Recent development of hydrogen sulfide-releasing biomaterials as novel therapies:a narrative review
Hydrogen sulfide (H2S) has been reported as an endogenous gasotransmitter that contributes to the modulation of a myriad of biological signalling pathways, which includes maintaining homeostasis in living organisms at physiological concentrations, controlling protein sulfhydration and persulfidation for signalling processes, mediating neurodegeneration, and regulating inflammation and innate immunity, etc. As a result, researchers are actively exploring effective approaches to evaluate the properties and the distribution of H2S in vivo. Furthermore, the regulation of the physiological conditions of H2S in vivo introduces the opportunity to further study the molecular mechanisms by which H2S regulates cellular functions. In recent years, many H2S–releasing compounds and biomaterials that can deliver H2S to various body systems have been developed to provide sustained and stable H2S delivery. Additionally, various designs of these H2S–releasing biomaterials have been proposed to aid in the normal conduction of physiological processes, such as cardioprotection and wound healing, by modulating different signalling pathways and cell functionalities. Using biomaterials as a platform to control the delivery of H2S introduces the opportunity to fine tune the physiological concentration of H2S in vivo, a key to many therapeutic applications. In this review, we highlight recent research works concerning the development and application of H2S–releasing biomaterials with a special emphasis to different release triggering conditions in in vivo studies. We believe that the further exploration of the molecular mechanisms underlying H2S donors and their function when incorporated with various biomaterials will potentially help us understand the pathophysiological mechanisms of different diseases and assist the development of H2S–based therapies.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Olas, B. Hydrogen sulfide in signaling pathways. Clin Chim Acta. 2015, 439, 212-218.
2. Martelli, A.; Testai, L.; Marino, A.; Breschi, M. C.; Da Settimo, F.; Calderone, V. Hydrogen sulphide: biopharmacological roles in the cardiovascular system and pharmaceutical perspectives. Curr Med Chem. 2012, 19, 3325-3336.
3. Li, L.; Hsu, A.; Moore, P. K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases! Pharmacol Ther. 2009, 123, 386-400.
4. Wang, R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002, 16, 1792-1798.
5. Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996, 16, 1066-1071.
6. Peleli, M.; Zampas, P.; Papapetropoulos, A. Hydrogen sulfide and the kidney: physiological roles, contribution to pathophysiology, and therapeutic potential. Antioxid Redox Signal. 2022, 36, 220-243.
7. Mani, S.; Untereiner, A.; Wu, L.; Wang, R. Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid Redox Signal. 2014, 20, 805-817.
8. Feliers, D.; Lee, H. J.; Kasinath, B. S. Hydrogen sulfide in renal physiology and disease. Antioxid Redox Signal. 2016, 25, 720-731.
9. Hu, L. F.; Lu, M.; Hon Wong, P. T.; Bian, J. S. Hydrogen sulfide: neurophysiology and neuropathology. Antioxid Redox Signal. 2011, 15, 405-419.
10. Sen, U.; Pushpakumar, S. B.; Amin, M. A.; Tyagi, S. C. Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator. Nitric Oxide. 2014, 41, 27-37.
11. Predmore, B. L.; Lefer, D. J.; Gojon, G. Hydrogen sulfide in biochemistry and medicine. Antioxid Redox Signal. 2012, 17, 119-140.
12. Popov, D. An outlook on vascular hydrogen sulphide effects, signalling, and therapeutic potential. Arch Physiol Biochem. 2013, 119, 189-194.
13. Kan, J.; Guo, W.; Huang, C.; Bao, G.; Zhu, Y.; Zhu, Y. Z. S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal. 2014, 20, 2303-2316.
14. Qiu, X.; Villalta, J.; Lin, G.; Lue, T. F. Role of hydrogen sulfide in the physiology of penile erection. J Androl. 2012, 33, 529-535.
15. Lefer, D. J. Potential importance of alterations in hydrogen sulphide (H2S) bioavailability in diabetes. Br J Pharmacol. 2008, 155, 617-619.
16. Gupta, S.; Kühnisch, J.; Mustafa, A.; Lhotak, S.; Schlachterman, A.; Slifker, M. J.; Klein-Szanto, A.; High, K. A.; Austin, R. C.; Kruger, W. D. Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia. FASEB J. 2009, 23, 883-893.
17. Fiorucci, S.; Antonelli, E.; Distrutti, E.; Rizzo, G.; Mencarelli, A.; Orlandi, S.; Zanardo, R.; Renga, B.; Di Sante, M.; Morelli, A.; Cirino, G.; Wallace, J. L. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology. 2005, 129, 1210-1224.
18. Denizalti, M.; Bozkurt, T. E.; Akpulat, U.; Sahin-Erdemli, I.; Abacıoğlu, N. The vasorelaxant effect of hydrogen sulfide is enhanced in streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol. 2011, 383, 509-517.
19. Brancaleone, V.; Roviezzo, F.; Vellecco, V.; De Gruttola, L.; Bucci, M.; Cirino, G. Biosynthesis of H2S is impaired in non-obese diabetic (NOD) mice. Br J Pharmacol. 2008, 155, 673-680.
20. Calvert, J. W.; Coetzee, W. A.; Lefer, D. J. Novel insights into hydrogen sulfide--mediated cytoprotection. Antioxid Redox Signal. 2010, 12, 1203-1217.
21. Hartle, M. D.; Pluth, M. D. A practical guide to working with H(2)S at the interface of chemistry and biology. Chem Soc Rev. 2016, 45, 6108-6117.
22. Zhao, Y.; Wang, H.; Huang, H.; Xiao, Q.; Xu, Y.; Guo, Z.; Xie, H.; Shao, J.; Sun, Z.; Han, W.; Yu, X. F.; Li, P.; Chu, P. K. Surface coordination of black phosphorus for robust air and water stability. Angew Chem Int Ed Engl. 2016, 55, 5003-5007.
23. Wang, R. Signaling pathways for the vascular effects of hydrogen sulfide. Curr Opin Nephrol Hypertens. 2011, 20, 107-112.
24. Chen, W. L.; Niu, Y. Y.; Jiang, W. Z.; Tang, H. L.; Zhang, C.; Xia, Q. M.; Tang, X. Q. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Rev Neurosci. 2015, 26, 129-142.
25. Pieretti, J. C.; Junho, C. V. C.; Carneiro-Ramos, M. S.; Seabra, A. B. H(2)S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res. 2020, 161, 105121.
26. Filipovic, M. R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical biology of H(2)S signaling through persulfidation. Chem Rev. 2018, 118, 1253-1337.
27. Reiffenstein, R. J.; Hulbert, W. C.; Roth, S. H. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol. 1992, 32, 109-134.
28. Peng, B.; Xian, M. Hydrogen sulfide detection using nucleophilic substitution-cyclization-based fluorescent probes. Methods Enzymol. 2015, 554, 47-62.
29. Chang, H. W.; Frey, G.; Liu, H.; Xing, C.; Steinman, L.; Boyle, W. J.; Short, J. M. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches. Proc Natl Acad Sci U S A. 2021, 118, e2020606118.
30. Baseggio Conrado, A.; Capuozzo, E.; Mosca, L.; Francioso, A.; Fontana, M. Thiotaurine: from chemical and biological properties to role in H(2)S signaling. Adv Exp Med Biol. 2019, 1155, 755-771.
31. Olson, K. R. Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood? Biochim Biophys Acta. 2009, 1787, 856-863.
32. Zhao, W.; Zhang, J.; Lu, Y.; Wang, R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J. 2001, 20, 6008-6016.
33. Savage, J. C.; Gould, D. H. Determination of sulfide in brain tissue and rumen fluid by ion-interaction reversed-phase high-performance liquid chromatography. J Chromatogr. 1990, 526, 540-545.
34. Goodwin, L. R.; Francom, D.; Dieken, F. P.; Taylor, J. D.; Warenycia, M. W.; Reiffenstein, R. J.; Dowling, G. Determination of sulfide in brain tissue by gas dialysis/ion chromatography: postmortem studies and two case reports. J Anal Toxicol. 1989, 13, 105-109.
35. Whitfield, N. L.; Kreimier, E. L.; Verdial, F. C.; Skovgaard, N.; Olson, K. R. Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol. 2008, 294, R1930-1937.
36. Levitt, M. D.; Abdel-Rehim, M. S.; Furne, J. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal. 2011, 15, 373-378.
37. Warenycia, M. W.; Goodwin, L. R.; Benishin, C. G.; Reiffenstein, R. J.; Francom, D. M.; Taylor, J. D.; Dieken, F. P. Acute hydrogen sulfide poisoning. Demonstration of selective uptake of sulfide by the brainstem by measurement of brain sulfide levels. Biochem Pharmacol. 1989, 38, 973-981.
38. Cao, X.; Ding, L.; Xie, Z. Z.; Yang, Y.; Whiteman, M.; Moore, P. K.; Bian, J. S. A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. 2019, 31, 1-38.
39. He, F.; Cui, X.; Ren, J. A Novel QCM-based biosensor for detection of microorganisms producing hydrogen sulfide. Anal Lett. 2008, 41, 2697-2709.
40. Oh, G. S.; Pae, H. O.; Lee, B. S.; Kim, B. N.; Kim, J. M.; Kim, H. R.; Jeon, S. B.; Jeon, W. K.; Chae, H. J.; Chung, H. T. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med. 2006, 41, 106-119.
41. DeLeon, E. R.; Stoy, G. F.; Olson, K. R. Passive loss of hydrogen sulfide in biological experiments. Anal Biochem. 2012, 421, 203-207.
42. Liu, Y. H.; Lu, M.; Hu, L. F.; Wong, P. T.; Webb, G. D.; Bian, J. S. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal. 2012, 17, 141-185.
43. Levinn, C. M.; Cerda, M. M.; Pluth, M. D. Activatable small-molecule hydrogen sulfide donors. Antioxid Redox Signal. 2020, 32, 96-109.
44. Hao, Y.; Wang, H.; Fang, L.; Bian, J.; Gao, Y.; Li, C. H2S donor and bone metabolism. Front Pharmacol. 2021, 12, 661601.
45. Kang, J.; Li, Z.; Organ, C. L.; Park, C. M.; Yang, C. T.; Pacheco, A.; Wang, D.; Lefer, D. J.; Xian, M. pH-controlled hydrogen sulfide release for myocardial ischemia-reperfusion injury. J Am Chem Soc. 2016, 138, 6336-6339.
46. Zheng, Y.; Yu, B.; De La Cruz, L. K.; Roy Choudhury, M.; Anifowose, A.; Wang, B. Toward hydrogen sulfide based therapeutics: critical drug-delivery and developability issues. Med Res Rev. 2018, 38, 57-100.
47. Zhang, N.; Hu, P.; Wang, Y.; Tang, Q.; Zheng, Q.; Wang, Z.; He, Y. A reactive oxygen species (ROS) activated hydrogen sulfide (H(2)S) donor with self-reporting fluorescence. ACS Sens. 2020, 5, 319-326.
48. Forrester, S. J.; Kikuchi, D. S.; Hernandes, M. S.; Xu, Q.; Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018, 122, 877-902.
49. Zhao, Y.; Pluth, M. D. Hydrogen sulfide donors activated by reactive oxygen species. Angew Chem Int Ed Engl. 2016, 55, 14638-14642.
50. Powell, C. R.; Dillon, K. M.; Matson, J. B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem Pharmacol. 2018, 149, 110-123.
51. Zhao, Y.; Kang, J.; Park, C. M.; Bagdon, P. E.; Peng, B.; Xian, M. Thiol-activated gem-dithiols: a new class of controllable hydrogen sulfide donors. Org Lett. 2014, 16, 4536-4539.
52. Wu, J.; Li, Y.; He, C.; Kang, J.; Ye, J.; Xiao, Z.; Zhu, J.; Chen, A.; Feng, S.; Li, X.; Xiao, J.; Xian, M.; Wang, Q. Novel H(2)S releasing nanofibrous coating for in vivo dermal wound regeneration. ACS Appl Mater Interfaces. 2016, 8, 27474-27481.
53. Schneider, L. A.; Korber, A.; Grabbe, S.; Dissemond, J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007, 298, 413-420.
54. Zhuang, R.; Guo, L.; Du, J.; Wang, S.; Li, J.; Liu, Y. Exogenous hydrogen sulfide inhibits oral mucosal wound-induced macrophage activation via the NF-κB pathway. Oral Dis. 2018, 24, 793-801.
55. Goren, I.; Köhler, Y.; Aglan, A.; Pfeilschifter, J.; Beck, K. F.; Frank, S. Increase of cystathionine-γ-lyase (CSE) during late wound repair: Hydrogen sulfide triggers cytokeratin 10 expression in keratinocytes. Nitric Oxide. 2019, 87, 31-42.
56. Wu, J.; Chen, A.; Zhou, Y.; Zheng, S.; Yang, Y.; An, Y.; Xu, K.; He, H.; Kang, J.; Luckanagul, J. A.; Xian, M.; Xiao, J.; Wang, Q. Novel H(2)S-Releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials. 2019, 222, 119398.
57. Zhao, X.; Liu, L.; An, T.; Xian, M.; Luckanagul, J. A.; Su, Z.; Lin, Y.; Wang, Q. A hydrogen sulfide-releasing alginate dressing for effective wound healing. Acta Biomater. 2020, 104, 85-94.
58. Xu, W.; Watanabe, K.; Mizukami, Y.; Yamamoto, Y.; Suzuki, T. Hydrogen sulfide suppresses the proliferation of intestinal epithelial cells through cell cycle arrest. Arch Biochem Biophys. 2021, 712, 109044.
59. Zhang, H.; Bai, Z.; Zhu, L.; Liang, Y.; Fan, X.; Li, J.; Wen, H.; Shi, T.; Zhao, Q.; Wang, Z. Hydrogen sulfide donors: Therapeutic potential in anti-atherosclerosis. Eur J Med Chem. 2020, 205, 112665.
60. Jewell, C.; Bennett, P.; Mutch, E.; Ackermann, C.; Williams, F. M. Inter-individual variability in esterases in human liver. Biochem Pharmacol. 2007, 74, 932-939.
61. Bełtowski, J. Hydrogen sulfide in pharmacology and medicine--an update. Pharmacol Rep. 2015, 67, 647-658.
62. Zheng, Y.; Ji, X.; Ji, K.; Wang, B. Hydrogen sulfide prodrugs-a review. Acta Pharm Sin B. 2015, 5, 367-377.
63. Wen, Y. D.; Wang, H.; Zhu, Y. Z. The Drug Developments of hydrogen sulfide on cardiovascular disease. Oxid Med Cell Longev. 2018, 2018, 4010395.
64. Zhao, Y.; Biggs, T. D.; Xian, M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb). 2014, 50, 11788-11805.
65. Feng, S.; Zhao, Y.; Xian, M.; Wang, Q. Biological thiols-triggered hydrogen sulfide releasing microfibers for tissue engineering applications. Acta Biomater. 2015, 27, 205-213.
66. Chen, M.; Li, Y. F.; Besenbacher, F. Electrospun nanofibers-mediated on-demand drug release. Adv Healthc Mater. 2014, 3, 1721-1732.
67. Liu, W.; Thomopoulos, S.; Xia, Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater. 2012, 1, 10-25.
68. Venugopal, J.; Low, S.; Choon, A. T.; Ramakrishna, S. Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater. 2008, 84, 34-48.
69. Rowley, J. A.; Madlambayan, G.; Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials. 1999, 20, 45-53.
70. Wu, A. T.; Aoki, T.; Sakoda, M.; Ohta, S.; Ichimura, S.; Ito, T.; Ushida, T.; Furukawa, K. S. Enhancing osteogenic differentiation of MC3T3-E1 cells by immobilizing inorganic polyphosphate onto hyaluronic acid hydrogel. Biomacromolecules. 2015, 16, 166-173.
71. Lee, K. Y.; Mooney, D. J. Alginate: properties and biomedical applications. Prog Polym Sci. 2012, 37, 106-126.
72. Foster, J. C.; Radzinski, S. C.; Zou, X.; Finkielstein, C. V.; Matson, J. B. H(2)S-releasing polymer micelles for studying selective cell toxicity. Mol Pharm. 2017, 14, 1300-1306.
73. Carrazzone, R. J.; Foster, J. C.; Li, Z.; Matson, J. B. Tuning small molecule release from polymer micelles: Varying H(2)S release through cross linking in the micelle core. Eur Polym J. 2020, 141, 110077.
74. Wang, Y.; Kaur, K.; Scannelli, S. J.; Bitton, R.; Matson, J. B. Self-assembled nanostructures regulate H(2)S release from constitutionally isomeric peptides. J Am Chem Soc. 2018, 140, 14945-14951.
75. Kaur, K.; Wang, Y.; Matson, J. B. Linker-regulated H(2)S release from aromatic peptide amphiphile hydrogels. Biomacromolecules. 2020, 21, 1171-1178.
76. Longchamp, A.; Kaur, K.; Macabrey, D.; Dubuis, C.; Corpataux, J. M.; Déglise, S.; Matson, J. B.; Allagnat, F. Hydrogen sulfide-releasing peptide hydrogel limits the development of intimal hyperplasia in human vein segments. Acta Biomater. 2019, 97, 374-384.
77. Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007, 6, 917-935.
78. Szabó, G.; Veres, G.; Radovits, T.; Gero, D.; Módis, K.; Miesel-Gröschel, C.; Horkay, F.; Karck, M.; Szabó, C. Cardioprotective effects of hydrogen sulfide. Nitric Oxide. 2011, 25, 201-210.
79. Pan, L. L.; Liu, X. H.; Gong, Q. H.; Yang, H. B.; Zhu, Y. Z. Role of cystathionine γ-lyase/hydrogen sulfide pathway in cardiovascular disease: a novel therapeutic strategy? Antioxid Redox Signal. 2012, 17, 106-118.
80. Zhu, Y. Z.; Wang, Z. J.; Ho, P.; Loke, Y. Y.; Zhu, Y. C.; Huang, S. H.; Tan, C. S.; Whiteman, M.; Lu, J.; Moore, P. K. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol (1985). 2007, 102, 261-268.
81. Wang, X.; Wang, Q.; Guo, W.; Zhu, Y. Z. Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. Biosci Rep. 2011, 31, 87-98.
82. Zhuo, Y.; Chen, P. F.; Zhang, A. Z.; Zhong, H.; Chen, C. Q.; Zhu, Y. Z. Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biol Pharm Bull. 2009, 32, 1406-1410.
83. Rossoni, G.; Sparatore, A.; Tazzari, V.; Manfredi, B.; Del Soldato, P.; Berti, F. The hydrogen sulphide-releasing derivative of diclofenac protects against ischaemia-reperfusion injury in the isolated rabbit heart. Br J Pharmacol. 2008, 153, 100-109.
84. Sun, X.; Wang, W.; Dai, J.; Jin, S.; Huang, J.; Guo, C.; Wang, C.; Pang, L.; Wang, Y. A long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep. 20177, 3541.
85. Takatani-Nakase, T.; Katayama, M.; Matsui, C.; Hanaoka, K.; van der Vlies, A. J.; Takahashi, K.; Nakase, I.; Hasegawa, U. Hydrogen sulfide donor micelles protect cardiomyocytes from ischemic cell death. Mol Biosyst. 2017, 13, 1705-1708.
86. Wang, Y.; Zhao, X.; Jin, H.; Wei, H.; Li, W.; Bu, D.; Tang, X.; Ren, Y.; Tang, C.; Du, J. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2009, 29, 173-179.
87. Li, W.; Tang, C.; Jin, H.; Du, J. Regulatory effects of sulfur dioxide on the development of atherosclerotic lesions and vascular hydrogen sulfide in atherosclerotic rats. Atherosclerosis. 2011, 215, 323-330.
88. Li, L.; Whiteman, M.; Moore, P. K. Dexamethasone inhibits lipopolysaccharide-induced hydrogen sulphide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med. 2009, 13, 2684-2692.
89. Pan, L. L.; Liu, X. H.; Gong, Q. H.; Wu, D.; Zhu, Y. Z. Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS One. 2011, 6, e19766.
90. Zhang, H.; Hao, L. Z.; Pan, J. A.; Gao, Q.; Zhang, J. F.; Kankala, R. K.; Wang, S. B.; Chen, A. Z.; Zhang, H. L. Microfluidic fabrication of inhalable large porous microspheres loaded with H(2)S-releasing aspirin derivative for pulmonary arterial hypertension therapy. J Control Release. 2021, 329, 286-298.
91. Wang, Y.; Matson, J. B. Supramolecular nanostructures with tunable donor loading for controlled H(2)S release. ACS Appl Bio Mater. 2019, 2, 5093-5098.
92. Lu, B.; Han, X.; Zhao, A.; Luo, D.; Maitz, M. F.; Wang, H.; Yang, P.; Huang, N. Intelligent H2S release coating for regulating vascular remodeling. Bioact Mater. 2021, 6, 1040-1050.
93. Liang, W.; Chen, J.; Li, L.; Li, M.; Wei, X.; Tan, B.; Shang, Y.; Fan, G.; Wang, W.; Liu, W. Conductive hydrogen sulfide-releasing hydrogel encapsulating ADSCs for myocardial infarction treatment. ACS Appl Mater Interfaces. 2019, 11, 14619-14629.
94. Mauretti, A.; Neri, A.; Kossover, O.; Seliktar, D.; Nardo, P. D.; Melino, S. Design of a novel composite H2S-releasing hydrogel for cardiac tissue repair. Macromol Biosci. 2016, 16, 847-858.
95. Xiao, Q.; Xiong, L.; Tang, J.; Li, L.; Li, L. Hydrogen Sulfide in Skin Diseases: A Novel Mediator and Therapeutic Target. Oxid Med Cell Longev. 2021, 2021, 6652086.
96. Oyoshi, M. K.; He, R.; Kumar, L.; Yoon, J.; Geha, R. S. Cellular and molecular mechanisms in atopic dermatitis. Adv Immunol. 2009, 102, 135-226.
97. Angel, P.; Szabowski, A. Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin. Biochem Pharmacol. 2002, 64, 949-956.
98. Lerman, O. Z.; Galiano, R. D.; Armour, M.; Levine, J. P.; Gurtner, G. C. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003, 162, 303-312.
99. Xuan, Y. H.; Huang, B. B.; Tian, H. S.; Chi, L. S.; Duan, Y. M.; Wang, X.; Zhu, Z. X.; Cai, W. H.; Zhu, Y. T.; Wei, T. M.; Ye, H. B.; Cong, W. T.; Jin, L. T. High-glucose inhibits human fibroblast cell migration in wound healing via repression of bFGF-regulating JNK phosphorylation. PLoS One. 2014, 9, e108182.
100. Hu, S. C.; Lan, C. E. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J Dermatol Sci. 2016, 84, 121-127.
101. Baltzis, D.; Eleftheriadou, I.; Veves, A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014, 31, 817-836.
102. Xie, X.; Dai, H.; Zhuang, B.; Chai, L.; Xie, Y.; Li, Y. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes. Biochem Biophys Res Commun. 2016, 472, 437-443.
103. Ying, J.; Wang, Q.; Jiang, M.; Wang, X.; Liu, W.; Wang, X.; Zhang, C.; Xiang, L. Hydrogen sulfide promotes cell proliferation and melanin synthesis in primary human epidermal melanocytes. Skin Pharmacol Physiol. 2020, 33, 61-68.
104. Liu, F.; Chen, D. D.; Sun, X.; Xie, H. H.; Yuan, H.; Jia, W.; Chen, A. F. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes. 2014, 63, 1763-1778.
105. Zhao, H.; Lu, S.; Chai, J.; Zhang, Y.; Ma, X.; Chen, J.; Guan, Q.; Wan, M.; Liu, Y. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation. J Diabetes Complications. 2017, 31, 1363-1369.
106. Papapetropoulos, A.; Pyriochou, A.; Altaany, Z.; Yang, G.; Marazioti, A.; Zhou, Z.; Jeschke, M. G.; Branski, L. K.; Herndon, D. N.; Wang, R.; Szabó, C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A. 2009, 106, 21972-21977.
107. Yang, C. T.; Chen, L.; Chen, W. L.; Li, N.; Chen, M. J.; Li, X.; Zheng, X.; Zhao, Y. Z.; Wu, Y. X.; Xian, M.; Liu, J. Hydrogen sulfide primes diabetic wound to close through inhibition of NETosis. Mol Cell Endocrinol. 2019, 480, 74-82.
108. Saha, S.; Chakraborty, P. K.; Xiong, X.; Dwivedi, S. K.; Mustafi, S. B.; Leigh, N. R.; Ramchandran, R.; Mukherjee, P.; Bhattacharya, R. Cystathionine β-synthase regulates endothelial function via protein S-sulfhydration. FASEB J. 2016, 30, 441-456.
109. Whiteman, M.; Gooding, K. M.; Whatmore, J. L.; Ball, C. I.; Mawson, D.; Skinner, K.; Tooke, J. E.; Shore, A. C. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia. 2010, 53, 1722-1726.
110. Jain, S. K.; Bull, R.; Rains, J. L.; Bass, P. F.; Levine, S. N.; Reddy, S.; McVie, R.; Bocchini, J. A. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin-treated rats causes vascular inflammation? Antioxid Redox Signal. 2010, 12, 1333-1337.
111. Szabó, C.; Papapetropoulos, A. Hydrogen sulphide and angiogenesis: mechanisms and applications. Br J Pharmacol. 2011, 164, 853-865.
112. Khoshnevisan, K.; Maleki, H.; Samadian, H.; Doostan, M.; Khorramizadeh, M. R. Antibacterial and antioxidant assessment of cellulose acetate/polycaprolactone nanofibrous mats impregnated with propolis. Int J Biol Macromol. 2019, 140, 1260-1268.
113. Kannon, G. A.; Garrett, A. B. Moist wound healing with occlusive dressings. A clinical review. Dermatol Surg. 1995, 21, 583-590.
114. Lin, S. Y.; Chen, K. S.; Run-Chu, L. Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials. 2001, 22, 2999-3004.
115. Nazarnezhada, S.; Abbaszadeh-Goudarzi, G.; Samadian, H.; Khaksari, M.; Ghatar, J. M.; Khastar, H.; Rezaei, N.; Mousavi, S. R.; Shirian, S.; Salehi, M. Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: In vitro and in vivo study. Int J Biol Macromol. 2020, 164, 3323-3331.
116. Lian, J.; Ju, G.; Cai, X.; Cai, Y.; Li, C.; Ma, S.; Cao, Y. Nanofibrous membrane dressings loaded with sodium hydrogen sulfide/endothelial progenitor cells promote wound healing. Front Bioeng Biotechnol. 2021, 9, 657549.
117. Liu, D.; Liao, Y.; Cornel, E. J.; Lv, M.; Wu, T.; Zhang, X.; Fan, L.; Sun, M.; Zhu, Y.; Fan, Z.; Du, J. Polymersome wound dressing spray capable of bacterial inhibition and H2S generation for complete diabetic wound healing. Chem Mater. 2021, 33, 7972-7985.
118. Qian, Y.; Altamimi, A.; Yates, S. A.; Sarkar, S.; Cochran, M.; Zhou, M.; Levi-Polyachenko, N.; Matson, J. B. H(2)S-releasing amphiphilic dipeptide hydrogels are potent S. aureus biofilm disruptors. Biomater Sci. 2020, 8, 2564-2576.
119. Zheng, Z.; Chen, A.; He, H.; Chen, Y.; Chen, J.; Albashari, A. A.; Li, J.; Yin, J.; He, Z.; Wang, Q.; Wu, J.; Wang, Q.; Kang, J.; Xian, M.; Wang, X.; Xiao, J. pH and enzyme dual-responsive release of hydrogen sulfide for disc degeneration therapy. J Mater Chem B. 2019, 7, 611-618.
120. Cacciotti, I.; Ciocci, M.; Di Giovanni, E.; Nanni, F.; Melino, S. Hydrogen sulfide-releasing fibrous membranes: potential patches for stimulating human stem cells proliferation and viability under oxidative stress. Int J Mol Sci. 2018, 19, 2368.
121. Raggio, R.; Bonani, W.; Callone, E.; Dirè, S.; Gambari, L.; Grassi, F.; Motta, A. Silk fibroin porous scaffolds loaded with a slow-releasing hydrogen sulfide agent (GYY4137) for applications of tissue engineering. ACS Biomater Sci Eng. 2018, 4, 2956-2966.
122. Kim, B. Y.; Han, M. J.; Chung, A. S. Effects of reactive oxygen species on proliferation of Chinese hamster lung fibroblast (V79) cells. Free Radic Biol Med. 2001, 30, 686-698.
123. Murrell, G. A.; Francis, M. J.; Bromley, L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem J. 1990, 265, 659-665.
124. Toullec, A.; Gerald, D.; Despouy, G.; Bourachot, B.; Cardon, M.; Lefort, S.; Richardson, M.; Rigaill, G.; Parrini, M. C.; Lucchesi, C.; Bellanger, D.; Stern, M. H.; Dubois, T.; Sastre-Garau, X.; Delattre, O.; Vincent-Salomon, A.; Mechta-Grigoriou, F. Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Mol Med. 2010, 2, 211-230.
125. Dao, N. V.; Ercole, F.; Urquhart, M. C.; Kaminskas, L. M.; Nowell, C. J.; Davis, T. P.; Sloan, E. K.; Whittaker, M. R.; Quinn, J. F. Trisulfide linked cholesteryl PEG conjugate attenuates intracellular ROS and collagen-1 production in a breast cancer co-culture model. Biomater Sci. 2021, 9, 835-846.
126. Liu, Y.; Yang, F.; Yuan, C.; Li, M.; Wang, T.; Chen, B.; Jin, J.; Zhao, P.; Tong, J.; Luo, S.; Gu, N. Magnetic nanoliposomes as in situ microbubble bombers for multimodality image-guided cancer theranostics. ACS Nano. 2017, 11, 1509-1519.