·
REVIEW
·

Osteoarthritis animal models for biomaterial-assisted osteochondral regeneration

Yi Wang1 Yangyang Chen2 Yulong Wei2*
Show Less
1 Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, China
2 Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
Submitted: 11 November 2022 | Revised: 26 November 2022 | Accepted: 10 December 2022 | Published: 28 December 2022
Copyright © 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Clinical therapeutics for the regeneration of osteochondral defects (OCD) in the early stages of osteoarthritis remain an enormous challenge in orthopaedics. For in-depth studies of tissue engineering and regenerative medicine in terms of OCD treatment, the utility of an optimal OCD animal model is crucial for assessing the effects of implanted biomaterials on the repair of damaged osteochondral tissues. Currently, the most frequently used in vivo animal models for OCD regeneration include mice, rats, rabbits, dogs, pigs, goats, sheep, horses and nonhuman primates. However, there is no single “gold standard” animal model to accurately recapitulate human disease in all aspects, thus understanding the benefits and limitations of each animal model is critical for selecting the most suitable one. In this review, we aim to elaborate the complex pathological changes in osteoarthritic joints and to summarise the advantages and limitations of OCD animal models utilised for biomaterial testing along with the methodology of outcome assessment. Furthermore, we review the surgical procedures of OCD creation in different species, and the novel biomaterials that promote OCD regeneration. Above all, it provides a significant reference for selection of an appropriate animal model for use in preclinical in vivo studies of biomaterial-assisted osteochondral regeneration in osteoarthritic joints.

Keywords
animal model
biomaterial
osteochondral defect
regeneration
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Vina, E. R.; Kwoh, C. K. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018, 30, 160-167.
2. Cross, M.; Smith, E.; Hoy, D.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C. L.; Laslett, L. L.; Jones, G.; Cicuttini, F.; Osborne, R.; Vos, T.; Buchbinder, R.; Woolf, A.; March, L. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014, 73, 1323-1330.
3. Cope, P. J.; Ourradi, K.; Li, Y.; Sharif, M. Models of osteoarthritis: the good, the bad and the promising. Osteoarthritis Cartilage. 2019, 27, 230-239.
4. Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage. 2013, 21, 1145-1153.
5. Kuyinu, E. L.; Narayanan, G.; Nair, L. S.; Laurencin, C. T. Animal models of osteoarthritis: classification, update, and measurement of outcomes. J Orthop Surg Res. 2016, 11, 19.
6. Meng, X.; Ziadlou, R.; Grad, S.; Alini, M.; Wen, C.; Lai, Y.; Qin, L.; Zhao, Y.; Wang, X. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int. 2020, 2020, 9659412.
7. Li, X.; Ding, J.; Wang, J.; Zhuang, X.; Chen, X. Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater. 2015, 2, 221-228.
8. Matthews, G. L. Disease modification: promising targets and impediments to success. Rheum Dis Clin North Am. 2013, 39, 177-187.
9. Haviv, B.; Bronak, S.; Thein, R. The complexity of pain around the knee in patients with osteoarthritis. Isr Med Assoc J. 2013, 15, 178-181.
10. Seo, S. S.; Kim, C. W.; Jung, D. W. Management of focal chondral lesion in the knee joint. Knee Surg Relat Res. 2011, 23, 185-196.
11. Meng, X.; Grad, S.; Wen, C.; Lai, Y.; Alini, M.; Qin, L.; Wang, X. An impaired healing model of osteochondral defect in papain-induced arthritis. J Orthop Translat. 2021, 26, 101-110.
12. Deng, C.; Chang, J.; Wu, C. Bioactive scaffolds for osteochondral regeneration. J Orthop Translat. 2019, 17, 15-25.
13. Altman, R.; Asch, E.; Bloch, D.; Bole, G.; Borenstein, D.; Brandt, K.; Christy, W.; Cooke, T. D.; Greenwald, R.; Hochberg, M.; Howell, D.; Kaplan, D.; Koopman, W.; Longley III, S.; Mankin, H.; McShane, D. J.; Medsger, T.; Meenan, R.; Mikkelsen, W.; Moskowitz, R.; Murphy, W.; Rothschild, B.; Segal, M.; Sokoloff, L.; Wolfe, F. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986, 29, 1039-1049.
14. Altman, R. D. Criteria for classification of clinical osteoarthritis. J Rheumatol Suppl. 1991, 27, 10-12.
15. Lambova, S. N.; Müller-Ladner, U. Osteoarthritis - current insights in pathogenesis, diagnosis and treatment. Curr Rheumatol Rev. 2018, 14, 91-97.
16. Mow, V. C.; Ratcliffe, A.; Poole, A. R. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials. 1992, 13, 67-97.
17. Armiento, A. R.; Stoddart, M. J.; Alini, M.; Eglin, D. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 2018, 65, 1-20.
18. Pearle, A. D.; Warren, R. F.; Rodeo, S. A. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005, 24, 1-12.
19. Lyons, T. J.; Stoddart, R. W.; McClure, S. F.; McClure, J. The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol. 2005, 36, 207-215.
20. Zhang, Y.; Wang, F.; Tan, H.; Chen, G.; Guo, L.; Yang, L. Analysis of the mineral composition of the human calcified cartilage zone. Int J Med Sci. 2012, 9, 353-360.
21. Madry, H.; van Dijk, C. N.; Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc. 2010, 18, 419-433.
22. Pan, J.; Zhou, X.; Li, W.; Novotny, J. E.; Doty, S. B.; Wang, L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res. 2009, 27, 1347-1352.
23. Englund, M. The role of the meniscus in osteoarthritis genesis. Rheum Dis Clin North Am. 2008, 34, 573-579.
24. Verdonk, P. C.; Forsyth, R. G.; Wang, J.; Almqvist, K. F.; Verdonk, R.; Veys, E. M.; Verbruggen, G. Characterisation of human knee meniscus cell phenotype. Osteoarthritis Cartilage. 2005, 13, 548-560.
25. de Sousa, E. B.; Casado, P. L.; Moura Neto, V.; Duarte, M. E.; Aguiar, D. P. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res Ther. 2014, 5, 112.
26. Scanzello, C. R.; Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012, 51, 249-257.
27. Goldring, M. B.; Marcu, K. B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009, 11, 224.
28. Sandy, J. D. A contentious issue finds some clarity: on the independent and complementary roles of aggrecanase activity and MMP activity in human joint aggrecanolysis. Osteoarthritis Cartilage. 2006, 14, 95-100.
29. Rengel, Y.; Ospelt, C.; Gay, S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res Ther. 2007, 9, 221.
30. Pereira, D.; Ramos, E.; Branco, J. Osteoarthritis. Acta Med Port. 2015, 28, 99-106.
31. Pfander, D.; Körtje, D.; Zimmermann, R.; Weseloh, G.; Kirsch, T.; Gesslein, M.; Cramer, T.; Swoboda, B. Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann Rheum Dis. 2001, 60, 1070-1073.
32. Towle, C. A.; Hung, H. H.; Bonassar, L. J.; Treadwell, B. V.; Mangham, D. C. Detection of interleukin-1 in the cartilage of patients with osteoarthritis: a possible autocrine/paracrine role in pathogenesis. Osteoarthritis Cartilage. 1997, 5, 293-300.
33. Molnar, V.; Matišić, V.; Kodvanj, I.; Bjelica, R.; Jeleč, Ž.; Hudetz, D.; Rod, E.; Čukelj, F.; Vrdoljak, T.; Vidović, D.; Starešinić, M.; Sabalić, S.; Dobričić, B.; Petrović, T.; Antičević, D.; Borić, I.; Košir, R.; Zmrzljak, U. P.; Primorac, D. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. 2021, 22, 9208.
34. Vincenti, M. P.; Brinckerhoff, C. E. Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 2002, 4, 157-164.
35. Mead, T. J.; Apte, S. S. ADAMTS proteins in human disorders. Matrix Biol. 2018, 71-72, 225-239.
36. Goldenberg, D. L.; Egan, M. S.; Cohen, A. S. Inflammatory synovitis in degenerative joint disease. J Rheumatol. 1982, 9, 204-209.
37. Wood, M. J.; Leckenby, A.; Reynolds, G.; Spiering, R.; Pratt, A. G.; Rankin, K. S.; Isaacs, J. D.; Haniffa, M. A.; Milling, S.; Hilkens, C. M. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight. 2019, 4, e125325.
38. Kraus, V. B.; McDaniel, G.; Huebner, J. L.; Stabler, T. V.; Pieper, C. F.; Shipes, S. W.; Petry, N. A.; Low, P. S.; Shen, J.; McNearney, T. A.; Mitchell, P. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthritis Cartilage. 2016, 24, 1613-1621.
39. Muraille, E.; Leo, O.; Moser, M. TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 2014, 5, 603.
40. Thomson, A.; Hilkens, C. M. U. Synovial macrophages in osteoarthritis: the key to understanding pathogenesis? Front Immunol. 2021, 12, 678757.
41. Kurowska-Stolarska, M.; Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open. 2017, 3, e000527.
42. Ghadially, F. N.; Lalonde, J. M.; Wedge, J. H. Ultrastructure of normal and torn menisci of the human knee joint. J Anat. 1983, 136, 773-791.
43. Fuhrmann, I. K.; Steinhagen, J.; Rüther, W.; Schumacher, U. Comparative immunohistochemical evaluation of the zonal distribution of extracellular matrix and inflammation markers in human meniscus in osteoarthritis and rheumatoid arthritis. Acta Histochem. 2015, 117, 243-254.
44. Favero, M.; Belluzzi, E.; Trisolino, G.; Goldring, M. B.; Goldring, S. R.; Cigolotti, A.; Pozzuoli, A.; Ruggieri, P.; Ramonda, R.; Grigolo, B.; Punzi, L.; Olivotto, E. Inflammatory molecules produced by meniscus and synovium in early and end-stage osteoarthritis: a coculture study. J Cell Physiol. 2019, 234, 11176-11187.
45. Gupta, T.; Zielinska, B.; McHenry, J.; Kadmiel, M.; Haut Donahue, T. L. IL-1 and iNOS gene expression and NO synthesis in the superior region of meniscal explants are dependent on the magnitude of compressive strains. Osteoarthritis Cartilage. 2008, 16, 1213-1219.
46. DeGroot, J.; Verzijl, N.; Wenting-van Wijk, M. J.; Jacobs, K. M.; Van El, B.; Van Roermund, P. M.; Bank, R. A.; Bijlsma, J. W.; TeKoppele, J. M.; Lafeber, F. P. Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum. 2004, 50, 1207-1215.
47. Chen, Y. J.; Chan, D. C.; Chiang, C. K.; Wang, C. C.; Yang, T. H.; Lan, K. C.; Chao, S. C.; Tsai, K. S.; Yang, R. S.; Liu, S. H. Advanced glycation end-products induced VEGF production and inflammatory responses in human synoviocytes via RAGE-NF-κB pathway activation. J Orthop Res. 2016, 34, 791-800.
48. Bonnelye, E.; Aubin, J. E. Estrogen receptor-related receptor alpha: a mediator of estrogen response in bone. J Clin Endocrinol Metab. 2005, 90, 3115-3121.
49. Bonnelye, E.; Vanacker, J. M.; Dittmar, T.; Begue, A.; Desbiens, X.; Denhardt, D. T.; Aubin, J. E.; Laudet, V.; Fournier, B. The ERR-1 orphan receptor is a transcriptional activator expressed during bone development. Mol Endocrinol. 1997, 11, 905-916.
50. Son, Y. O.; Park, S.; Kwak, J. S.; Won, Y.; Choi, W. S.; Rhee, J.; Chun, C. H.; Ryu, J. H.; Kim, D. K.; Choi, H. S.; Chun, J. S. Estrogen-related receptor γ causes osteoarthritis by upregulating extracellular matrix-degrading enzymes. Nat Commun. 2017, 8, 2133.
51. Tang, J.; Liu, T.; Wen, X.; Zhou, Z.; Yan, J.; Gao, J.; Zuo, J. Estrogen-related receptors: novel potential regulators of osteoarthritis pathogenesis. Mol Med. 2021, 27, 5.
52. Conde, J.; Scotece, M.; Gómez, R.; Lopez, V.; Gómez-Reino, J. J.; Gualillo, O. Adipokines and osteoarthritis: novel molecules involved in the pathogenesis and progression of disease. Arthritis. 2011, 2011, 203901.
53. Lampropoulou-Adamidou, K.; Lelovas, P.; Karadimas, E. V.; Liakou, C.; Triantafillopoulos, I. K.; Dontas, I.; Papaioannou, N. A. Useful animal models for the research of osteoarthritis. Eur J Orthop Surg Traumatol. 2014, 24, 263-271.
54. McCoy, A. M. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015, 52, 803-818.
55. Chu, C. R.; Szczodry, M.; Bruno, S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010, 16, 105-115.
56. Schneider-Wald, B.; von Thaden, A. K.; Schwarz, M. L. Defect models for the regeneration of articular cartilage in large animals. Orthopade. 2013, 42, 242-253.
57. Serra, C. I.; Soler, C. Animal models of osteoarthritis in small mammals. Vet Clin North Am Exot Anim Pract. 2019, 22, 211-221.
58. Dias, I. R.; Viegas, C. A.; Carvalho, P. P. Large animal models for osteochondral regeneration. Adv Exp Med Biol. 2018, 1059, 441-501.
59. Outerbridge, R. E. The etiology of chondromalacia patellae. J Bone Joint Surg Br. 1961, 43-B, 752-757.
60. Glasson, S. S.; Chambers, M. G.; Van Den Berg, W. B.; Little, C. B. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the mouse. Osteoarthritis Cartilage. 2010, 18 Suppl 3, S17-23.
61. Ahern, B. J.; Parvizi, J.; Boston, R.; Schaer, T. P. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage. 2009, 17, 705-713.
62. Wang, P.; Zhang, F.; He, Q.; Wang, J.; Shiu, H. T.; Shu, Y.; Tsang, W. P.; Liang, S.; Zhao, K.; Wan, C. Flavonoid compound icariin activates hypoxia inducible factor-1α in chondrocytes and promotes articular cartilage repair. PLoS One. 2016, 11, e0148372.
63. Eltawil, N. M.; De Bari, C.; Achan, P.; Pitzalis, C.; Dell’accio, F. A novel in vivo murine model of cartilage regeneration. Age and strain-dependent outcome after joint surface injury. Osteoarthritis Cartilage. 2009, 17, 695-704.
64. Shen, K.; Liu, X.; Qin, H.; Chai, Y.; Wang, L.; Yu, B. HA-g-CS implant and moderate-intensity exercise stimulate subchondral bone remodeling and promote repair of osteochondral defects in mice. Int J Med Sci. 2021, 18, 3808-3820.
65. Cook, J. L.; Hung, C. T.; Kuroki, K.; Stoker, A. M.; Cook, C. R.; Pfeiffer, F. M.; Sherman, S. L.; Stannard, J. P. Animal models of cartilage repair. Bone Joint Res. 2014, 3, 89-94.
66. Park, K. S.; Kim, B. J.; Lih, E.; Park, W.; Lee, S. H.; Joung, Y. K.; Han, D. K. Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta Biomater. 2018, 73, 204-216.
67. Gregory, M. H.; Capito, N.; Kuroki, K.; Stoker, A. M.; Cook, J. L.; Sherman, S. L. A review of translational animal models for knee osteoarthritis. Arthritis. 2012, 2012, 764621.
68. Proffen, B. L.; McElfresh, M.; Fleming, B. C.; Murray, M. M. A comparative anatomical study of the human knee and six animal species. Knee. 2012, 19, 493-499.
69. Räsänen, T.; Messner, K. Regional variations of indentation stiffness and thickness of normal rabbit knee articular cartilage. J Biomed Mater Res. 1996, 31, 519-524.
70. Radhakrishnan, J.; Manigandan, A.; Chinnaswamy, P.; Subramanian, A.; Sethuraman, S. Gradient nano-engineered in situ forming composite hydrogel for osteochondral regeneration. Biomaterials. 2018, 162, 82-98.
71. Levingstone, T. J.; Thompson, E.; Matsiko, A.; Schepens, A.; Gleeson, J. P.; O’Brien, F. J. Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater. 2016, 32, 149-160.
72. Ramallal, M.; Maneiro, E.; López, E.; Fuentes-Boquete, I.; López-Armada, M. J.; Fernández-Sueiro, J. L.; Galdo, F.; De Toro, F. J.; Blanco, F. J. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Wound Repair Regen. 2004, 12, 337-345.
73. Cook, J. L.; Kuroki, K.; Visco, D.; Pelletier, J. P.; Schulz, L.; Lafeber, F. P. The OARSI histopathology initiative - recommendations for histological assessments of osteoarthritis in the dog. Osteoarthritis Cartilage. 2010, 18 Suppl 3, S66-79.
74. Shortkroff, S.; Barone, L.; Hsu, H. P.; Wrenn, C.; Gagne, T.; Chi, T.; Breinan, H.; Minas, T.; Sledge, C. B.; Tubo, R.; Spector, M. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials. 1996, 17, 147-154.
75. van Dyk, G. E.; Dejardin, L. M.; Flo, G.; Johnson, L. L. Cancellous bone grafting of large osteochondral defects: an experimental study in dogs. Arthroscopy. 1998, 14, 311-320.
76. Cook, S. D.; Patron, L. P.; Salkeld, S. L.; Rueger, D. C. Repair of articular cartilage defects with osteogenic protein-1 (BMP-7) in dogs. J Bone Joint Surg Am. 2003, 85-A Suppl 3, 116-123.
77. Kazemi, D.; Shams Asenjan, K.; Dehdilani, N.; Parsa, H. Canine articular cartilage regeneration using mesenchymal stem cells seeded on platelet rich fibrin: macroscopic and histological assessments. Bone Joint Res. 2017, 6, 98-107.
78. Vernon, L.; Abadin, A.; Wilensky, D.; Huang, C. Y.; Kaplan, L. Subphysiological compressive loading reduces apoptosis following acute impact injury in a porcine cartilage model. Sports Health. 2014, 6, 81-88.
79. Frisbie, D. D.; Cross, M. W.; McIlwraith, C. W. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet Comp Orthop Traumatol. 2006, 19, 142-146.
80. Gotterbarm, T.; Breusch, S. J.; Schneider, U.; Jung, M. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim. 2008, 42, 71-82.
81. Vasara, A. I.; Hyttinen, M. M.; Pulliainen, O.; Lammi, M. J.; Jurvelin, J. S.; Peterson, L.; Lindahl, A.; Helminen, H. J.; Kiviranta, I. Immature porcine knee cartilage lesions show good healing with or without autologous chondrocyte transplantation. Osteoarthritis Cartilage. 2006, 14, 1066-1074.
82. Hembry, R. M.; Dyce, J.; Driesang, I.; Hunziker, E. B.; Fosang, A. J.; Tyler, J. A.; Murphy, G. Immunolocalization of matrix metalloproteinases in partial-thickness defects in pig articular cartilage. A preliminary report. J Bone Joint Surg Am. 2001, 83, 826-838.
83. Chang, C. H.; Kuo, T. F.; Lin, C. C.; Chou, C. H.; Chen, K. H.; Lin, F. H.; Liu, H. C. Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials. 2006, 27, 1876-1888.
84. Lu, Y.; Hayashi, K.; Hecht, P.; Fanton, G. S.; Thabit, G., 3rd; Cooley, A. J.; Edwards, R. B.; Markel, M. D. The effect of monopolar radiofrequency energy on partial-thickness defects of articular cartilage. Arthroscopy. 2000, 16, 527-536.
85. Tytherleigh-Strong, G.; Hurtig, M.; Miniaci, A. Intra-articular hyaluronan following autogenous osteochondral grafting of the knee. Arthroscopy. 2005, 21, 999-1005.
86. Siebert, C. H.; Miltner, O.; Weber, M.; Sopka, S.; Koch, S.; Niedhart, C. Healing of osteochondral grafts in an ovine model under the influence of bFGF. Arthroscopy. 2003, 19, 182-187.
87. Kandel, R. A.; Grynpas, M.; Pilliar, R.; Lee, J.; Wang, J.; Waldman, S.; Zalzal, P.; Hurtig, M. Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials. 2006, 27, 4120-4131.
88. Mohan, N.; Gupta, V.; Sridharan, B. P.; Mellott, A. J.; Easley, J. T.; Palmer, R. H.; Galbraith, R. A.; Key, V. H.; Berkland, C. J.; Detamore, M. S. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. Regen Med. 2015, 10, 709-728.
89. Brehm, W.; Aklin, B.; Yamashita, T.; Rieser, F.; Trüb, T.; Jakob, R. P.; Mainil-Varlet, P. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results. Osteoarthritis Cartilage. 2006, 14, 1214-1226.
90. Jackson, D. W.; Lalor, P. A.; Aberman, H. M.; Simon, T. M. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J Bone Joint Surg Am. 2001, 83, 53-64.
91. Niederauer, G. G.; Slivka, M. A.; Leatherbury, N. C.; Korvick, D. L.; Harroff, H. H.; Ehler, W. C.; Dunn, C. J.; Kieswetter, K. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials. 2000, 21, 2561-2574.
92. Dell’Accio, F.; Vanlauwe, J.; Bellemans, J.; Neys, J.; De Bari, C.; Luyten, F. P. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res. 2003, 21, 123-131.
93. Kon, E.; Robinson, D.; Shani, J.; Alves, A.; Di Matteo, B.; Ashmore, K.; De Caro, F.; Dulic, O.; Altschuler, N. Reconstruction of large osteochondral defects using a hemicondylar aragonite-based implant in a caprine model. Arthroscopy. 2020, 36, 1884-1894.
94. Malda, J.; Benders, K. E.; Klein, T. J.; de Grauw, J. C.; Kik, M. J.; Hutmacher, D. W.; Saris, D. B.; van Weeren, P. R.; Dhert, W. J. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthritis Cartilage. 2012, 20, 1147-1151.
95. Convery, F. R.; Akeson, W. H.; Keown, G. H. The repair of large osteochondral defects. An experimental study in horses. Clin Orthop Relat Res. 1972, 82, 253-262.
96. Hidaka, C.; Goodrich, L. R.; Chen, C. T.; Warren, R. F.; Crystal, R. G.; Nixon, A. J. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J Orthop Res. 2003, 21, 573-583.
97. Strauss, E. J.; Goodrich, L. R.; Chen, C. T.; Hidaka, C.; Nixon, A. J. Biochemical and biomechanical properties of lesion and adjacent articular cartilage after chondral defect repair in an equine model. Am J Sports Med. 2005, 33, 1647-1653.
98. Seo, J. P.; Kambayashi, Y.; Itho, M.; Haneda, S.; Yamada, K.; Furuoka, H.; Tabata, Y.; Sasaki, N. Effects of a synovial flap and gelatin/β-tricalcium phosphate sponges loaded with mesenchymal stem cells, bone morphogenetic protein-2, and platelet rich plasma on equine osteochondral defects. Res Vet Sci. 2015, 101, 140-143.
99. Vindas Bolaños, R. A.; Cokelaere, S. M.; Estrada McDermott, J. M.; Benders, K. E.; Gbureck, U.; Plomp, S. G.; Weinans, H.; Groll, J.; van Weeren, P. R.; Malda, J. The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthritis Cartilage. 2017, 25, 413-420.
100. McCarrel, T. M.; Pownder, S. L.; Gilbert, S.; Koff, M. F.; Castiglione, E.; Saska, R. A.; Bradica, G.; Fortier, L. A. Two-year evaluation of osteochondral repair with a novel biphasic graft saturated in bone marrow in an equine model. Cartilage. 2017, 8, 406-416.
101. Maninchedda, U.; Lepage, O. M.; Gangl, M.; Hilairet, S.; Remandet, B.; Meot, F.; Penarier, G.; Segard, E.; Cortez, P.; Jorgensen, C.; Steinberg, R. Development of an equine groove model to induce metacarpophalangeal osteoarthritis: a pilot study on 6 horses. PLoS One. 2015, 10, e0115089.
102. Carlson, C. S.; Loeser, R. F.; Jayo, M. J.; Weaver, D. S.; Adams, M. R.; Jerome, C. P. Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J Orthop Res. 1994, 12, 331-339.
103. Macrini, T. E.; Coan, H. B.; Levine, S. M.; Lerma, T.; Saks, C. D.; Araujo, D. J.; Bredbenner, T. L.; Coutts, R. D.; Nicolella, D. P.; Havill, L. M. Reproductive status and sex show strong effects on knee OA in a baboon model. Osteoarthritis Cartilage. 2013, 21, 839-848.
104. Carlson, C. S.; Loeser, R. F.; Purser, C. B.; Gardin, J. F.; Jerome, C. P. Osteoarthritis in cynomolgus macaques. III: Effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res. 1996, 11, 1209-1217.
105. Black, A.; Lane, M. A. Nonhuman primate models of skeletal and reproductive aging. Gerontology. 2002, 48, 72-80.
106. Buckwalter, J. A.; Martin, J. A.; Olmstead, M.; Athanasiou, K. A.; Rosenwasser, M. P.; Mow, V. C. Osteochondral repair of primate knee femoral and patellar articular surfaces: implications for preventing post-traumatic osteoarthritis. Iowa Orthop J. 2003, 23, 66-74.
107. Zhou, L.; Gjvm, V. O.; Malda, J.; Stoddart, M. J.; Lai, Y.; Richards, R. G.; Ki-Wai Ho, K.; Qin, L. Innovative tissue-engineered strategies for osteochondral defect repair and regeneration: current progress and challenges. Adv Healthc Mater. 2020, e2001008.
108. Wesdorp, M. A.; Capar, S.; Bastiaansen-Jenniskens, Y. M.; Kops, N.; Creemers, L. B.; Verhaar, J. A. N.; Van Osch, G.; Wei, W. Intra-articular administration of triamcinolone acetonide in a murine cartilage defect model reduces inflammation but inhibits endogenous cartilage repair. Am J Sports Med. 2022, 50, 1668-1678.
109. Marycz, K.; Smieszek, A.; Targonska, S.; Walsh, S. A.; Szustakiewicz, K.; Wiglusz, R. J. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu(3+)) composite for osteochondral defect regeneration and theranostics. Mater Sci Eng C Mater Biol Appl. 2020, 110, 110634.
110. Mendes, L. F.; Katagiri, H.; Tam, W. L.; Chai, Y. C.; Geris, L.; Roberts, S. J.; Luyten, F. P. Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Res Ther. 2018, 9, 42.
111. Li, X.; Guo, W.; Zha, K.; Jing, X.; Wang, M.; Zhang, Y.; Hao, C.; Gao, S.; Chen, M.; Yuan, Z.; Wang, Z.; Zhang, X.; Shen, S.; Li, H.; Zhang, B.; Xian, H.; Zhang, Y.; Sui, X.; Qin, L.; Peng, J.; Liu, S.; Lu, S.; Guo, Q. Enrichment of CD146(+) adipose-derived stem cells in combination with articular cartilage extracellular matrix scaffold promotes cartilage regeneration. Theranostics. 2019, 9, 5105-5121.
112. Ji, X.; Shao, H.; Li, X.; Ullah, M. W.; Luo, G.; Xu, Z.; Ma, L.; He, X.; Lei, Z.; Li, Q.; Jiang, X.; Yang, G.; Zhang, Y. Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration. Biomaterials. 2022, 285, 121530.
113. Kim, H. S.; Mandakhbayar, N.; Kim, H. W.; Leong, K. W.; Yoo, H. S. Protein-reactive nanofibrils decorated with cartilage-derived decellularized extracellular matrix for osteochondral defects. Biomaterials. 2021, 269, 120214.
114. Lin, D.; Cai, B.; Wang, L.; Cai, L.; Wang, Z.; Xie, J.; Lv, Q. X.; Yuan, Y.; Liu, C.; Shen, S. G. A viscoelastic PEGylated poly(glycerol sebacate)-based bilayer scaffold for cartilage regeneration in full-thickness osteochondral defect. Biomaterials. 2020, 253, 120095.
115. Yang, M.; Zhang, Z. C.; Yuan, F. Z.; Deng, R. H.; Yan, X.; Mao, F. B.; Chen, Y. R.; Lu, H.; Yu, J. K. An immunomodulatory polypeptide hydrogel for osteochondral defect repair. Bioact Mater. 2023, 19, 678-689.
116. Qi, Y.; Zhang, W.; Li, G.; Niu, L.; Zhang, Y.; Tang, R.; Feng, G. An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model. FASEB J. 2020, 34, 11115-11132.
117. Ye, W.; Yang, Z.; Cao, F.; Li, H.; Zhao, T.; Zhang, H.; Zhang, Z.; Yang, S.; Zhu, J.; Liu, Z.; Zheng, J.; Liu, H.; Ma, G.; Guo, Q.; Wang, X. Articular cartilage reconstruction with TGF-β1-simulating self-assembling peptide hydrogel-based composite scaffold. Acta Biomater. 2022, 146, 94-106.
118. Wu, H.; Shang, Y.; Sun, W.; Ouyang, X.; Zhou, W.; Lu, J.; Yang, S.; Wei, W.; Yao, X.; Wang, X.; Zhang, X.; Chen, Y.; He, Q.; Yang, Z.; Ouyang, H. Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Bioact Mater. 2023, 19, 88-102.
119. Hong, Y.; Han, Y.; Wu, J.; Zhao, X.; Cheng, J.; Gao, G.; Qian, Q.; Wang, X.; Cai, W.; Zreiqat, H.; Feng, D.; Xu, J.; Cui, D. Chitosan modified Fe(3)O(4)/KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics. 2020, 10, 5565-5577.
120. Sun, J.; Lyu, J.; Xing, F.; Chen, R.; Duan, X.; Xiang, Z. A biphasic, demineralized, and decellularized allograft bone-hydrogel scaffold with a cell-based BMP-7 delivery system for osteochondral defect regeneration. J Biomed Mater Res A. 2020, 108, 1909-1921.
121. Baba, R.; Onodera, T.; Matsuoka, M.; Hontani, K.; Joutoku, Z.; Matsubara, S.; Homan, K.; Iwasaki, N. Bone marrow stimulation technique augmented by an ultrapurified alginate gel enhances cartilage repair in a canine model. Am J Sports Med. 2018, 46, 1970-1979.
122. Onodera, T.; Baba, R.; Kasahara, Y.; Tsuda, T.; Iwasaki, N. Therapeutic effects and adaptive limits of an acellular technique by ultrapurified alginate (UPAL) gel implantation in canine osteochondral defect models. Regen Ther. 2020, 14, 154-159.
123. Ryu, J.; Brittberg, M.; Nam, B.; Chae, J.; Kim, M.; Colon Iban, Y.; Magneli, M.; Takahashi, E.; Khurana, B.; Bragdon, C. R. Evaluation of three-dimensional bioprinted human cartilage powder combined with micronized subcutaneous adipose tissues for the repair of osteochondral defects in beagle dogs. Int J Mol Sci. 2022, 23, 2743.
124. Stefani, R. M.; Lee, A. J.; Tan, A. R.; Halder, S. S.; Hu, Y.; Guo, X. E.; Stoker, A. M.; Ateshian, G. A.; Marra, K. G.; Cook, J. L.; Hung, C. T. Sustained low-dose dexamethasone delivery via a PLGA microsphere-embedded agarose implant for enhanced osteochondral repair. Acta Biomater. 2020, 102, 326-340.
125. Yan, W.; Xu, X.; Xu, Q.; Sun, Z.; Lv, Z.; Wu, R.; Yan, W.; Jiang, Q.; Shi, D. An injectable hydrogel scaffold with kartogenin-encapsulated nanoparticles for porcine cartilage regeneration: a 12-month follow-up study. Am J Sports Med. 2020, 48, 3233-3244.
126. Lin, C. C.; Chu, C. J.; Chou, P. H.; Liang, C. H.; Liang, P. I.; Chang, N. J. Beneficial therapeutic approach of acellular PLGA implants coupled with rehabilitation exercise for osteochondral repair: a proof of concept study in a minipig model. Am J Sports Med. 2020, 48, 2796-2807.
127. Steele, J. A. M.; Moore, A. C.; St-Pierre, J. P.; McCullen, S. D.; Gormley, A. J.; Horgan, C. C.; Black, C. R.; Meinert, C.; Klein, T.; Saifzadeh, S.; Steck, R.; Ren, J.; Woodruff, M. A.; Stevens, M. M. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials. 2022, 286, 121548.
128. Asen, A. K.; Goebel, L.; Rey-Rico, A.; Sohier, J.; Zurakowski, D.; Cucchiarini, M.; Madry, H. Sustained spatiotemporal release of TGF-β1 confers enhanced very early chondrogenic differentiation during osteochondral repair in specific topographic patterns. FASEB J. 2018, 32, 5298-5311.
129. Huang, Y.; Fan, H.; Gong, X.; Yang, L.; Wang, F. Scaffold with natural calcified cartilage zone for osteochondral defect repair in minipigs. Am J Sports Med. 2021, 49, 1883-1891.
130. Bozkurt, M.; Aşık, M. D.; Gürsoy, S.; Türk, M.; Karahan, S.; Gümüşkaya, B.; Akkaya, M.; Şimşek, M. E.; Cay, N.; Doğan, M. Autologous stem cell-derived chondrocyte implantation with bio-targeted microspheres for the treatment of osteochondral defects. J Orthop Surg Res. 2019, 14, 394.
131. Vukasovic, A.; Asnaghi, M. A.; Kostesic, P.; Quasnichka, H.; Cozzolino, C.; Pusic, M.; Hails, L.; Trainor, N.; Krause, C.; Figallo, E.; Filardo, G.; Kon, E.; Wixmerten, A.; Maticic, D.; Pellegrini, G.; Kafienah, W.; Hudetz, D.; Smith, T.; Martin, I.; Ivkovic, A.; Wendt, D. Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies. Cell Prolif. 2019, 52, e12653.
132. Tamaddon, M.; Blunn, G.; Tan, R.; Yang, P.; Sun, X.; Chen, S. M.; Luo, J.; Liu, Z.; Wang, L.; Li, D.; Donate, R.; Monzón, M.; Liu, C. In vivo evaluation of additively manufactured multi-layered scaffold for the repair of large osteochondral defects. Biodes Manuf. 2022, 5, 481-496.
133. Favreau, H.; Pijnenburg, L.; Seitlinger, J.; Fioretti, F.; Keller, L.; Scipioni, D.; Adriaensen, H.; Kuchler-Bopp, S.; Ehlinger, M.; Mainard, D.; Rosset, P.; Hua, G.; Gentile, L.; Benkirane-Jessel, N. Osteochondral repair combining therapeutics implant with mesenchymal stem cells spheroids. Nanomedicine. 2020, 29, 102253.
134. Critchley, S.; Sheehy, E. J.; Cunniffe, G.; Diaz-Payno, P.; Carroll, S. F.; Jeon, O.; Alsberg, E.; Brama, P. A. J.; Kelly, D. J. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020, 113, 130-143.
135. Jia, S.; Wang, J.; Zhang, T.; Pan, W.; Li, Z.; He, X.; Yang, C.; Wu, Q.; Sun, W.; Xiong, Z.; Hao, D. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl Mater Interfaces. 2018, 10, 20296-20305.
136. Burdis, R.; Chariyev-Prinz, F.; Browe, D. C.; Freeman, F. E.; Nulty, J.; McDonnell, E. E.; Eichholz, K. F.; Wang, B.; Brama, P.; Kelly, D. J. Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing. Biomaterials. 2022, 289, 121750.
137. Cunniffe, G. M.; Díaz-Payno, P. J.; Sheehy, E. J.; Critchley, S. E.; Almeida, H. V.; Pitacco, P.; Carroll, S. F.; Mahon, O. R.; Dunne, A.; Levingstone, T. J.; Moran, C. J.; Brady, R. T.; O’Brien, F. J.; Brama, P. A. J.; Kelly, D. J. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials. 2019, 188, 63-73.
138. Korthagen, N. M.; Brommer, H.; Hermsen, G.; Plomp, S. G. M.; Melsom, G.; Coeleveld, K.; Mastbergen, S. C.; Weinans, H.; van Buul, W.; van Weeren, P. R. A short-term evaluation of a thermoplastic polyurethane implant for osteochondral defect repair in an equine model. Vet J. 2019, 251, 105340.
139. Mancini, I. A. D.; Schmidt, S.; Brommer, H.; Pouran, B.; Schäfer, S.; Tessmar, J.; Mensinga, A.; van Rijen, M. H. P.; Groll, J.; Blunk, T.; Levato, R.; Malda, J.; van Weeren, P. R. A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model. Biofabrication. 2020, 12, 035028.
140. Murata, D.; Ishikawa, S.; Sunaga, T.; Saito, Y.; Sogawa, T.; Nakayama, K.; Hobo, S.; Hatazoe, T. Osteochondral regeneration of the femoral medial condyle by using a scaffold-free 3D construct of synovial membrane-derived mesenchymal stem cells in horses. BMC Vet Res. 2022, 18, 53.
141. Zanotto, G. M.; Liesbeny, P.; Barrett, M.; Zlotnick, H.; Frank, E.; Grodzinsky, A. J.; Frisbie, D. D. Microfracture augmentation with trypsin pretreatment and growth factor-functionalized self-assembling peptide hydrogel scaffold in an equine model. Am J Sports Med. 2021, 49, 2498-2508.
142. Park, D. Y.; Min, B. H.; Park, S. R.; Oh, H. J.; Truong, M. D.; Kim, M.; Choi, J. Y.; Park, I. S.; Choi, B. H. Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair. Sci Rep. 2020, 10, 5722.
143. Jiang, L.; Ma, A.; Song, L.; Hu, Y.; Dun, H.; Daloze, P.; Yu, Y.; Jiang, J.; Zafarullah, M.; Chen, H. Cartilage regeneration by selected chondrogenic clonal mesenchymal stem cells in the collagenase-induced monkey osteoarthritis model. J Tissue Eng Regen Med. 2014, 8, 896-905.
144. Ma, A.; Jiang, L.; Song, L.; Hu, Y.; Dun, H.; Daloze, P.; Yu, Y.; Jiang, J.; Zafarullah, M.; Chen, H. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Int Immunopharmacol. 2013, 16, 399-408.
145. Maglio, M.; Brogini, S.; Pagani, S.; Giavaresi, G.; Tschon, M. Current trends in the evaluation of osteochondral lesion treatments: histology, histomorphometry, and biomechanics in preclinical models. Biomed Res Int. 2019, 2019, 4040236.
146. Yin, H.; Wang, Y.; Sun, X.; Cui, G.; Sun, Z.; Chen, P.; Xu, Y.; Yuan, X.; Meng, H.; Xu, W.; Wang, A.; Guo, Q.; Lu, S.; Peng, J. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomater. 2018, 77, 127-141.
147. Martin-Hernandez, C.; Cebamanos-Celma, J.; Molina-Ros, A.; Ballester-Jimenez, J. J.; Ballester-Soleda, J. Regenerated cartilage produced by autogenous periosteal grafts: a histologic and mechanical study in rabbits under the influence of continuous passive motion. Arthroscopy. 2010, 26, 76-83.
148. Filardo, G.; Perdisa, F.; Gelinsky, M.; Despang, F.; Fini, M.; Marcacci, M.; Parrilli, A. P.; Roffi, A.; Salamanna, F.; Sartori, M.; Schütz, K.; Kon, E. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. J Mater Sci Mater Med. 2018, 29, 74.
149. Jansen, E. J.; Pieper, J.; Gijbels, M. J.; Guldemond, N. A.; Riesle, J.; Van Rhijn, L. W.; Bulstra, S. K.; Kuijer, R. PEOT/PBT based scaffolds with low mechanical properties improve cartilage repair tissue formation in osteochondral defects. J Biomed Mater Res A. 2009, 89, 444-452.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top