Three-dimensional bio-printing of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review
Cartilage injuries are common problems that increase with the population aging. Cartilage is an avascular tissue with a relatively low level of cellular mitotic activity, which makes it impossible to heal spontaneously. To compensate for this problem, three-dimensional bio-printing has attracted a great deal of attention in cartilage tissue engineering. This emerging technology aims to create three-dimensional functional scaffolds by accurately depositing layer-by-layer bio-inks composed of biomaterial and cells. As a novel bio-ink, a decellularized extracellular matrix can serve as an appropriate substrate that contains all the necessary biological cues for cellular interactions. Here, this review is intended to provide an overview of decellularized extracellular matrix-based bio-inks and their properties, sources, and preparation process. Following this, decellularized extracellular matrix-based bio-inks for cartilage tissue engineering are discussed, emphasizing cell behavior and in-vivo applications. Afterward, the current challenges and future outlook will be discussed to determine the conclusing remarks.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Lee, S., Choi, J., Youn, J., Lee, Y., Kim, W., Choe, S., Song, J., Reis, R. L., Khang, G. Development and evaluation of gellan gum/silk fibroin/chondroitin sulfate ternary injectable hydrogel for cartilage tissue engineering. Biomolecules. 2021, 11, 1184.
2. Zhang, Y., Liu, X., Zeng, L., Zhang, J., Zuo, J., Zou, J., Ding, J., Chen, X. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater. 2019, 29, 1903279.
3. Kreller, T., Distler, T., Heid, S., Gerth, S., Detsch, R., Boccaccini, A. R. Physico-chemical modification of gelatine for the improvement of 3D printability of oxidized alginate-gelatine hydrogels towards cartilage tissue engineering. Mater Des. 2021, 208, 109877.
4. Gan, D., Xu, T., Xing, W., Wang, M., Fang, J., Wang, K., Ge, X., Chan, C. W., Ren, F., Tan, H., Lu, X. Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. J Mater Chem B. 2019, 7, 1716-1725.
5. Ghorbani, F., Zamanian, A., Kermanian, F., Shamoosi, A. A bioinspired 3D shape olibanum-collagen-gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration. Biotechnol Prog. 2020, 36, e2918.
6. Zhang, X., Liu, Y., Luo, C., Zhai, C., Li, Z., Zhang, Y., Yuan, T., Dong, S., Zhang, J., Fan, W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021, 118, 111388.
7. Fu, L., Li, P., Li, H., Gao, C., Yang, Z., Zhao, T., Chen, W., Liao, Z., Peng, Y., Cao, F., Sui, X., Liu, S., Guo, Q. The application of bioreactors for cartilage tissue engineering: advances, limitations, and future perspectives. Stem Cells Int. 2021, 2021, 6621806.
8. Sahranavard, M., Zamanian, A., Ghorbani, F., Shahrezaee, M. H. A critical review on three dimensional-printed chitosan hydrogels for development of tissue engineering. Bioprinting. 2020, 17, e00063.
9. Lee, H., Han, W., Kim, H., Ha, D. H., Jang, J., Kim, B. S., Cho, D. W. Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules. 2017, 18, 1229-1237.
10. Bandyopadhyay, A., Mandal, B. B., Bhardwaj, N. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. J Biomed Mater Res A. 2022, 110, 884-898.
11. Choi, J. H., Park, A., Lee, W., Youn, J., Rim, M. A., Kim, W., Kim, N., Song, J. E., Khang, G. Preparation and characterization of an injectable dexamethasone-cyclodextrin complexes-loaded gellan gum hydrogel for cartilage tissue engineering. J Control Release. 2020, 327, 747-765.
12. Ni, T., Liu, M., Zhang, Y., Cao, Y., Pei, R. 3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair. Bioconjug Chem. 2020, 31, 1938-1947.
13. Tsai, W. B., Chen, W. T., Chien, H. W., Kuo, W. H., Wang, M. J. Poly(dopamine) coating of scaffolds for articular cartilage tissue engineering. Acta Biomater. 2011, 7, 4187-4194.
14. Chen, Z., Xiao, H., Zhang, H., Xin, Q., Zhang, H., Liu, H., Wu, M., Zuo, L., Luo, J., Guo, Q., Ding, C., Tan, H., Li, J. Heterogenous hydrogel mimicking the osteochondral ECM applied to tissue regeneration. J Mater Chem B. 2021, 9, 8646-8658.
15. Xu, Y., Shi, G., Tang, J., Cheng, R., Shen, X., Gu, Y., Wu, L., Xi, K., Zhao, Y., Cui, W., Chen, L. ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Sci Adv. 2020, 6, eabc2036.
16. Nam, S. Y., Park, S. H. ECM based bioink for tissue mimetic 3D bioprinting. Adv Exp Med Biol. 2018, 1064, 335-353.
17. Kim, B. S., Das, S., Jang, J., Cho, D. W. Decellularized extracellular matrix-based bioinks for engineering tissue- and organ-specific microenvironments. Chem Rev. 2020, 120, 10608-10661.
18. Adamski, M., Fontana, G., Gershlak, J. R., Gaudette, G. R., Le, H. D., Murphy, W. L. Two methods for decellularization of plant tissues for tissue engineering applications. J Vis Exp. 2018, 57586.
19. Porzionato, A., Stocco, E., Barbon, S., Grandi, F., Macchi, V., De Caro, R. Tissue-engineered grafts from human decellularized extracellular matrices: a systematic review and future perspectives. Int J Mol Sci. 2018, 19, 4117.
20. Harris, A. F., Lacombe, J., Zenhausern, F. The emerging role of decellularized plant-based scaffolds as a new biomaterial. Int J Mol Sci. 2021, 22, 12347.
21. Kim, H. S., Mandakhbayar, N., Kim, H. W., Leong, K. W., Yoo, H. S. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials. 2021, 269, 120214.
22. Crapo, P. M., Gilbert, T. W., Badylak, S. F. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011, 32, 3233-3243.
23. Kabirian, F., Mozafari, M. Decellularized ECM-derived bioinks: prospects for the future. Methods. 2020, 171, 108-118.
24. Kheir, E., Stapleton, T., Shaw, D., Jin, Z., Fisher, J., Ingham, E. Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomed Mater Res A. 2011, 99, 283-294.
25. Galliger, Z., Panoskaltsis-Mortari, A. Tracheal cartilage isolation and decellularization. Methods Mol Biol. 2018, 1577, 155-160.
26. Schneider, C., Lehmann, J., van Osch, G. J., Hildner, F., Teuschl, A., Monforte, X., Miosga, D., Heimel, P., Priglinger, E., Redl, H., Wolbank, S., Nürnberger, S. Systematic comparison of protocols for the preparation of human articular cartilage for use as scaffold material in cartilage tissue engineering. Tissue Eng Part C Methods. 2016, 22, 1095-1107.
27. Ravichandran, A., Murekatete, B., Moedder, D., Meinert, C., Bray, L. J. Photocrosslinkable liver extracellular matrix hydrogels for the generation of 3D liver microenvironment models. Sci Rep. 2021, 11, 15566.
28. Reing, J. E., Brown, B. N., Daly, K. A., Freund, J. M., Gilbert, T. W., Hsiong, S. X., Huber, A., Kullas, K. E., Tottey, S., Wolf, M. T., Badylak, S. F. The effects of processing methods upon mechanical and biologic properties of porcine dermal extracellular matrix scaffolds. Biomaterials. 2010, 31, 8626-8633.
29. Wang, Z., Li, Z., Li, Z., Wu, B., Liu, Y., Wu, W. Cartilaginous extracellular matrix derived from decellularized chondrocyte sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater. 2018, 81, 129-145.
30. Rahman, S., Griffin, M., Naik, A., Szarko, M., Butler, P. E. M. Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. Sci Rep. 2018, 8, 3097.
31. O’Neill, J. D., Anfang, R., Anandappa, A., Costa, J., Javidfar, J., Wobma, H. M., Singh, G., Freytes, D. O., Bacchetta, M. D., Sonett, J. R., Vunjak-Novakovic, G. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg. 2013, 96, 1046-1055; discussion 1055-1056.
32. Keane, T. J., Swinehart, I. T., Badylak, S. F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods. 2015, 84, 25-34.
33. Bordbar, S., Lotfi Bakhshaiesh, N., Khanmohammadi, M., Sayahpour, F. A., Alini, M., Baghaban Eslaminejad, M. Production and evaluation of decellularized extracellular matrix hydrogel for cartilage regeneration derived from knee cartilage. J Biomed Mater Res A. 2020, 108, 938-946.
34. Ghassemi, T., Saghatoleslami, N., Mahdavi-Shahri, N., Matin, M. M., Gheshlaghi, R., Moradi, A. A comparison study of different decellularization treatments on bovine articular cartilage. J Tissue Eng Regen Med. 2019, 13, 1861-1871.
35. Zhou, J., Fritze, O., Schleicher, M., Wendel, H. P., Schenke-Layland, K., Harasztosi, C., Hu, S., Stock, U. A. Impact of heart valve decellularization on 3-D ultrastructure, immunogenicity and thrombogenicity. Biomaterials. 2010, 31, 2549-2554.
36. Tavassoli, A., Matin, M. M., Niaki, M. A., Mahdavi-Shahri, N., Shahabipour, F. Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iran J Basic Med Sci. 2015, 18, 1221-1227.
37. Azhim, A., Ono, T., Fukui, Y., Morimoto, Y., Furukawa, K., Ushida, T. Preparation of decellularized meniscal scaffolds using sonication treatment for tissue engineering. Annu Int Conf IEEE Eng Med Biol Soc. 2013, 2013, 6953-6956.
38. Mendibil, U., Ruiz-Hernandez, R., Retegi-Carrion, S., Garcia-Urquia, N., Olalde-Graells, B., Abarrategi, A. Tissue-specific decellularization methods: rationale and strategies to achieve regenerative compounds. Int J Mol Sci. 2020, 21, 5447.
39. Guimaraes, A. B., Correia, A. T., Alves, B. P., Da Silva, R. S., Martins, J. K., Pêgo-Fernandes, P. M., Xavier, N. S., Dolhnikoff, M., Cardoso, P. F. G. Evaluation of a physical-chemical protocol for porcine tracheal decellularization. Transplant Proc. 2019, 51, 1611-1613.
40. Al-Qurayshi, Z., Wafa, E. I., Hoffman, H., Chang, K., Salem, A. K. Tissue-engineering the larynx: Effect of decellularization on human laryngeal framework and the cricoarytenoid joint. J Biomed Mater Res B Appl Biomater. 2021, 109, 2030-2040.
41. Singh, S., Afara, I. O., Tehrani, A. H., Oloyede, A. Effect of decellularization on the load-bearing characteristics of articular cartilage matrix. Tissue Eng Regen Med. 2015, 12, 294-305.
42. Khajavi, M., Hajimoradloo, A., Zandi, M., Pezeshki-Modaress, M., Bonakdar, S., Zamani, A. Fish cartilage: a promising source of biomaterial for biological scaffold fabrication in cartilage tissue engineering. J Biomed Mater Res A. 2021, 109, 1737-1750.
43. Giraldo-Gomez, D. M., Leon-Mancilla, B., Del Prado-Audelo, M. L., Sotres-Vega, A., Villalba-Caloca, J., Garciadiego-Cazares, D., Piña-Barba, M. C. Trypsin as enhancement in cyclical tracheal decellularization: Morphological and biophysical characterization. Mater Sci Eng C Mater Biol Appl. 2016, 59, 930-937.
44. Keane, T. J., Saldin, L. T., Badylak, S. F. 4 - Decellularization of mammalian tissues: Preparing extracellular matrix bioscaffolds. In Characterisation and design of tissue scaffolds, Tomlins, P., ed. Woodhead Publishing: 2016; pp 75-103.
45. Zhang, X., Chen, X., Hong, H., Hu, R., Liu, J., Liu, C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022, 10, 15-31.
46. Li, J., Cai, Z., Cheng, J., Wang, C., Fang, Z., Xiao, Y., Feng, Z. G., Gu, Y. Characterization of a heparinized decellularized scaffold and its effects on mechanical and structural properties. J Biomater Sci Polym Ed. 2020, 31, 999-1023.
47. Phan, N. V., Wright, T., Rahman, M. M., Xu, J., Coburn, J. M. In vitro biocompatibility of decellularized cultured plant cell-derived matrices. ACS Biomater Sci Eng. 2020, 6, 822-832.
48. Zang, M., Zhang, Q., Chang, E. I., Mathur, A. B., Yu, P. Decellularized tracheal matrix scaffold for tissue engineering. Plast Reconstr Surg. 2012, 130, 532-540.
49. Kang, H., Peng, J., Lu, S., Liu, S., Zhang, L., Huang, J., Sui, X., Zhao, B., Wang, A., Xu, W., Luo, Z., Guo, Q. In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med. 2014, 8, 442-453.
50. Hayrapetyan, L., Arestakesyan, H., Margaryan, A., Oganesyan, A., Grigoryan, V., Karapetyan, A. Comparison of articular and auricular cartilages: decellularization, cell proliferation rate, and infiltration in scaffolds. Res Biomed Eng. 2021, 37, 193-200.
51. Amirazad, H., Dadashpour, M., Zarghami, N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng. 2022, 16, 1.
52. Visscher, D. O., Lee, H., van Zuijlen, P. P. M., Helder, M. N., Atala, A., Yoo, J. J., Lee, S. J. A photo-crosslinkable cartilage-derived extracellular matrix bioink for auricular cartilage tissue engineering. Acta Biomater. 2021, 121, 193-203.
53. Pati, F., Jang, J., Ha, D. H., Won Kim, S., Rhie, J. W., Shim, J. H., Kim, D. H., Cho, D. W. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014, 5, 3935.
54. Shen, Y., Xu, Y., Yi, B., Wang, X., Tang, H., Chen, C., Zhang, Y. Engineering a highly biomimetic chitosan-based cartilage scaffold by using short fibers and a cartilage-decellularized matrix. Biomacromolecules. 2021, 22, 2284-2297.
55. Tian, G., Jiang, S., Li, J., Wei, F., Li, X., Ding, Y., Yang, Z., Sun, Z., Zha, K., Wang, F., Huang, B., Peng, L., Wang, Q., Tian, Z., Yang, X., Wang, Z., Guo, Q., Guo, W., Liu, S. Cell-free decellularized cartilage extracellular matrix scaffolds combined with interleukin 4 promote osteochondral repair through immunomodulatory macrophages: In vitro and in vivo preclinical study. Acta Biomater. 2021, 127, 131-145.
56. Solarte David, V. A., Güiza-Argüello, V. R., Arango-Rodríguez, M. L., Sossa, C. L., Becerra-Bayona, S. M. Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol. 2022, 10, 821852.
57. Garreta, E., Oria, R., Tarantino, C., Pla-Roca, M., Prado, P., Fernández-Avilés, F., Campistol, J. M., Samitier, J., Montserrat, N. Tissue engineering by decellularization and 3D bioprinting. Mater Today. 2017, 20, 166-178.
58. Jang, J., Park, H. J., Kim, S. W., Kim, H., Park, J. Y., Na, S. J., Kim, H. J., Park, M. N., Choi, S. H., Park, S. H., Kim, S. W., Kwon, S. M., Kim, P. J., Cho, D. W. 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials. 2017, 112, 264-274.
59. An, J., Teoh, J. E. M., Suntornnond, R., Chua, C. K. Design and 3D printing of scaffolds and tissues. Engineering. 2015, 1, 261-268.
60. Goodale, H. D. The progeny test as a means of evaluating the breeding potentialities of farm animals. Am Nat. 1933, 67, 481-499.
61. Dzobo, K., Motaung, K., Adesida, A. Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review. Int J Mol Sci. 2019, 20, 4628.
62. Tottey, S., Johnson, S. A., Crapo, P. M., Reing, J. E., Zhang, L., Jiang, H., Medberry, C. J., Reines, B., Badylak, S. F. The effect of source animal age upon extracellular matrix scaffold properties. Biomaterials. 2011, 32, 128-136.
63. Aamodt, J. M., Grainger, D. W. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials. 2016, 86, 68-82.
64. Johnson, T. D., Dequach, J. A., Gaetani, R., Ungerleider, J., Elhag, D., Nigam, V., Behfar, A., Christman, K. L. Human versus porcine tissue sourcing for an injectable myocardial matrix hydrogel. Biomater Sci. 2014, 2014, 60283D.
65. Pati, F., Ha, D. H., Jang, J., Han, H. H., Rhie, J. W., Cho, D. W. Biomimetic 3D tissue printing for soft tissue regeneration. Biomaterials. 2015, 62, 164-175.
66. Assunção, M., Dehghan-Baniani, D., Yiu, C. H. K., Später, T., Beyer, S., Blocki, A. Cell-derived extracellular matrix for tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2020, 8, 602009.
67. Hoshiba, T. Cultured cell-derived decellularized extracellular matrix (cultured cell-derived dECM): Future applications and problems — a mini review. Curr Opin Biomed Eng. 2021, 17, 100256.
68. Antich, C., Jiménez, G., de Vicente, J., López-Ruiz, E., Chocarro-Wrona, C., Griñán-Lisón, C., Carrillo, E., Montañez, E., Marchal, J. A. Development of a biomimetic hydrogel based on predifferentiated mesenchymal stem-cell-derived ecm for cartilage tissue engineering. Adv Healthc Mater. 2021, 10, e2001847.
69. Lee, S. E., Park, Y. S. The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol. 2017, 13, 257-261.
70. Sun, B., Zhang, M., Shen, J., He, Z., Fatehi, P., Ni, Y. Applications of cellulose-based materials in sustained drug delivery systems. Curr Med Chem. 2019, 26, 2485-2501.
71. Müller, F. A., Müller, L., Hofmann, I., Greil, P., Wenzel, M. M., Staudenmaier, R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials. 2006, 27, 3955-3963.
72. Markstedt, K., Mantas, A., Tournier, I., Martínez Ávila, H., Hägg, D., Gatenholm, P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015, 16, 1489-1496.
73. Hong, H., Seo, Y. B., Kim, D. Y., Lee, J. S., Lee, Y. J., Lee, H., Ajiteru, O., Sultan, M. T., Lee, O. J., Kim, S. H., Park, C. H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 2020, 232, 119679.
74. Nuernberger, S., Cyran, N., Albrecht, C., Redl, H., Vécsei, V., Marlovits, S. The influence of scaffold architecture on chondrocyte distribution and behavior in matrix-associated chondrocyte transplantation grafts. Biomaterials. 2011, 32, 1032-1040.
75. Cao, Y., Cheng, P., Sang, S., Xiang, C., An, Y., Wei, X., Yan, Y., Li, P. 3D printed PCL/GelMA biphasic scaffold boosts cartilage regeneration using co-culture of mesenchymal stem cells and chondrocytes: in vivo study. Mater Des. 2021, 210, 110065.
76. Uto, S., Hikita, A., Sakamoto, T., Mori, D., Yano, F., Ohba, S., Saito, T., Takato, T., Hoshi, K. Ear cartilage reconstruction combining induced pluripotent stem cell-derived cartilage and three-dimensional shape-memory scaffold. Tissue Eng Part A. 2021, 27, 604-617.
77. Sommar, P., Pettersson, S., Ness, C., Johnson, H., Kratz, G., Junker, J. P. Engineering three-dimensional cartilage- and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers. J Plast Reconstr Aesthet Surg. 2010, 63, 1036-1046.
78. Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumar, D. S. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011, 2011, 290602.
79. Izadifar, Z., Chen, X., Kulyk, W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J Funct Biomater. 2012, 3, 799-838.
80. Keeney, M., Lai, J. H., Yang, F. Recent progress in cartilage tissue engineering. Curr Opin Biotechnol. 2011, 22, 734-740.
81. Yang, K., Sun, J., Wei, D., Yuan, L., Yang, J., Guo, L., Fan, H., Zhang, X. Photo-crosslinked mono-component type II collagen hydrogel as a matrix to induce chondrogenic differentiation of bone marrow mesenchymal stem cells. J Mater Chem B. 2017, 5, 8707-8718.
82. Behan, K., Dufour, A., Garcia, O., Kelly, D. Methacrylated cartilage ECM-based hydrogels as injectables and bioinks for cartilage tissue engineering. Biomolecules. 2022, 12, 216.
83. Sun, B., Han, Y., Jiang, W., Dai, K. 3D printing bioink preparation and application in cartilage tissue reconstruction in vitro. J Shanghai Jiaotong Univ (Sci). 2021, 26, 267-271.
84. Terpstra, M. L., Li, J., Mensinga, A., de Ruijter, M., van Rijen, M. H. P., Androulidakis, C., Galiotis, C., Papantoniou, I., Matsusaki, M., Malda, J., Levato, R. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication. 2022, 14, 034104.
85. Setayeshmehr, M., Hafeez, S., van Blitterswijk, C., Moroni, L., Mota, C., Baker, M. B. Bioprinting via a dual-gel bioink based on poly(vinyl alcohol) and solubilized extracellular matrix towards cartilage engineering. Int J Mol Sci. 2021, 22, 3901.
86. Govindharaj, M., Hashimi, N. A., Soman, S. S., Kanwar, S., Vijayavenkataraman, S. 3D bioprinting of human mesenchymal stem cells in a novel tunic decellularized ECM bioink for cartilage tissue engineering. Materialia. 2022, 23, 101457.
87. Wiggenhauser, P. S., Schwarz, S., Koerber, L., Hoffmann, T. K., Rotter, N. Addition of decellularized extracellular matrix of porcine nasal cartilage improves cartilage regenerative capacities of PCL-based scaffolds in vitro. J Mater Sci Mater Med. 2019, 30, 121.
88. Zare, P., Pezeshki-Modaress, M., Davachi, S. M., Chahsetareh, H., Simorgh, S., Asgari, N., Haramshahi, M. A., Alizadeh, R., Bagher, Z., Farhadi, M. An additive manufacturing-based 3D printed poly ε-caprolactone/alginate sulfate/extracellular matrix construct for nasal cartilage regeneration. J Biomed Mater Res A. 2022, 110, 1199-1209.
89. Jung, C. S., Kim, B. K., Lee, J., Min, B. H., Park, S. H. Development of printable natural cartilage matrix bioink for 3D printing of irregular tissue shape. Tissue Eng Regen Med. 2018, 15, 155-162.
90. Jia, L., Hua, Y., Zeng, J., Liu, W., Wang, D., Zhou, G., Liu, X., Jiang, H. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioact Mater. 2022, 16, 66-81.
91. Isaeva, E. V., Beketov, E. E., Demyashkin, G. A., Yakovleva, N. D., Arguchinskaya, N. V., Kisel, A. A., Lagoda, T. S., Malakhov, E. P., Smirnova, A. N., Petriev, V. M., Eremin, P. S., Osidak, E. O., Domogatsky, S. P., Ivanov, S. A., Shegay, P. V., Kaprin, A. D. Cartilage formation in vivo using high concentration collagen-based bioink with MSC and decellularized ECM granules. Int J Mol Sci. 2022, 23, 2703.
92. Chen, W., Xu, Y., Li, Y., Jia, L., Mo, X., Jiang, G., Zhou, G. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem Eng J. 2020, 382, 122986.
93. Partington, L., Mordan, N. J., Mason, C., Knowles, J. C., Kim, H. W., Lowdell, M. W., Birchall, M. A., Wall, I. B. Biochemical changes caused by decellularization may compromise mechanical integrity of tracheal scaffolds. Acta Biomater. 2013, 9, 5251-5261.
94. Tchoukalova, Y. D., Hintze, J. M., Hayden, R. E., Lott, D. G. Tracheal decellularization using a combination of chemical, physical and bioreactor methods. Int J Artif Organs. 2017. doi: 10.5301/ijao.5000648.