Lee, J. W.; Kim, K. H.; Kang, J. H.; Lee, M. H.; Lee, S. C. Surface functionalization of microgrooved titanium with dual growth factor-releasing nanoparticles for synergistic osteogenic differentiation of human mesenchymal stem cells. Colloids Surf B Biointerfaces. 2015, 135, 565-574.  

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top