Graphene-incorporated hyaluronic acid-based hydrogel as a controlled Senexin A delivery system
Perivascular delivery of therapeutic agents against established aetiologies for occlusive vascular remodelling has great therapeutic potential for vein graft failure. However, none of the perivascular drug delivery systems tested experimentally have been translated into clinical practice. In this study, we established a novel strategy to locally and sustainably deliver the cyclin-dependent kinase 8/19 inhibitor Senexin A (SenA), an emerging drug candidate to treat occlusive vascular disease, using graphene oxide-hybridised hyaluronic acid-based hydrogels. We demonstrated an approach to accommodate SenA in hyaluronic acid-based hydrogels through utilising graphene oxide nanosheets allowing for non-covalent interaction with SenA. The resulting hydrogels produced sustained delivery of SenA over 21 days with tunable release kinetics. In vitro assays also demonstrated that the hydrogels were biocompatible. This novel graphene oxide-incorporated hyaluronic acid hydrogel offers an optimistic outlook as a perivascular drug delivery system for treating occlusive vascular diseases, such as vein graft failure.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Sanders WG, Hogrebe PC, Grainger DW, Cheung AK, Terry CM. A biodegradable perivascular wrap for controlled, local and directed drug delivery. J Control Release. 2012;161:81-89.
2. Katare R, Riu F, Rowlinson J, Lewis A, Holden R, Meloni M, Reni C, Wallrapp C, Emanueli C, Madeddu P. Perivascular delivery of encapsulated mesenchymal stem cells improves postischemic angiogenesis via paracrine activation of VEGF-A. Arterioscler Thromb Vasc Biol. 2013;33:1872-1880.
3. Masaki T, Rathi R, Zentner G, Leypoldt JK, Mohammad SF, Burns GL, Li L, Zhuplatov S, Chirananthavat T, Kim SJ, Kern S, Holman J, Kim SW, Cheung AK. Inhibition of neointimal hyperplasia in vascular grafts by sustained perivascular delivery of paclitaxel. Kidney Int. 2004;66:2061-2069.
4. Mylonaki I, Allémann É, Saucy F, Haefliger JA, Delie F, Jordan O. Perivascular medical devices and drug delivery systems: Making the right choices. Biomaterials. 2017;128:56-68.
5. Wu B, Werlin EC, Chen M, Mottola G, Chatterjee A, Lance KD, Bernards DA, Sansbury BE, Spite M, Desai TA, Conte MS. Perivascular delivery of resolvin D1 inhibits neointimal hyperplasia in a rabbit vein graft model. J Vasc Surg. 2018;68:188S-200S.e4.
6. Lee J, Jang EH, Kim JH, Park S, Kang Y, Park S, Lee K, Kim JH, Youn YN, Ryu W. Highly flexible and porous silk fibroin microneedle wraps for perivascular drug delivery. J Control Release. 2021;340:125-135.
7. Uman S, Dhand A, Burdick JA. Recent advances in shear-thinning and self-healing hydrogels for biomedical applications. J Appl Polym Sci. 2020;137:48668.
8. Dovedytis M, Liu ZJ, Bartlett S. Hyaluronic acid and its biomedical applications: A review. Engineered Regen. 2020;1:102-113.
9. Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol. 2019;121:556-571.
10. Trombino S, Servidio C, Curcio F, Cassano R. Strategies for hyaluronic acid-based hydrogel design in drug delivery. Pharmaceutics. 2019;11:407.
11. Ghasemiyeh P, Mohammadi-Samani S. Hydrogels as drug delivery systems; pros and cons. Trends Pharm Sci. 2019;5:7-24.
12. Fu S, Xiao X, Dong H, Zhang Z, Zhang X, Zhong Z, Zhuo R. An injectable hyaluronic acid/PEG hydrogel produced via copper-free click chemistry for drug delivery. J Control Release. 2017;259:e123-e124.
13. França CG, Plaza T, Naveas N, Andrade Santana MH, MansoSilván M, Recio G, Hernandez-Montelongo J. Nanoporous silicon microparticles embedded into oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for enhanced controlled drug delivery. Microporous Mesoporous Mater. 2021;310:110634.
14. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer-nanoparticle synergies for on-demand drug delivery. ACS Nano. 2015;9:4686-4697.
15. Yegappan R, Selvaprithiviraj V, Mohandas A, Jayakumar R. Nano polydopamine crosslinked thiol-functionalized hyaluronic acid hydrogel for angiogenic drug delivery. Colloids Surf B Biointerfaces. 2019;177:41-49.
16. Min Q, Liu J, Zhang Y, Yang B, Wan Y, Wu J. Dual network hydrogels incorporated with bone morphogenic protein-7-loaded hyaluronic acid complex nanoparticles for inducing chondrogenic differentiation of synovium-derived mesenchymal stem cells. Pharmaceutics. 2020;12:613.
17. Asadi H, Ghaee A, Nourmohammadi J, Mashak A. Electrospun zein/graphene oxide nanosheet composite nanofibers with controlled drug release as antibacterial wound dressing. Int J Polymeric Mater Polymeric Biomater. 2020;69:173-185.
18. Ghawanmeh AA, Ali GAM, Algarni H, Sarkar SM, Chong KF. Graphene oxide-based hydrogels as a nanocarrier for anticancer drug delivery. Nano Res. 2019;12:973-990.
19. Kolanthai E, Sindu PA, Khajuria DK, Veerla SC, Kuppuswamy D, Catalani LH, Mahapatra DR. Graphene oxide-A tool for the preparation of chemically crosslinking free alginate-chitosan-collagen scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2018;10:12441-12452.
20. Choe G, Oh S, Seok JM, Park SA, Lee JY. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale. 2019;11:23275-23285.
21. Yildiz G, Bolton-Warberg M, Awaja F. Graphene and graphene oxide for bio-sensing: General properties and the effects of graphene ripples. Acta Biomater. 2021;131:62-79.
22. Gosai A, Khondakar KR, Ma X, Ali MA. Application of functionalized graphene oxide based biosensors for health monitoring: simple graphene derivatives to 3D printed platforms. Biosensors (Basel). 2021;11:384.
23. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183-191.
24. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706-710.
25. Service RF. Materials science. Carbon sheets an atom thick give rise to graphene dreams. Science. 2009;324:875-877.
26. Zhou X, Liu Z. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem Commun (Camb). 2010;46:2611-2613.
27. Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale. 2011;3:4104-4108.
28. Miao W, Shim G, Lee S, Lee S, Choe YS, Oh YK. Safety and tumor tissue accumulation of pegylated graphene oxide nanosheets for co-delivery of anticancer drug and photosensitizer. Biomaterials. 2013;34:3402-3410.
29. Porter DC, Farmaki E, Altilia S, Schools GP, West DK, Chen M, Chang BD, Puzyrev AT, Lim CU, Rokow-Kittell R, Friedhoff LT, Papavassiliou AG, Kalurupalle S, Hurteau G, Shi J, Baran PS, Gyorffy B, Wentland MP, Broude EV, Kiaris H, Roninson IB. Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci U S A. 2012;109:13799-13804.
30. Yu H, Zhang B, Bulin C, Li R, Xing R. High-efficient synthesis of graphene oxide based on improved hummers method. Sci Rep. 2016;6:36143.
31. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano. 2010, 4, 4806-4814
32. Maturavongsadit P, Bi X, Metavarayuth K, Luckanagul JA, Wang Q. Influence of cross-linkers on the in vitro chondrogenesis of mesenchymal stem cells in hyaluronic acid hydrogels. ACS Appl Mater Interfaces. 2017;9:3318-3329.
33. Maturavongsadit P, Luckanagul JA, Metavarayuth K, Zhao X, Chen L, Lin Y, Wang Q. Promotion of in vitro chondrogenesis of mesenchymal stem cells using in situ hyaluronic hydrogel functionalized with rod-like viral nanoparticles. Biomacromolecules. 2016;17:1930-1938.
34. Hiemstra C, Zhou W, Zhong Z, Wouters M, Feijen J. Rapidly in situ forming biodegradable robust hydrogels by combining stereocomplexation and photopolymerization. J Am Chem Soc. 2007;129:9918-9926.
35. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67:217-223.
36. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:e1000412.
37. Gurunathan S, Han JW, Kim ES, Park JH, Kim JH. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int J Nanomedicine. 2015;10:2951-2969.
38. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25-35.
39. Wang H, Gu W, Xiao N, Ye L, Xu Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int J Nanomedicine. 2014;9:1433-1442.
40. Depan D, Shah J, Misra RD. Controlled release of drug from folate-decorated and graphene mediated drug delivery system: Synthesis, loading efficiency, and drug release response. Mater Sci Eng C. 2011;31:1305-1312.
41. Lv Y, Tao L, Annie Bligh SW, Yang H, Pan Q, Zhu L. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Mater Sci Eng C Mater Biol Appl. 2016;59:652-660.
42. Yang D, Gao S, Fang Y, Lin X, Jin X, Wang X, Ke L, Shi K. The π-π stacking-guided supramolecular self-assembly of nanomedicine for effective delivery of antineoplastic therapies. Nanomedicine (Lond). 2018;13:3159-3177.
43. Song J, Cui N, Sun S, Lu X, Wang Y, Shi H, Lee ES, Jiang HB. Controllability of graphene oxide doxorubicin loading capacity based on density functional theory. Nanomaterials (Basel). 2022;12:479.
44. Bonacucina G, Cespi M, Palmieri GF. Evaluation of dissolution kinetics of hydrophilic polymers by use of acoustic spectroscopy. Int J Pharm. 2009;377:153-158.
45. Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev. 2001;48:229-247.
46. Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol. 2012;25:15-34.
47. Girish CM, Sasidharan A, Gowd GS, Nair S, Koyakutty M. Confocal Raman imaging study showing macrophage mediated biodegradation of graphene in vivo. Adv Healthc Mater. 2013;2:1489-1500.
48. Chen, G. Y.; Yang, H. J.; Lu, C. H.; Chao, Y. C.; Hwang, S. M.; Chen, C. L.; Lo, K. W.; Sung, L. Y.; Luo, W. Y.; Tuan, H. Y.; Hu, Y. C. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012, 33, 6559-6569.
49. Zhou, H., Zhao, K., Li, W., Yang, N., Liu, Y., Chen, C., & Wei, T. (2012). The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-κB-related signaling pathways. *Biomaterials, 33*(25), 6933-6942.
50. Russier, J., Treossi, E., Scarsi, A., Perrozzi, F., Dumortier, H., Ottaviano, L., Meneghetti, M., Palermo, V., & Bianco, A. (2013). Evidencing the mask effect of graphene oxide: a comparative study on primary human and murine phagocytic cells. *Nanoscale, 5*(24), 11234-11247.
51. Yue, H., Wei, W., Yue, Z., Wang, B., Luo, N., Gao, Y., Ma, D., Ma, G., & Su, Z. (2012). The role of the lateral dimension of graphene oxide in the regulation of cellular responses. *Biomaterials, 33*(16), 4013-4021.
52. Aviles-Olmos, I., Dickson, J., Kefalopoulou, Z., Djamshidian, A., Kahan, J., Ell, P., Whitton, P., Wyse, R., Isaacs, T., Lees, A., Limousin, P., & Foltynie, T. (2014). Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. *Journal of Parkinson's Disease, 4*(2), 337-344.
53. Zhu, W., Masaki, T., Bae, Y. H., Rathi, R., Cheung, A. K., & Kern, S. E. (2006). Development of a sustained-release system for perivascular delivery of dipyridamole. *Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77*(1), 135-143.
54. Edelman, E. R., Nathan, A., Katada, M., Gates, J., & Karnovsky, M. J. (2000). Perivascular graft heparin delivery using biodegradable polymer wraps. *Biomaterials, 21*(22), 2279-2286.
55. Schachner, T., Zou, Y., Oberhuber, A., Tzankov, A., Mairinger, T., Laufer, G., & Bonatti, J. O. (2004). Local application of rapamycin inhibits neointimal hyperplasia in experimental vein grafts. *Annals of Thoracic Surgery, 77*(5), 1580-1585.
56. Okada, T., Bark, D. H., & Mayberg, M. R. (1989). Localized release of perivascular heparin inhibits intimal proliferation after endothelial injury without systemic anticoagulation. *Neurosurgery, 25*(6), 892-898.
57. Lipke, E. A., & West, J. L. (2005). Localized delivery of nitric oxide from hydrogels inhibits neointima formation in a rat carotid balloon injury model. *Acta Biomaterialia, 1*(6), 597-606.
58. Masters, K. S., Lipke, E. A., Rice, E. E., Liel, M. S., Myler, H. A., Zygourakis, C., Tulis, D. A., & West, J. L. (2005). Nitric oxide-generating hydrogels inhibit neointima formation. *Journal of Biomaterials Science, Polymer Edition, 16*(6), 659-672.