Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review
Polyether-ether-ketone (PEEK) is believed to be the next-generation biomedical material for orthopaedic implants that may replace metal materials because of its good biocompatibility, appropriate mechanical properties and radiolucency. Currently, some PEEK implants have been used successfully for many years. However, there is no customised PEEK orthopaedic implant made by additive manufacturing licensed for the market, although clinical trials have been increasingly reported. In this review article, design criteria, including geometric matching, functional restoration, strength safety, early fixation, long-term stability and manufacturing capability, are summarised, focusing on the clinical requirements. An integrated framework of design and manufacturing processes to create customised PEEK implants is presented, and several typical clinical applications such as cranioplasty patches, rib prostheses, mandibular prostheses, scapula prostheses and femoral prostheses are described. The main technical challenge faced by PEEK orthopaedic implants lies in the poor bonding with bone and soft tissue due to its biological inertness, which may be solved by adding bioactive fillers and manufacturing porous architecture. The lack of technical standards is also one of the major factors preventing additive-manufactured customised PEEK orthopaedic implants from clinical translation, and it is good to see that the abundance of standards in the field of additive-manufactured medical devices is helping them enter the clinical market.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Kurtz, S. M. Chapter 1 - An overview of PEEK biomaterials. In PEEK biomaterials handbook (Second Edition), Kurtz, S. M., ed. William Andrew Publishing: 2019; pp 3-9.
2. Panayotov, I. V.; Orti, V.; Cuisinier, F.; Yachouh, J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016, 27, 118.
3. American Society of Testing Materials. ASTM F2026-17: Standard Specification for Polyetheretherketon (PEEK) Polymers for Surgical Implant Applications.
4. Zanotti, B.; Zingaretti, N.; Verlicchi, A.; Robiony, M.; Alfieri, A.; Parodi, P. C. Cranioplasty: review of materials. J Craniofac Surg. 2016, 27, 2061-2072.
5. Kim, S. R.; Kim, D. H.; Kim, D. J.; Kim, M. H.; Park, J. M. Study on thermal conductivity of polyetheretherketone/thermally conductive filler composites. Solid State Phenomena. 2007, 124-6, 1079-1082.
6. Feldmann, A.; Wili, P.; Maquer, G.; Zysset, P. The thermal conductivity of cortical and cancellous bone. Eur Cell Mater. 2018, 35, 25-33.
7. Kurtz, S. M.; Devine, J. N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007, 28, 4845-4869.
8. Seaman, S.; Kerezoudis, P.; Bydon, M.; Torner, J. C.; Hitchon, P. W. Titanium vs. polyetheretherketone (PEEK) interbody fusion: Meta-analysis and review of the literature. J Clin Neurosci. 2017, 44, 23-29.
9. Rao, P. J.; Pelletier, M. H.; Walsh, W. R.; Mobbs, R. J. Spine interbody implants: material selection and modification, functionalization and bioactivation of surfaces to improve osseointegration. Orthop Surg. 2014, 6, 81-89.
10. Cowie, R. M.; Briscoe, A.; Fisher, J.; Jennings, L. M. PEEK-OPTIMA(TM) as an alternative to cobalt chrome in the femoral component of total knee replacement: A preliminary study. Proc Inst Mech Eng H. 2016, 230, 1008-1015.
11. Schierjott, R. A.; Giurea, A.; Neuhaus, H. J.; Schwiesau, J.; Pfaff, A. M.; Utzschneider, S.; Tozzi, G.; Grupp, T. M. Analysis of carbon fiber reinforced PEEK hinge mechanism articulation components in a rotating hinge knee design: a comparison of in vitro and retrieval findings. Biomed Res Int. 2016, 2016, 7032830.
12. Guzzini, M.; Lanzetti, R. M.; Lupariello, D.; Morelli, F.; Princi, G.; Perugia, D.; Ferretti, A. Comparison between carbon-peek plate and conventional stainless steal plate in ankle fractures. A prospective study of two years follow up. Injury. 2017, 48, 1249-1252.
13. Ma, Z.; Zhao, X.; Zhao, J.; Zhao, Z.; Wang, Q.; Zhang, C. Biologically modified polyether ether ketone as dental implant material. Front Bioeng Biotechnol. 2020, 8, 620537.
14. Wiesli, M. G.; Özcan, M. High-performance polymers and their potential application as medical and oral implant materials: a review. Implant Dent. 2015, 24, 448-457.
15. Jiang, X.; Yao, Y.; Tang, W.; Han, D.; Zhang, L.; Zhao, K.; Wang, S.; Meng, Y. Design of dental implants at materials level: An overview. J Biomed Mater Res A. 2020, 108, 1634-1661.
16. Zhao, F.; Li, D.; Jin, Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials (Basel). 2018, 11, 288.
17. Haleem, A.; Javaid, M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob Health. 2019, 7, 571-577.
18. He, J.; Li, D.; Lu, B.; Wang, Z.; Tao, Z. Custom fabrication of composite tibial hemi-knee joint combining CAD/CAE/CAM techniques. Proc Inst Mech Eng H. 2006, 220, 823-830.
19. Harrysson, O. L.; Hosni, Y. A.; Nayfeh, J. F. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskelet Disord. 2007, 8, 91.
20. Murr, L. E. Additive manufacturing of biomedical devices: an overview. Mater Technol. 2018, 33, 57-70.
21. Moiduddin, K. Implementation of computer-assisted design, analysis, and additive manufactured customized mandibular implants. J Med Biol Eng. 2018, 38, 744-756.
22. Ackland, D. C.; Robinson, D.; Redhead, M.; Lee, P. V. S.; Moskaljuk, A.; Dimitroulis, G. A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation. J Mech Behav Biomed Mater. 2017, 69, 404-411.
23. Norman, P.; Iyengar, S.; Svensson, I.; Flivik, G. Fatigue fracture in dual modular revision total hip arthroplasty stems: failure analysis and computed tomography diagnostics in two cases. J Arthroplasty. 2014, 29, 850-855.
24. Giesinger, K.; Ebneter, L.; Day, R. E.; Stoffel, K. K.; Yates, P. J.; Kuster, M. S. Can plate osteosynthesis of periprosthetic femoral fractures cause cement mantle failure around a stable hip stem? A biomechanical analysis. J Arthroplasty. 2014, 29, 1308-1312.
25. Westerman, A. P.; Moor, A. R.; Stone, M. H.; Stewart, T. D. Hip stem fatigue: The implications of increasing patient mass. Proc Inst Mech Eng H. 2018, 232, 520-530.
26. de Oliveira, B. J. S.; Campanelli, L. C.; Oliveira, D. P.; de Bribean Guerra, A. P.; Bolfarini, C. Surface characterization and fatigue performance of a chemical-etched Ti-6Al-4V femoral stem for cementless hip arthroplasty. Surf Coat Technol. 2017, 309, 1126-1134.
27. Dong, E.; Iqbal, T.; Fu, J.; Li, D.; Liu, B.; Guo, Z.; Cuadrado, A.; Zhen, Z.; Wang, L.; Fan, H. Preclinical strength checking for artificial pelvic prosthesis under multi-activities - a case study. J Bionic Eng. 2019, 16, 1092-1102.
28. Mathai, B.; Dhara, S.; Gupta, S. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation. Biomech Model Mechanobiol. 2021, 20, 1115-1134.
29. Majumdar, T.; Eisenstein, N.; Frith, J. E.; Cox, S. C.; Birbilis, N. Additive manufacturing of titanium alloys for orthopedic applications: a materials science viewpoint. Adv Eng Mater. 2018, 20, 1800172.
30. Sun, C.; Wang, L.; Kang, J.; Li, D.; Jin, Z. Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng. 2018, 15, 693-702.
31. Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y. M. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopedic implants: A review. Biomaterials. 2016, 83, 127-141.
32. Hedayati, R.; Janbaz, S.; Sadighi, M.; Mohammadi-Aghdam, M.; Zadpoor, A. A. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials? J Mech Behav Biomed Mater. 2017, 65, 831-841.
33. Taniguchi, N.; Fujibayashi, S.; Takemoto, M.; Sasaki, K.; Otsuki, B.; Nakamura, T.; Matsushita, T.; Kokubo, T.; Matsuda, S. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl. 2016, 59, 690-701.
34. Bessard, E.; De Almeida, O.; Bernhart, G. Unified isothermal and non-isothermal modelling of neat PEEK crystallization. J Therm Anal Calorim. 2014, 115, 1669-1678.
35. Zanjanijam, A. R.; Major, I.; Lyons, J. G.; Lafont, U.; Devine, D. M. Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers. 2020, 12, 1665.
36. Singh, S.; Prakash, C.; Ramakrishna, S. 3D printing of polyether-ether-ketone for biomedical applications. Eur Polym J. 2019, 114, 234-248.
37. Kang, J.; Wang, L.; Yang, C.; Wang, L.; Yi, C.; He, J.; Li, D. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018, 17, 1083-1092.
38. Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress shielding following total hip arthroplasty. J Orthop Res. 2017, 35, 1774-1783.
39. Ahirwar, H.; Gupta, V. K.; Nanda, H. S. Finite element analysis of fixed bone plates over fractured femur model. Comput Methods Biomech Biomed Engin. 2021, 24, 1742-1751.
40. Cameron, H. U.; Pilliar, R. M.; MacNab, I. The effect of movement on the bonding of porous metal to bone. J Biomed Mater Res. 1973, 7, 301-311.
41. Maniatopoulos, C.; Pilliar, R. M.; Smith, D. C. Threaded versus porous-surfaced designs for implant stabilization in bone-endodontic implant model. J Biomed Mater Res. 1986, 20, 1309-1333.
42. Li, Z.; Müller, R.; Ruffoni, D. Bone remodeling and mechanobiology around implants: Insights from small animal imaging. J Orthop Res. 2018, 36, 584-593.
43. Cheong, V. S.; Fromme, P.; Mumith, A.; Coathup, M. J.; Blunn, G. W. Novel adaptive finite element algorithms to predict bone ingrowth in additive manufactured porous implants. J Mech Behav Biomed Mater. 2018, 87, 230-239.
44. Adell, R.; Hansson, B. O.; Brånemark, P. I.; Breine, U. Intra-osseous anchorage of dental prostheses. II. Review of clinical approaches. Scand J Plast Reconstr Surg. 1970, 4, 19-34.
45. Wang, S.; Zhou, X.; Liu, L.; Shi, Z.; Hao, Y. On the design and properties of porous femoral stems with adjustable stiffness gradient. Med Eng Phys. 2020, 81, 30-38.
46. Li, J.; Cui, X.; Hooper, G. J.; Lim, K. S.; Woodfield, T. B. F. Rational design, bio-functionalization and biological performance of hybrid additive manufactured titanium implants for orthopaedic applications: A review. J Mech Behav Biomed Mater. 2020, 105, 103671.
47. Yan, M.; Tian, X.; Peng, G.; Li, D.; Zhang, X. High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos Sci Technol. 2018, 165, 140-147.
48. Yan, R.; Xie, C.; Zhao, Z.; Li, J. Optimization of selective laser sintering process parameters based on PA12 powders for bone tissue scaffolds. 3D Print Addit Manuf. 2021. doi: 10.1089/3dp.2021.0111.
49. Peng, F.; Zhao, Z.; Xia, X.; Cakmak, M.; Vogt, B. D. Enhanced impact resistance of three-dimensional-printed parts with structured filaments. ACS Appl Mater Interfaces. 2018, 10, 16087-16094.
50. Kumar, P.; Ahuja, I. P. S.; Singh, R. Application of fusion deposition modeling for rapid investment casting – a review. Int J Mater Eng Innov. 2012, 3, 204-227.
51. Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R. B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit Manuf. 2018, 21, 1-16.
52. Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017, 248, 1-7.
53. Wang, L.; Huang, L.; Li, X.; Zhong, D.; Li, D.; Cao, T.; Yang, S.; Yan, X.; Zhao, J.; He, J.; Cao, Y.; Wang, L. Three-dimensional printing PEEK implant: a novel choice for the reconstruction of chest wall defect. Ann Thorac Surg. 2019, 107, 921-928.
54. Luo, M.; Tian, X.; Zhu, W.; Li, D. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion. J Mater Res. 2018, 33, 1632-1641.
55. Deng, X.; Zeng, Z.; Peng, B.; Yan, S.; Ke, W. Mechanical properties optimization of poly-ether-ether-ketone via fused deposition modeling. Materials (Basel). 2018, 11, 216.
56. Khunt, C. P.; Makhesana, M. A.; Mawandiya, B. K.; Patel, K. M. Investigations on the influence of printing parameters during processing of biocompatible polymer in fused deposition modelling (FDM). Adv Mater Process Technol. 2021. doi: 10.1080/2374068X.2021.1927651.
57. Wang, P.; Zou, B.; Xiao, H.; Ding, S.; Huang, C. Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK. J Mater Process Technol. 2019, 271, 62-74.
58. Park, S. J.; Lee, J. E.; Park, J.; Lee, N. K.; Son, Y.; Park, S. H. High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Mater Des. 2021, 211, 110163.
59. Basgul, C.; Yu, T.; MacDonald, D. W.; Siskey, R.; Marcolongo, M.; Kurtz, S. M. Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages? J Mech Behav Biomed Mater. 2020, 102, 103455.
60. Alkhaibary, A.; Alharbi, A.; Alnefaie, N.; Oqalaa Almubarak, A.; Aloraidi, A.; Khairy, S. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg. 2020, 139, 445-452.
61. Aydin, S.; Kucukyuruk, B.; Abuzayed, B.; Aydin, S.; Sanus, G. Z. Cranioplasty: review of materials and techniques. J Neurosci Rural Pract. 2011, 2, 162-167.
62. Bonda, D. J.; Manjila, S.; Selman, W. R.; Dean, D. The recent revolution in the design and manufacture of cranial implants: modern advancements and future directions. Neurosurgery. 2015, 77, 814-824; discussion 824.
63. Sharma, N.; Aghlmandi, S.; Dalcanale, F.; Seiler, D.; Zeilhofer, H. F.; Honigmann, P.; Thieringer, F. M. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int J Mol Sci. 2021, 22, 8521.
64. Feroze, A. H.; Walmsley, G. G.; Choudhri, O.; Lorenz, H. P.; Grant, G. A.; Edwards, M. S. Evolution of cranioplasty techniques in neurosurgery: historical review, pediatric considerations, and current trends. J Neurosurg. 2015, 123, 1098-1107.
65. Fiaschi, P.; Pavanello, M.; Imperato, A.; Dallolio, V.; Accogli, A.; Capra, V.; Consales, A.; Cama, A.; Piatelli, G. Surgical results of cranioplasty with a polymethylmethacrylate customized cranial implant in pediatric patients: a single-center experience. J Neurosurg Pediatr. 2016, 17, 705-710.
66. Lethaus, B.; Safi, Y.; ter Laak-Poort, M.; Kloss-Brandstätter, A.; Banki, F.; Robbenmenke, C.; Steinseifer, U.; Kessler, P. Cranioplasty with customized titanium and PEEK implants in a mechanical stress model. J Neurotrauma. 2012, 29, 1077-1083.
67. Punchak, M.; Chung, L. K.; Lagman, C.; Bui, T. T.; Lazareff, J.; Rezzadeh, K.; Jarrahy, R.; Yang, I. Outcomes following polyetheretherketone (PEEK) cranioplasty: systematic review and meta-analysis. J Clin Neurosci. 2017, 41, 30-35.
68. Yen, C. I.; Chen, R. F.; Zelken, J.; Chang, C. S.; Yang, S. Y.; Chen, H. C.; Chang, S. Y.; Yang, J. Y.; Chuang, S. S.; Hsiao, Y. C. The influence of paranasal augmentation on the measurement of the nose for the treatment of midfacial concavity. Aesthet Surg J. 2018, 38, 241-251.
69. de Moraes Ferreira, A. C.; Muñoz, X. M.; Okamoto, R.; Pellizer, E. P.; Garcia, I. R., Jr. Postoperative complications in craniomaxillofacial reconstruction with medpor. J Craniofac Surg. 2016, 27, 425-428.
70. Kim, J. H.; Jung, M. S.; Lee, B. H.; Jeong, H. S.; Suh, I. S.; Ahn, D. K. Silicone implant-based paranasal augmentation for mild midface concavity. Arch Craniofac Surg. 2016, 17, 20-24.
71. Kang, J.; Zhang, J.; Zheng, J.; Wang, L.; Li, D.; Liu, S. 3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater. 2021, 116, 104335.
72. Berthet, J. P.; Wihlm, J. M.; Canaud, L.; Joyeux, F.; Cosma, C.; Hireche, K.; Alric, P.; Marty-Ané, C. H. The combination of polytetrafluoroethylene mesh and titanium rib implants: an innovative process for reconstructing large full thickness chest wall defects. Eur J Cardiothorac Surg. 2012, 42, 444-453.
73. Li, D. C.; Yang, C. C.; Kang, J. F.; Wang, L.; Huang, L. J.; Wang, L.; Cao, Y.; Shi, C. Q.; Lian, Q. Precision design and control-performance manufacturing research of large-size individualized PEEK implants. Jixie Gongcheng Xuebao. 2018, 54, 121-125.
74. Zhang, C.; Wang, L.; Kang, J.; Fuentes, O. M.; Li, D. Bionic design and verification of 3D printed PEEK costal cartilage prosthesis. J Mech Behav Biomed Mater. 2020, 103, 103561.
75. Capanna, R.; Totti, F.; Van der Geest, I. C.; Müller, D. A. Scapular allograft reconstruction after total scapulectomy: surgical technique and functional results. J Shoulder Elbow Surg. 2015, 24, e203-211.
76. Wang, B.; Wu, Q.; Zhang, Z.; Liu, J.; Shao, Z. Reconstruction with constrained scapular prosthesis after total scapulectomy for scapular malignant tumor. J Surg Oncol. 2018, 118, 177-183.
77. Lacroix, D.; Murphy, L. A.; Prendergast, P. J. Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng. 2000, 122, 430-436.
78. Zheng, J.; Kang, J.; Sun, C.; Yang, C.; Wang, L.; Li, D. Effects of printing path and material components on mechanical properties of 3D-printed polyether-ether-ketone/hydroxyapatite composites. J Mech Behav Biomed Mater. 2021, 118, 104475.
79. Liu, D.; Fu, J.; Fan, H.; Li, D.; Dong, E.; Xiao, X.; Wang, L.; Guo, Z. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: case report. J Bone Oncol. 2018, 12, 78-82.
80. Barik, S.; Jain, A.; Ahmad, S.; Singh, V. Functional outcome in giant cell tumor of distal radius treated with excision and fibular arthroplasty: a case series. Eur J Orthop Surg Traumatol. 2020, 30, 1109-1117.
81. Wiratnaya, I. G. E.; Budiartha, I.; Setiawan, I.; Sindhughosa, D. A.; Kawiyana, I. K. S.; Astawa, P. Hernia mesh prevent dislocation after wide excision and reconstruction of giant cell tumor distal radius. World J Orthop. 2017, 8, 741-746.
82. Liu, W.; Wang, B.; Zhang, S.; Li, Y.; Hu, B.; Shao, Z. Wrist reconstruction after en bloc resection of bone tumors of the distal radius. Orthop Surg. 2021, 13, 376-383.
83. Saikia, K. C.; Borgohain, M.; Bhuyan, S. K.; Goswami, S.; Bora, A.; Ahmed, F. Resection-reconstruction arthroplasty for giant cell tumor of distal radius. Indian J Orthop. 2010, 44, 327-332.
84. Lu, M.; Min, L.; Xiao, C.; Li, Y.; Luo, Y.; Zhou, Y.; Zhang, W.; Tu, C. Uncemented three-dimensional-printed prosthetic replacement for giant cell tumor of distal radius: a new design of prosthesis and surgical techniques. Cancer Manag Res. 2018, 10, 265-277.
85. Qassemyar, Q.; Assouly, N.; Madar, Y.; Temam, S.; Kolb, F. Total nasal reconstruction with 3D custom made porous titanium prosthesis and free thoracodorsal artery perforator flap: A case report. Microsurgery. 2018, 38, 567-571.
86. Pang, X.; Wang, L.; Wang, Z.; Geng, L. E. I.; Li, D.; Jin, Z.; Liu, C.; Zhang, C. Finite element analysis of total knee replacement with various misalignment angles in the sagittal plane. J Mech Med Biol. 2016, 16, 1650096.
87. Sevelda, F.; Schuh, R.; Hofstaetter, J. G.; Schinhan, M.; Windhager, R.; Funovics, P. T. Total femur replacement after tumor resection: limb salvage usually achieved but complications and failures are common. Clin Orthop Relat Res. 2015, 473, 2079-2087.
88. Ji, Y.; Wu, Y.; Li, J. Use of three-dimensional-printed custom-made prosthesis to treat unicondylar femoral defect secondary to pathological fracture caused by giant cell tumor. J Int Med Res. 2021, 49, 3000605211025347.
89. Park, J. W.; Kang, H. G.; Kim, J. H.; Kim, H. S. 3D-printed connector for revision limb salvage surgery in long bones previously using customized implants. Metals. 2021, 11, 707.
90. Vaezi, M.; Yang, S. Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyp. 2015, 10, 123-135.
91. Zheng, J.; Zhao, H.; Dong, E.; Kang, J.; Liu, C.; Sun, C.; Li, D.; Wang, L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2021, 128, 112333.
92. Guo, C.; Lu, R.; Wang, X.; Chen, S. Antibacterial activity, bio-compatibility and osteogenic differentiation of graphene oxide coating on 3D-network poly-ether-ether-ketone for orthopaedic implants. J Mater Sci Mater Med. 2021, 32, 135.
93. Lee, J. H.; Jang, H. L.; Lee, K. M.; Baek, H. R.; Jin, K.; Hong, K. S.; Noh, J. H.; Lee, H. K. In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. Acta Biomater. 2013, 9, 6177-6187.
94. Gan, K.; Liu, H.; Jiang, L.; Liu, X.; Song, X.; Niu, D.; Chen, T.; Liu, C. Bioactivity and antibacterial effect of nitrogen plasma immersion ion implantation on polyetheretherketone. Dent Mater. 2016, 32, e263-e274.
95. Torstrick, F. B.; Lin, A. S. P.; Potter, D.; Safranski, D. L.; Sulchek, T. A.; Gall, K.; Guldberg, R. E. Porous PEEK improves the bone-implant interface compared to plasma-sprayed titanium coating on PEEK. Biomaterials. 2018, 185, 106-116.
96. Zheng, J.; Dong, E.; Kang, J.; Sun, C.; Liu, C.; Wang, L.; Li, D. Effects of raster angle and material components on mechanical properties of polyether-ether-ketone/calcium silicate scaffolds. Polymers. 2021, 13, 2547.
97. Zheng, J.; Zhao, H.; Ouyang, Z.; Zhou, X.; Kang, J.; Yang, C.; Sun, C.; Xiong, M.; Fu, M.; Jin, D.; Wang, L.; Li, D.; Li, Q. Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos B Eng. 2022, 232, 109508.
98. Deng, Y.; Zhou, P.; Liu, X.; Wang, L.; Xiong, X.; Tang, Z.; Wei, J.; Wei, S. Preparation, characterization, cellular response and in vivo osseointegration of polyetheretherketone/nano-hydroxyapatite/carbon fiber ternary biocomposite. Colloids Surf B Biointerfaces. 2015, 136, 64-73.
99. Han, X.; Yang, D.; Yang, C.; Spintzyk, S.; Scheideler, L.; Li, P.; Li, D.; Geis-Gerstorfer, J.; Rupp, F. Carbon fiber reinforced PEEK composites based on 3D-printing technology for orthopedic and dental applications. J Clin Med. 2019, 8, 240.
100. Evans, N. T.; Torstrick, F. B.; Lee, C. S.; Dupont, K. M.; Safranski, D. L.; Chang, W. A.; Macedo, A. E.; Lin, A. S.; Boothby, J. M.; Whittingslow, D. C.; Carson, R. A.; Guldberg, R. E.; Gall, K. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015, 13, 159-167.
101. Su, Y.; He, J.; Jiang, N.; Zhang, H.; Wang, L.; Liu, X.; Li, D.; Yin, Z. Additively-manufactured poly-ether-ether-ketone (PEEK) lattice scaffolds with uniform microporous architectures for enhanced cellular response and soft tissue adhesion. Mater Des. 2020, 191, 108671.
102. Oladapo, B. I.; Zahedi, S. A.; Ismail, S. O.; Omigbodun, F. T.; Bowoto, O. K.; Olawumi, M. A.; Muhammad, M. A. 3D printing of PEEK–cHAp scaffold for medical bone implant. Bio-des Manuf. 2021, 4, 44-59.
103. Nawaz, A.; Bano, S.; Yasir, M.; Wadood, A.; Ur Rehman, M. A. Ag and Mn-doped mesoporous bioactive glass nanoparticles incorporated into the chitosan/gelatin coatings deposited on PEEK/bioactive glass layers for favorable osteogenic differentiation and antibacterial activity. Mater Adv. 2020, 1, 1273-1284.
104. Di Prima, M.; Coburn, J.; Hwang, D.; Kelly, J.; Khairuzzaman, A.; Ricles, L. Additively manufactured medical products - the FDA perspective. 3D Print Med. 2016, 2, 1.
105. Jin, Z.; He, C.; Fu, J.; Han, Q.; He, Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf. 2022. doi: 10.1007/s42242-022-00187-2.
106. Min, Y.; Lan, W.; Liu, B. Discussion on Administrative Innovation of Medical Device in China and U.S. Zhongguo Yi Liao Qi Xie Za Zhi. 2018, 42, 206-209.
107. Morrison, R. J.; Kashlan, K. N.; Flanagan, C. L.; Wright, J. K.; Green, G. E.; Hollister, S. J.; Weatherwax, K. J. Regulatory considerations in the design and manufacturing of implantable 3D-printed medical devices. Clin Transl Sci. 2015, 8, 594-600.
108. Monzón, M. D.; Ortega, Z.; Martínez, A.; Ortega, F. Standardization in additive manufacturing: activities carried out by international organizations and projects. Int J Adv Manuf Technol. 2015, 76, 1111-1121.
109. Ding, H. Y.; Wu, S. T.; Yuan, K.; Shu, C. P.; Wang, F.; Chen, C.; Tang, Y. B.; Jiang, Z. Y. Research progress of standards on additive manufacturing. Zhongguo Cailiao Jinzhan. 2020, 39, 955-961.
110. American National Standards Institute. ASTM F3333-20: Standard specification for chopped carbon fiber reinforced (CFR) polyetheretherketion (PEEK) polymers for surgical implant applications. 2020.
111. International Organization for Standardization. ISO 15309:2013: Implants for surgery — Differential scanning calorimetry of poly ether ether ketone (PEEK) polymers and compounds for use in implantable medical devices.
112. Center for Medical Device Evaluation; National Medical Products Administration. The announcement of technical review guidance for registration of AM PEEK orthopaedic implant. https://www.cmde.org.cn/CL0050/25174.html. Accessed February 28, 2022.