·
RESEARCH ARTICLE
·

On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects

Seyed Ataollah Naghavi1 Changning Sun2 Mahbubeh Hejazi3 Maryam Tamaddon1 Jibao Zheng2 Leilei Wang2 Chenrui Zhang2 Swastina Nath Varma1 Dichen Li2 Mehran Moazen3 Ling Wang2* Chaozong Liu1*
Show Less
1 nstitute of Orthopaedic & Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London, UK
2 State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
3 Department of Mechanical Engineering, University College London, London, UK
Submitted: 4 May 2022 | Revised: 2 June 2022 | Accepted: 9 June 2022 | Published: 28 June 2022
Copyright © 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Polyether-ether-ketone (PEEK) is widely used in producing prosthesis and have gained great attention for repair of large bone defect in recent years with the development of additive manufacturing. This is due to its excellent biocompatibility, good heat and chemical stability and similar mechanical properties which mimics natural bone. In this study, three replicates of rectilinear scaffolds were designed for compression, tension, three-point bending and torsion test with unit cell size of 0.8 mm, a pore size of 0.4 mm, strut thickness of 0.4 mm and nominal porosity of 50%. Stress-strain graphs were developed from experimental and finite element analysis models. Experimental Young’s modulus and yield strength of the scaffolds were measured from the slop of the stress-strain graph to be 395 and 19.50 MPa respectively for compression, 427 and 6.96 MPa respectively for tension, 257 and 25.30 MPa respectively for three-point bending and 231 and 12.83 MPa respectively for torsion test. The finite element model was found to be in good agreement with the experimental results. Ductile fracture of the struct subjected to tensile strain was the main failure mode of the PEEK scaffold, which stems from the low crystallinity of additive manufacturing PEEK. The mechanical properties of porous PEEK are close to those of cancellous bone and thus are expected to be used in additive manufacturing PEEK bone implants in the future, but the lower yield strength poses a design challenge.

Keywords
additive manufacturing
bone scaffold
finite element analysis
mechanical behaviour
lattice structure
PEEK scaffold
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Verma, S.; Sharma, N.; Kango, S.; Sharma, S. Developments of PEEK (Polyetheretherketone) as a biomedical material: a focused review. Eur Polym J. 2021, 147, 110295.
2. Yu, Y. H.; Liu, S. J. Polyetheretherketone for orthopedic applications: a review. Curr Opin Chem Eng. 2021, 32, 100687.
3. Gu, X.; Sun, X.; Sun, Y.; Wang, J.; Liu, Y.; Yu, K.; Wang, Y.; Zhou, Y. Bioinspired modifications of PEEK implants for bone tissue engineering. Front Bioeng Biotechnol. 2020, 8, 631616.
4. Zanjanijam, A. R.; Major, I.; Lyons, J. G.; Lafont, U.; Devine, D. M. Fused filament fabrication of PEEK: a review of process-structure-property relationships. Polymers. 2020, 12, 1665.
5. Kurtz, S. M.; Devine, J. N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007, 28, 4845-4869.
6. Liu, C. Z.; Sachlos, E.; Wahl, D. A.; Han, Z. W.; Czernuszka, J. T. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyp J. 2007, 13, 163-174.
7. Alemán-Domínguez, M. E.; Giusto, E.; Ortega, Z.; Tamaddon, M.; Benítez, A. N.; Liu, C. Three-dimensional printed polycaprolactone-microcrystalline cellulose scaffolds. J Biomed Mater Res B Appl Biomater. 2019, 107, 521-528.
8. Kang, J.; Wang, L.; Yang, C.; Wang, L.; Yi, C.; He, J.; Li, D. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018, 17, 1083-1092.
9. Wang, L.; Huang, L.; Li, X.; Zhong, D.; Li, D.; Cao, T.; Yang, S.; Yan, X.; Zhao, J.; He, J.; Cao, Y.; Wang, L. Three-dimensional printing PEEK implant: a novel choice for the reconstruction of chest wall defect. Ann Thorac Surg. 2019, 107, 921-928.
10. Kang, J.; Zhang, J.; Zheng, J.; Wang, L.; Li, D.; Liu, S. 3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater. 2021, 116, 104335.
11. Liu, D.; Fu, J.; Fan, H.; Li, D.; Dong, E.; Xiao, X.; Wang, L.; Guo, Z. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: A case report. J Bone Oncol. 2018, 12, 78-82.
12. Sun, F.; Shen, X.; Zhou, N.; Gao, Y.; Guo, Y.; Yang, X.; Wu, G. A speech bulb prosthesis for a soft palate defect with a polyetherketoneketone (PEKK) framework fabricated by multiple digital techniques: a clinical report. J Prosthet Dent. 2020, 124, 495-499.
13. Wu, C.; Zeng, B.; Deng, J.; Shen, D.; Wang, X.; Tan, L.; Liu, X.; Qiu, G. Custom design and biomechanical clinical trials of 3D-printed polyether ether ketone femoral shaft prosthesis. J Biomed Mater Res B Appl Biomater. 2022. doi: 10.1002/jbm.b.35055.
14. Najeeb, S.; Bds, Z. K.; Bds, S. Z.; Bds, M. S. Bioactivity and osseointegration of PEEK are inferior to those of titanium: a systematic review. J Oral Implantol. 2016, 42, 512-516.
15. Walsh, W. R.; Pelletier, M. H.; Bertollo, N.; Christou, C.; Tan, C. Does PEEK/HA enhance bone formation compared with PEEK in a sheep cervical fusion model? Clin Orthop Relat Res. 2016, 474, 2364-2372.
16. Zheng, J.; Zhao, H.; Ouyang, Z.; Zhou, X.; Kang, J.; Yang, C.; Sun, C.; Xiong, M.; Fu, M.; Jin, D.; Wang, L.; Li, D.; Li, Q. Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos B Eng. 2022, 232, 109508.
17. Zhu, Y.; Cao, Z.; Peng, Y.; Hu, L.; Guney, T.; Tang, B. Facile surface modification method for synergistically enhancing the biocompatibility and bioactivity of poly(ether ether ketone) that induced osteodifferentiation. ACS Appl Mater Interfaces. 2019, 11, 27503-27511.
18. Zheng, J.; Zhao, H.; Dong, E.; Kang, J.; Liu, C.; Sun, C.; Li, D.; Wang, L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2021, 128, 112333.
19. Oladapo, B. I.; Ismail, S. O.; Adebiyi, A. V.; Omigbodun, F. T.; Olawumi, M. A.; Olawade, D. B. Nanostructural interface and strength of polymer composite scaffolds applied to intervertebral bone. Colloids Surf Physicochem Eng Aspects. 2021, 627, 127190.
20. Zhong, G.; Vaezi, M.; Mei, X.; Liu, P.; Yang, S. Strategy for controlling the properties of bioactive poly-ether-ether-ketone/hydroxyapatite composites for bone tissue engineering scaffolds. ACS Omega. 2019, 4, 19238-19245.
21. Seo, J.; Gohn, A. M.; Dubin, O.; Takahashi, H.; Hasegawa, H.; Sato, R.; Rhoades, A. M.; Schaake, R. P.; Colby, R. H. Isothermal crystallization of poly(ether ether ketone) with different molecular weights over a wide temperature range. Polym Cryst. 2019, 2, e10055.
22. International Organization for Standardization. ISO 13314:2011. Mechanical testing of metals — ductility testing — compression test for porous and cellular metals.
23. American National Standards Institute. ASTM E143-13. Standard test method for shear modulus at room temperature.
24. Maskery, I.; Sturm, L.; Aremu, A. O.; Panesar, A.; Williams, C. B.; Tuck, C. J.; Wildman, R. D.; Ashcroft, I. A.; Hague, R. J. M. Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing. Polymer. 2018, 152, 62-71.
25. Yang, C.; Tian, X.; Li, D.; Cao, Y.; Zhao, F.; Shi, C. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017, 248, 1-7.
26. Carpenter, R. D.; Klosterhoff, B. S.; Torstrick, F. B.; Foley, K. T.; Burkus, J. K.; Lee, C. S. D.; Gall, K.; Guldberg, R. E.; Safranski, D. L. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. J Mech Behav Biomed Mater. 2018, 80, 68-76.
27. El Halabi, F.; Rodriguez, J. F.; Rebolledo, L.; Hurtós, E.; Doblaré, M. Mechanical characterization and numerical simulation of polyether-ether-ketone (PEEK) cranial implants. J Mech Behav Biomed Mater. 2011, 4, 1819-1832.
28. Sun, C.; Wang, L.; Kang, J.; Li, D.; Jin, Z. Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng. 2018, 15, 693-702.
29. Jiang, Q.; Zaïri, F.; Fréderix, C.; Yan, Z.; Derrouiche, A.; Qu, Z.; Liu, X.; Zaïri, F. Biomechanical response of a novel intervertebral disc prosthesis using functionally graded polymers: A finite element study. J Mech Behav Biomed Mater. 2019, 94, 288-297.
30. Sola, A.; Bellucci, D.; Cannillo, V. Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnol Adv. 2016, 34, 504-531.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top