New perspective of skeletal stem cells
Tissue–resident stem cells are a group of stem cells distinguished by their capacity for self–renewal and multilineage differentiation capability with tissue specificity. Among these tissue–resident stem cells, skeletal stem cells (SSCs) were discovered in the growth plate region through a combination of cell surface markers and lineage tracing series. With the process of unravelling the anatomical variation of SSCs, researchers were also keen to investigate the developmental diversity outside the long bones, including in the sutures, craniofacial sites, and spinal regions. Recently, fluorescence–activated cell sorting, lineage tracing, and single–cell sequencing have been used to map lineage trajectories by studying SSCs with different spatiotemporal distributions. The SSC niche also plays a pivotal role in regulating SSC fate, such as cell–cell interactions mediated by multiple signalling pathways. This review focuses on discussing the spatial and temporal distribution of SSCs, and broadening our understanding of the diversity and plasticity of SSCs by summarizing the progress of research into SSCs in recent years.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci. 2019, 11, 23.
2. Zhu, L.; Luo, D.; Liu, Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci. 2020, 12, 6.
3. Su, N.; Yang, J.; Xie, Y.; Du, X.; Chen, H.; Zhou, H.; Chen, L. Bone function, dysfunction and its role in diseases including critical illness. Int J Biol Sci. 2019, 15, 776-787.
4. Khosla, S.; Farr, J. N.; Tchkonia, T.; Kirkland, J. L. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol. 2020, 16, 263-275.
5. Henkel, J.; Woodruff, M. A.; Epari, D. R.; Steck, R.; Glatt, V.; Dickinson, I. C.; Choong, P. F.; Schuetz, M. A.; Hutmacher, D. W. Bone regeneration based on tissue engineering conceptions - a 21st century perspective. Bone Res. 2013, 1, 216-248.
6. Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 17059.
7. Anthony, B. A.; Link, D. C. Regulation of hematopoietic stem cells by bone marrow stromal cells. Trends Immunol. 2014, 35, 32-37.
8. Ng, A. P.; Alexander, W. S. Haematopoietic stem cells: past, present and future. Cell Death Discov. 2017, 3, 17002.
9. Chan, C. K.; Seo, E. Y.; Chen, J. Y.; Lo, D.; McArdle, A.; Sinha, R.; Tevlin, R.; Seita, J.; Vincent-Tompkins, J.; Wearda, T.; Lu, W. J.; Senarath-Yapa, K.; Chung, M. T.; Marecic, O.; Tran, M.; Yan, K. S.; Upton, R.; Walmsley, G. G.; Lee, A. S.; Sahoo, D.; Kuo, C. J.; Weissman, I. L.; Longaker, M. T. Identification and specification of the mouse skeletal stem cell. Cell. 2015, 160, 285-298.
10. Chan, C. K. F.; Gulati, G. S.; Sinha, R.; Tompkins, J. V.; Lopez, M.; Carter, A. C.; Ransom, R. C.; Reinisch, A.; Wearda, T.; Murphy, M.; Brewer, R. E.; Koepke, L. S.; Marecic, O.; Manjunath, A.; Seo, E. Y.; Leavitt, T.; Lu, W. J.; Nguyen, A.; Conley, S. D.; Salhotra, A.; Ambrosi, T. H.; Borrelli, M. R.; Siebel, T.; Chan, K.; Schallmoser, K.; Seita, J.; Sahoo, D.; Goodnough, H.; Bishop, J.; Gardner, M.; Majeti, R.; Wan, D. C.; Goodman, S.; Weissman, I. L.; Chang, H. Y.; Longaker, M. T. Identification of the human skeletal stem cell. Cell. 2018, 175, 43-56.e21.
11. Kretzschmar, K.; Watt, F. M. Lineage tracing. Cell. 2012, 148, 33-45.
12. Gulati, G. S.; Murphy, M. P.; Marecic, O.; Lopez, M.; Brewer, R. E.; Koepke, L. S.; Manjunath, A.; Ransom, R. C.; Salhotra, A.; Weissman, I. L.; Longaker, M. T.; Chan, C. K. F. Isolation and functional assessment of mouse skeletal stem cell lineage. Nat Protoc. 2018, 13, 1294-1309.
13. Roelofs, A. J.; Kania, K.; Rafipay, A. J.; Sambale, M.; Kuwahara, S. T.; Collins, F. L.; Smeeton, J.; Serowoky, M. A.; Rowley, L.; Wang, H.; Gronewold, R.; Kapeni, C.; Méndez-Ferrer, S.; Little, C. B.; Bateman, J. F.; Pap, T.; Mariani, F. V.; Sherwood, J.; Crump, J. G.; De Bari, C. Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann Rheum Dis. 2020, 79, 1625-1634.
14. Debnath, S.; Yallowitz, A. R.; McCormick, J.; Lalani, S.; Zhang, T.; Xu, R.; Li, N.; Liu, Y.; Yang, Y. S.; Eiseman, M.; Shim, J. H.; Hameed, M.; Healey, J. H.; Bostrom, M. P.; Landau, D. A.; Greenblatt, M. B. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018, 562, 133-139.
15. Han, X.; Zhang, Z.; He, L.; Zhu, H.; Li, Y.; Pu, W.; Han, M.; Zhao, H.; Liu, K.; Li, Y.; Huang, X.; Zhang, M.; Jin, H.; Lv, Z.; Tang, J.; Wang, J.; Sun, R.; Fei, J.; Tian, X.; Duan, S.; Wang, Q. D.; Wang, L.; He, B.; Zhou, B. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell. 2021, 28, 1160-1176.e7.
16. He, L.; Li, Y.; Li, Y.; Pu, W.; Huang, X.; Tian, X.; Wang, Y.; Zhang, H.; Liu, Q.; Zhang, L.; Zhao, H.; Tang, J.; Ji, H.; Cai, D.; Han, Z.; Han, Z.; Nie, Y.; Hu, S.; Wang, Q. D.; Sun, R.; Fei, J.; Wang, F.; Chen, T.; Yan, Y.; Huang, H.; Pu, W. T.; Zhou, B. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med. 2017, 23, 1488-1498.
17. Wagner, D. E.; Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges. Nat Rev Genet. 2020, 21, 410-427.
18. Hsu, Y. C. Theory and practice of lineage tracing. Stem Cells. 2015, 33, 3197-3204.
19. Zomer, A.; Steenbeek, S. C.; Maynard, C.; van Rheenen, J. Studying extracellular vesicle transfer by a Cre-loxP method. Nat Protoc. 2016, 11, 87-101.
20. Kristianto, J.; Johnson, M. G.; Zastrow, R. K.; Radcliff, A. B.; Blank, R. D. Spontaneous recombinase activity of Cre-ERT2 in vivo. Transgenic Res. 2017, 26, 411-417.
21. Muzumdar, M. D.; Tasic, B.; Miyamichi, K.; Li, L.; Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 2007, 45, 593-605.
22. Madisen, L.; Zwingman, T. A.; Sunkin, S. M.; Oh, S. W.; Zariwala, H. A.; Gu, H.; Ng, L. L.; Palmiter, R. D.; Hawrylycz, M. J.; Jones, A. R.; Lein, E. S.; Zeng, H. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010, 13, 133-140.
23. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999, 21, 70-71.
24. Matsushita, Y.; Ono, W.; Ono, N. Bone regeneration via skeletal cell lineage plasticity: All hands mobilized for emergencies: quiescent mature skeletal cells can be activated in response to injury and robustly participate in bone regeneration through cellular plasticity. Bioessays. 2021, 43, e2000202.
25. Ono, N.; Balani, D. H.; Kronenberg, H. M. Stem and progenitor cells in skeletal development. Curr Top Dev Biol. 2019, 133, 1-24.
26. Jeffery, E. C.; Mann, T. L. A.; Pool, J. A.; Zhao, Z.; Morrison, S. J. Bone marrow and periosteal skeletal stem/progenitor cells make distinct contributions to bone maintenance and repair. Cell Stem Cell. 2022, 29, 1547-1561.e6.
27. Bianco, P.; Robey, P. G. Skeletal stem cells. Development. 2015, 142, 1023-1027.
28. Bianco, P.; Kuznetsov, S. A.; Riminucci, M.; Gehron Robey, P. Postnatal skeletal stem cells. Methods Enzymol. 2006, 419, 117-148.
29. Bianco, P. “Mesenchymal” stem cells. Annu Rev Cell Dev Biol. 2014, 30, 677-704.
30. Bianco, P.; Cao, X.; Frenette, P. S.; Mao, J. J.; Robey, P. G.; Simmons, P. J.; Wang, C. Y. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med. 2013, 19, 35-42.
31. He, J.; Yan, J.; Wang, J.; Zhao, L.; Xin, Q.; Zeng, Y.; Sun, Y.; Zhang, H.; Bai, Z.; Li, Z.; Ni, Y.; Gong, Y.; Li, Y.; He, H.; Bian, Z.; Lan, Y.; Ma, C.; Bian, L.; Zhu, H.; Liu, B.; Yue, R. Dissecting human embryonic skeletal stem cell ontogeny by single-cell transcriptomic and functional analyses. Cell Res. 2021, 31, 742-757.
32. Zhao, H.; Zhou, W.; Yao, Z.; Wan, Y.; Cao, J.; Zhang, L.; Zhao, J.; Li, H.; Zhou, R.; Li, B.; Wei, G.; Zhang, Z.; French, C. A.; Dekker, J. D.; Yang, Y.; Fisher, S. E.; Tucker, H. O.; Guo, X. Foxp1/2/4 regulate endochondral ossification as a suppresser complex. Dev Biol. 2015, 398, 242-254.
33. Ambrosi, T. H.; Goodnough, L. H.; Chan, C. K. F. Human skeletal stem cell aging. Aging (Albany NY). 2020, 12, 16669-16671.
34. Hallett, S. A.; Matsushita, Y.; Ono, W.; Sakagami, N.; Mizuhashi, K.; Tokavanich, N.; Nagata, M.; Zhou, A.; Hirai, T.; Kronenberg, H. M.; Ono, N. Chondrocytes in the resting zone of the growth plate are maintained in a Wnt-inhibitory environment. Elife. 2021, 10, e64513.
35. Wang, Y.; Middleton, F.; Horton, J. A.; Reichel, L.; Farnum, C. E.; Damron, T. A. Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways. Bone. 2004, 35, 1273-1293.
36. Li, X.; Yang, S.; Yuan, G.; Jing, D.; Qin, L.; Zhao, H.; Yang, S. Type II collagen-positive progenitors are important stem cells in controlling skeletal development and vascular formation. Bone Res. 2022, 10, 46.
37. Mizuhashi, K.; Ono, W.; Matsushita, Y.; Sakagami, N.; Takahashi, A.; Saunders, T. L.; Nagasawa, T.; Kronenberg, H. M.; Ono, N. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature. 2018, 563, 254-258.
38. Shi, Y.; He, G.; Lee, W. C.; McKenzie, J. A.; Silva, M. J.; Long, F. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun. 2017, 8, 2043.
39. Carlone, D. L.; Riba-Wolman, R. D.; Deary, L. T.; Tovaglieri, A.; Jiang, L.; Ambruzs, D. M.; Mead, B. E.; Shah, M. S.; Lengner, C. J.; Jaenisch, R.; Breault, D. T. Telomerase expression marks transitional growth-associated skeletal progenitor/stem cells. Stem Cells. 2021, 39, 296-305.
40. Muruganandan, S.; Pierce, R.; Teguh, D. A.; Perez, R. F.; Bell, N.; Nguyen, B.; Hohl, K.; Snyder, B. D.; Grinstaff, M. W.; Alberico, H.; Woods, D.; Kong, Y.; Sima, C.; Bhagat, S.; Ho, K.; Rosen, V.; Gamer, L.; Ionescu, A. M. A FoxA2+ long-term stem cell population is necessary for growth plate cartilage regeneration after injury. Nat Commun. 2022, 13, 2515.
41. Newton, P. T.; Li, L.; Zhou, B.; Schweingruber, C.; Hovorakova, M.; Xie, M.; Sun, X.; Sandhow, L.; Artemov, A. V.; Ivashkin, E.; Suter, S.; Dyachuk, V.; El Shahawy, M.; Gritli-Linde, A.; Bouderlique, T.; Petersen, J.; Mollbrink, A.; Lundeberg, J.; Enikolopov, G.; Qian, H.; Fried, K.; Kasper, M.; Hedlund, E.; Adameyko, I.; Sävendahl, L.; Chagin, A. S. A radical switch in clonality reveals a stem cell niche in the epiphyseal growth plate. Nature. 2019, 567, 234-238.
42. Ambrosi, T. H.; Sinha, R.; Steininger, H. M.; Hoover, M. Y.; Murphy, M. P.; Koepke, L. S.; Wang, Y.; Lu, W. J.; Morri, M.; Neff, N. F.; Weissman, I. L.; Longaker, M. T.; Chan, C. K. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. Elife. 2021, 10, e66063.
43. Matic, I.; Matthews, B. G.; Wang, X.; Dyment, N. A.; Worthley, D. L.; Rowe, D. W.; Grcevic, D.; Kalajzic, I. Quiescent bone lining cells are a major source of osteoblasts during adulthood. Stem Cells. 2016, 34, 2930-2942.
44. Duchamp de Lageneste, O.; Julien, A.; Abou-Khalil, R.; Frangi, G.; Carvalho, C.; Cagnard, N.; Cordier, C.; Conway, S. J.; Colnot, C. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun. 2018, 9, 773.
45. Berendsen, A. D.; Olsen, B. R. Bone development. Bone. 2015, 80, 14-18.
46. Allen, M. R.; Hock, J. M.; Burr, D. B. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone. 2004, 35, 1003-1012.
47. He, X.; Bougioukli, S.; Ortega, B.; Arevalo, E.; Lieberman, J. R.; McMahon, A. P. Sox9 positive periosteal cells in fracture repair of the adult mammalian long bone. Bone. 2017, 103, 12-19.
48. Ortinau, L. C.; Wang, H.; Lei, K.; Deveza, L.; Jeong, Y.; Hara, Y.; Grafe, I.; Rosenfeld, S. B.; Lee, D.; Lee, B.; Scadden, D. T.; Park, D. Identification of functionally distinct Mx1+ αSMA+ periosteal skeletal stem cells. Cell Stem Cell. 2019, 25, 784-796.e5.
49. Xia, C.; Ge, Q.; Fang, L.; Yu, H.; Zou, Z.; Zhang, P.; Lv, S.; Tong, P.; Xiao, L.; Chen, D.; Wang, P. E.; Jin, H. TGF-β/Smad2 signalling regulates enchondral bone formation of Gli1(+) periosteal cells during fracture healing. Cell Prolif. 2020, 53, e12904.
50. Song, J. Y.; Pineault, K. M.; Dones, J. M.; Raines, R. T.; Wellik, D. M. Hox genes maintain critical roles in the adult skeleton. Proc Natl Acad Sci U S A. 2020, 117, 7296-7304.
51. Pineault, K. M.; Song, J. Y.; Kozloff, K. M.; Lucas, D.; Wellik, D. M. Hox11 expressing regional skeletal stem cells are progenitors for osteoblasts, chondrocytes and adipocytes throughout life. Nat Commun. 2019, 10, 3168.
52. Lotinun, S.; Ishihara, Y.; Nagano, K.; Kiviranta, R.; Carpentier, V. T.; Neff, L.; Parkman, V.; Ide, N.; Hu, D.; Dann, P.; Brooks, D.; Bouxsein, M. L.; Wysolmerski, J.; Gori, F.; Baron, R. Cathepsin K-deficient osteocytes prevent lactation-induced bone loss and parathyroid hormone suppression. J Clin Invest. 2019, 129, 3058-3071.
53. Yang, W.; Wang, J.; Moore, D. C.; Liang, H.; Dooner, M.; Wu, Q.; Terek, R.; Chen, Q.; Ehrlich, M. G.; Quesenberry, P. J.; Neel, B. G. Ptpn11 deletion in a novel progenitor causes metachondromatosis by inducing hedgehog signalling. Nature. 2013, 499, 491-495.
54. Han, Y.; Feng, H.; Sun, J.; Liang, X.; Wang, Z.; Xing, W.; Dai, Q.; Yang, Y.; Han, A.; Wei, Z.; Bi, Q.; Ji, H.; Kang, T.; Zou, W. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019, 129, 1895-1909.
55. Ouyang, Z.; Chen, Z.; Ishikawa, M.; Yue, X.; Kawanami, A.; Leahy, P.; Greenfield, E. M.; Murakami, S. Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice. Bone. 2014, 58, 136-145.
56. Esposito, A.; Wang, L.; Li, T.; Miranda, M.; Spagnoli, A. Role of Prx1-expressing skeletal cells and Prx1-expression in fracture repair. Bone. 2020, 139, 115521.
57. Wilk, K.; Yeh, S. A.; Mortensen, L. J.; Ghaffarigarakani, S.; Lombardo, C. M.; Bassir, S. H.; Aldawood, Z. A.; Lin, C. P.; Intini, G. Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration. Stem Cell Reports. 2017, 8, 933-946.
58. Murao, H.; Yamamoto, K.; Matsuda, S.; Akiyama, H. Periosteal cells are a major source of soft callus in bone fracture. J Bone Miner Metab. 2013, 31, 390-398.
59. van Gastel, N.; Stegen, S.; Eelen, G.; Schoors, S.; Carlier, A.; Daniëls, V. W.; Baryawno, N.; Przybylski, D.; Depypere, M.; Stiers, P. J.; Lambrechts, D.; Van Looveren, R.; Torrekens, S.; Sharda, A.; Agostinis, P.; Lambrechts, D.; Maes, F.; Swinnen, J. V.; Geris, L.; Van Oosterwyck, H.; Thienpont, B.; Carmeliet, P.; Scadden, D. T.; Carmeliet, G. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature. 2020, 579, 111-117.
60. Ortinau, L.; Lei, K.; Jeong, Y.; Park, D. Real-time imaging of CCL5-induced migration of periosteal skeletal stem cells in mice. J Vis Exp. 2020, 10.3791/61162.
61. Rux, D. R.; Song, J. Y.; Swinehart, I. T.; Pineault, K. M.; Schlientz, A. J.; Trulik, K. G.; Goldstein, S. A.; Kozloff, K. M.; Lucas, D.; Wellik, D. M. Regionally restricted hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Dev Cell. 2016, 39, 653-666.
62. Tournaire, G.; Stegen, S.; Giacomini, G.; Stockmans, I.; Moermans, K.; Carmeliet, G.; van Gastel, N. Nestin-GFP transgene labels skeletal progenitors in the periosteum. Bone. 2020, 133, 115259.
63. Tsukasaki, M.; Komatsu, N.; Negishi-Koga, T.; Huynh, N. C.; Muro, R.; Ando, Y.; Seki, Y.; Terashima, A.; Pluemsakunthai, W.; Nitta, T.; Nakamura, T.; Nakashima, T.; Ohba, S.; Akiyama, H.; Okamoto, K.; Baron, R.; Takayanagi, H. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat Commun. 2022, 13, 4166.
64. Abbuehl, J. P.; Tatarova, Z.; Held, W.; Huelsken, J. Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation. Cell Stem Cell. 2017, 21, 241-255.e6.
65. Shi, Y.; Kang, X.; Wang, Y.; Bian, X.; He, G.; Zhou, M.; Tang, K. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon-bone healing by regulating macrophage polarization. Med Sci Monit. 2020, 26, e923328.
66. Friedenstein, A. J.; Piatetzky, S. II; Petrakova, K. V. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966, 16, 381-390.
67. Caplan, A. I. Mesenchymal stem cells. J Orthop Res. 1991, 9, 641-650.
68. Horwitz, E. M.; Le Blanc, K.; Dominici, M.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F. C.; Deans, R. J.; Krause, D. S.; Keating, A.; International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005, 7, 393-395.
69. Prieto González, E. A. Heterogeneity in adipose stem cells. Adv Exp Med Biol. 2019, 1123, 119-150.
70. De Micheli, A. J.; Laurilliard, E. J.; Heinke, C. L.; Ravichandran, H.; Fraczek, P.; Soueid-Baumgarten, S.; De Vlaminck, I.; Elemento, O.; Cosgrove, B. D. Single-cell analysis of the muscle stem cell hierarchy identifies heterotypic communication signals involved in skeletal muscle regeneration. Cell Rep. 2020, 30, 3583-3595.e5.
71. De Bari, C.; Dell’Accio, F.; Vanlauwe, J.; Eyckmans, J.; Khan, I. M.; Archer, C. W.; Jones, E. A.; McGonagle, D.; Mitsiadis, T. A.; Pitzalis, C.; Luyten, F. P. Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum. 2006, 54, 1209-1221.
72. Bartold, M.; Gronthos, S.; Haynes, D.; Ivanovski, S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol. 2019, 46 Suppl 21, 12-32.
73. McLeod, C. M.; Mauck, R. L. On the origin and impact of mesenchymal stem cell heterogeneity: new insights and emerging tools for single cell analysis. Eur Cell Mater. 2017, 34, 217-231.
74. Usami, Y.; Gunawardena, A. T.; Francois, N. B.; Otsuru, S.; Takano, H.; Hirose, K.; Matsuoka, M.; Suzuki, A.; Huang, J.; Qin, L.; Iwamoto, M.; Yang, W.; Toyosawa, S.; Enomoto-Iwamoto, M. Possible contribution of Wnt-responsive chondroprogenitors to the postnatal murine growth plate. J Bone Miner Res. 2019, 34, 964-974.
75. Maruyama, T.; Jeong, J.; Sheu, T. J.; Hsu, W. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun. 2016, 7, 10526.
76. Matsushita, Y.; Nagata, M.; Kozloff, K. M.; Welch, J. D.; Mizuhashi, K.; Tokavanich, N.; Hallett, S. A.; Link, D. C.; Nagasawa, T.; Ono, W.; Ono, N. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun. 2020, 11, 332.
77. Ono, N.; Ono, W.; Mizoguchi, T.; Nagasawa, T.; Frenette, P. S.; Kronenberg, H. M. Vasculature-associated cells expressing nestin in developing bones encompass early cells in the osteoblast and endothelial lineage. Dev Cell. 2014, 29, 330-339.
78. Yue, R.; Zhou, B. O.; Shimada, I. S.; Zhao, Z.; Morrison, S. J. Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell. 2016, 18, 782-796.
79. Zhou, B. O.; Yue, R.; Murphy, M. M.; Peyer, J. G.; Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014, 15, 154-168.
80. Méndez-Ferrer, S.; Michurina, T. V.; Ferraro, F.; Mazloom, A. R.; Macarthur, B. D.; Lira, S. A.; Scadden, D. T.; Ma’ayan, A.; Enikolopov, G. N.; Frenette, P. S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010, 466, 829-834.
81. Park, D.; Spencer, J. A.; Koh, B. I.; Kobayashi, T.; Fujisaki, J.; Clemens, T. L.; Lin, C. P.; Kronenberg, H. M.; Scadden, D. T. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012, 10, 259-272.
82. Worthley, D. L.; Churchill, M.; Compton, J. T.; Tailor, Y.; Rao, M.; Si, Y.; Levin, D.; Schwartz, M. G.; Uygur, A.; Hayakawa, Y.; Gross, S.; Renz, B. W.; Setlik, W.; Martinez, A. N.; Chen, X.; Nizami, S.; Lee, H. G.; Kang, H. P.; Caldwell, J. M.; Asfaha, S.; Westphalen, C. B.; Graham, T.; Jin, G.; Nagar, K.; Wang, H.; Kheirbek, M. A.; Kolhe, A.; Carpenter, J.; Glaire, M.; Nair, A.; Renders, S.; Manieri, N.; Muthupalani, S.; Fox, J. G.; Reichert, M.; Giraud, A. S.; Schwabe, R. F.; Pradere, J. P.; Walton, K.; Prakash, A.; Gumucio, D.; Rustgi, A. K.; Stappenbeck, T. S.; Friedman, R. A.; Gershon, M. D.; Sims, P.; Grikscheit, T.; Lee, F. Y.; Karsenty, G.; Mukherjee, S.; Wang, T. C. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015, 160, 269-284.
83. Pérez-Lozano, M. L.; Sudre, L.; van Eegher, S.; Citadelle, D.; Pigenet, A.; Lafage-Proust, M. H.; Pastoureau, P.; De Ceuninck, F.; Berenbaum, F.; Houard, X. Gremlin-1 and BMP-4 overexpressed in osteoarthritis drive an osteochondral-remodeling program in osteoblasts and hypertrophic chondrocytes. Int J Mol Sci. 2022, 23, 2084.
84. Sivaraj, K. K.; Jeong, H. W.; Dharmalingam, B.; Zeuschner, D.; Adams, S.; Potente, M.; Adams, R. H. Regional specialization and fate specification of bone stromal cells in skeletal development. Cell Rep. 2021, 36, 109352.
85. Zhou, X.; von der Mark, K.; Henry, S.; Norton, W.; Adams, H.; de Crombrugghe, B. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 2014, 10, e1004820.
86. Shu, H. S.; Liu, Y. L.; Tang, X. T.; Zhang, X. S.; Zhou, B.; Zou, W.; Zhou, B. O. Tracing the skeletal progenitor transition during postnatal bone formation. Cell Stem Cell. 2021, 28, 2122-2136.e3.
87. Jing, D.; Chen, Z.; Men, Y.; Yi, Y.; Wang, Y.; Wang, J.; Yi, J.; Wan, L.; Shen, B.; Feng, J. Q.; Zhao, Z.; Zhao, H.; Li, C. Response of Gli1(+) suture stem cells to mechanical force upon suture expansion. J Bone Miner Res. 2022, 37, 1307-1320.
88. Men, Y.; Wang, Y.; Yi, Y.; Jing, D.; Luo, W.; Shen, B.; Stenberg, W.; Chai, Y.; Ge, W. P.; Feng, J. Q.; Zhao, H. Gli1+ periodontium stem cells are regulated by osteocytes and occlusal force. Dev Cell. 2020, 54, 639-654.e6.
89. Wang, K.; Xu, C.; Xie, X.; Jing, Y.; Chen, P. J.; Yadav, S.; Wang, Z.; Taylor, R. W.; Wang, J.; Feng, J. Q. Axin2+ PDL cells directly contribute to new alveolar bone formation in response to orthodontic tension force. J Dent Res. 2022, 101, 695-703.
90. Gong, X.; Zhang, H.; Xu, X.; Ding, Y.; Yang, X.; Cheng, Z.; Tao, D.; Hu, C.; Xiang, Y.; Sun, Y. Tracing PRX1(+) cells during molar formation and periodontal ligament reconstruction. Int J Oral Sci. 2022, 14, 5.
91. Ding, Y.; Mo, C.; Geng, J.; Li, J.; Sun, Y. Identification of periosteal osteogenic progenitors in jawbone. J Dent Res. 2022, 101, 1101-1109.
92. Lattanzi, W.; Barba, M.; Novegno, F.; Massimi, L.; Tesori, V.; Tamburrini, G.; Galgano, S.; Bernardini, C.; Caldarelli, M.; Michetti, F.; Di Rocco, C. Lim mineralization protein is involved in the premature calvarial ossification in sporadic craniosynostoses. Bone. 2013, 52, 474-484.
93. Zhao, H.; Feng, J.; Ho, T. V.; Grimes, W.; Urata, M.; Chai, Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol. 2015, 17, 386-396.
94. Maruyama, T.; Stevens, R.; Boka, A.; DiRienzo, L.; Chang, C.; Yu, H. I.; Nishimori, K.; Morrison, C.; Hsu, W. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med. 2021, 13, eabb4416.
95. Maruyama, T.; Jiang, M.; Abbott, A.; Yu, H. I.; Huang, Q.; Chrzanowska-Wodnicka, M.; Chen, E. I.; Hsu, W. Rap1b is an effector of Axin2 regulating crosstalk of signaling pathways during skeletal development. J Bone Miner Res. 2017, 32, 1816-1828.
96. Xie, X.; Xu, C.; Zhao, L.; Wu, Y.; Feng, J. Q.; Wang, J. Axin2-expressing cells in the periodontal ligament are regulated by bone morphogenetic protein signalling and play a pivotal role in periodontium development. J Clin Periodontol. 2022, 49, 945-956.
97. Ransom, R. C.; Hunter, D. J.; Hyman, S.; Singh, G.; Ransom, S. C.; Shen, E. Z.; Perez, K. C.; Gillette, M.; Li, J.; Liu, B.; Brunski, J. B.; Helms, J. A. Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep. 2016, 6, 36524.
98. Fernández, M.; Simon, V.; Herrera, G.; Cao, C.; Del Favero, H.; Minguell, J. J. Detection of stromal cells in peripheral blood progenitor cell collections from breast cancer patients. Bone Marrow Transplant. 1997, 20, 265-271.
99. Kuznetsov, S. A.; Mankani, M. H.; Gronthos, S.; Satomura, K.; Bianco, P.; Robey, P. G. Circulating skeletal stem cells. J Cell Biol. 2001, 153, 1133-1140.
100. Eghbali-Fatourechi, G. Z.; Lamsam, J.; Fraser, D.; Nagel, D.; Riggs, B. L.; Khosla, S. Circulating osteoblast-lineage cells in humans. N Engl J Med. 2005, 352, 1959-1966.
101. Feehan, J.; Nurgali, K.; Apostolopoulos, V.; Al Saedi, A.; Duque, G. Circulating osteogenic precursor cells: building bone from blood. EBioMedicine. 2019, 39, 603-611.
102. Kumagai, K.; Vasanji, A.; Drazba, J. A.; Butler, R. S.; Muschler, G. F. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res. 2008, 26, 165-175.
103. Kelly, R. R.; McDonald, L. T.; Pellegrini, V. D.; Cray, J. J.; Larue, A. C. Identification of circulating murine CD34(+)OCN(+) cells. Cytotherapy. 2018, 20, 1371-1380.
104. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006, 8, 315-317.
105. Alm, J. J.; Koivu, H. M.; Heino, T. J.; Hentunen, T. A.; Laitinen, S.; Aro, H. T. Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J Orthop Res. 2010, 28, 1634-1642.
106. Zvaifler, N. J.; Marinova-Mutafchieva, L.; Adams, G.; Edwards, C. J.; Moss, J.; Burger, J. A.; Maini, R. N. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000, 2, 477-488.
107. Suda, R. K.; Billings, P. C.; Egan, K. P.; Kim, J. H.; McCarrick-Walmsley, R.; Glaser, D. L.; Porter, D. L.; Shore, E. M.; Pignolo, R. J. Circulating osteogenic precursor cells in heterotopic bone formation. Stem Cells. 2009, 27, 2209-2219.
108. Hong, H. S.; Lee, J.; Lee, E.; Kwon, Y. S.; Lee, E.; Ahn, W.; Jiang, M. H.; Kim, J. C.; Son, Y. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med. 2009, 15, 425-435.
109. Rochefort, G. Y.; Delorme, B.; Lopez, A.; Hérault, O.; Bonnet, P.; Charbord, P.; Eder, V.; Domenech, J. Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia. Stem Cells. 2006, 24, 2202-2208.
110. Rubin, M. R.; Manavalan, J. S.; Dempster, D. W.; Shah, J.; Cremers, S.; Kousteni, S.; Zhou, H.; McMahon, D. J.; Kode, A.; Sliney, J.; Shane, E.; Silverberg, S. J.; Bilezikian, J. P. Parathyroid hormone stimulates circulating osteogenic cells in hypoparathyroidism. J Clin Endocrinol Metab. 2011, 96, 176-186.
111. Pignolo, R. J.; Kassem, M. Circulating osteogenic cells: implications for injury, repair, and regeneration. J Bone Miner Res. 2011, 26, 1685-1693.
112. Eggenhofer, E.; Luk, F.; Dahlke, M. H.; Hoogduijn, M. J. The life and fate of mesenchymal stem cells. Front Immunol. 2014, 5, 148.
113. Kyoizumi, S.; Kubo, Y.; Misumi, M.; Kajimura, J.; Yoshida, K.; Hayashi, T.; Imai, K.; Ohishi, W.; Nakachi, K.; Young, L. F.; Shieh, J. H.; Moore, M. A.; van den Brink, M. R.; Kusunoki, Y. Circulating hematopoietic stem and progenitor cells in aging atomic bomb survivors. Radiat Res. 2016, 185, 69-76.
114. Lo Sicco, C.; Tasso, R.; Reverberi, D.; Cilli, M.; Pfeffer, U.; Cancedda, R. Identification of a new cell population constitutively circulating in healthy conditions and endowed with a homing ability toward injured sites. Sci Rep. 2015, 5, 16574.
115. Lo Sicco, C.; Reverberi, D.; Villa, F.; Pfeffer, U.; Quarto, R.; Cancedda, R.; Tasso, R. Circulating healing (CH) cells expressing BST2 are functionally activated by the injury-regulated systemic factor HGFA. Stem Cell Res Ther. 2018, 9, 300.
116. Kawakami, Y.; Matsumoto, T.; Mifune, Y.; Fukui, T.; Patel, K. G.; Walker, G. N.; Kurosaka, M.; Kuroda, R. Therapeutic potential of endothelial progenitor cells in the field of orthopaedics. Curr Stem Cell Res Ther. 2017, 12, 3-13.
117. Kuroda, R.; Matsumoto, T.; Kawakami, Y.; Fukui, T.; Mifune, Y.; Kurosaka, M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. Tissue Eng Part B Rev. 2014, 20, 190-199.
118. Ma, X. L.; Sun, X. L.; Wan, C. Y.; Ma, J. X.; Tian, P. Significance of circulating endothelial progenitor cells in patients with fracture healing process. J Orthop Res. 2012, 30, 1860-1866.
119. Uccelli, A.; Moretta, L.; Pistoia, V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008, 8, 726-736.
120. Gattazzo, F.; Urciuolo, A.; Bonaldo, P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014, 1840, 2506-2519.
121. Ambrosi, T. H.; Marecic, O.; McArdle, A.; Sinha, R.; Gulati, G. S.; Tong, X.; Wang, Y.; Steininger, H. M.; Hoover, M. Y.; Koepke, L. S.; Murphy, M. P.; Sokol, J.; Seo, E. Y.; Tevlin, R.; Lopez, M.; Brewer, R. E.; Mascharak, S.; Lu, L.; Ajanaku, O.; Conley, S. D.; Seita, J.; Morri, M.; Neff, N. F.; Sahoo, D.; Yang, F.; Weissman, I. L.; Longaker, M. T.; Chan, C. K. F. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021, 597, 256-262.
122. Josephson, A. M.; Bradaschia-Correa, V.; Lee, S.; Leclerc, K.; Patel, K. S.; Muinos Lopez, E.; Litwa, H. P.; Neibart, S. S.; Kadiyala, M.; Wong, M. Z.; Mizrahi, M. M.; Yim, N. L.; Ramme, A. J.; Egol, K. A.; Leucht, P. Age-related inflammation triggers skeletal stem/progenitor cell dysfunction. Proc Natl Acad Sci U S A. 2019, 116, 6995-7004.
123. Oh, J.; Lee, Y. D.; Wagers, A. J. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014, 20, 870-880.
124. Ransom, R. C.; Hunter, D. J.; Hyman, S.; Singh, G.; Ransom, S. C.; Shen, E. Z.; Perez, K. C.; Gillette, M.; Li, J.; Liu, B.; Brunski, J. B.; Helms, J. A. Axin2-expressing cells execute regeneration after skeletal injury. Sci Rep. 2016, 6, 36524.
125. Tevlin, R.; Seo, E. Y.; Marecic, O.; McArdle, A.; Tong, X.; Zimdahl, B.; Malkovskiy, A.; Sinha, R.; Gulati, G.; Li, X.; Wearda, T.; Morganti, R.; Lopez, M.; Ransom, R. C.; Duldulao, C. R.; Rodrigues, M.; Nguyen, A.; Januszyk, M.; Maan, Z.; Paik, K.; Yapa, K. S.; Rajadas, J.; Wan, D. C.; Gurtner, G. C.; Snyder, M.; Beachy, P. A.; Yang, F.; Goodman, S. B.; Weissman, I. L.; Chan, C. K.; Longaker, M. T. Pharmacological rescue of diabetic skeletal stem cell niches. Sci Transl Med. 2017, 9, eaag2809.
126. Rosen, V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 2009, 20, 475-480.
127. Lowery, J. W.; Pazin, D.; Intini, G.; Kokabu, S.; Chappuis, V.; Capelo, L. P.; Rosen, V. The role of BMP2 signaling in the skeleton. Crit Rev Eukaryot Gene Expr. 2011, 21, 177-185.
128. Salazar, V. S.; Capelo, L. P.; Cantù, C.; Zimmerli, D.; Gosalia, N.; Pregizer, S.; Cox, K.; Ohte, S.; Feigenson, M.; Gamer, L.; Nyman, J. S.; Carey, D. J.; Economides, A.; Basler, K.; Rosen, V. Reactivation of a developmental Bmp2 signaling center is required for therapeutic control of the murine periosteal niche. Elife. 2019, 8, e42386.
129. Liu, Y.; Tian, H.; Hu, Y.; Cao, Y.; Song, H.; Lan, S.; Dai, Z.; Chen, W.; Zhang, Y.; Shao, Z.; Liu, Y.; Tong, W. Mechanosensitive Piezo1 is crucial for periosteal stem cell-mediated fracture healing. Int J Biol Sci. 2022, 18, 3961-3980.
130. Gao, B.; Deng, R.; Chai, Y.; Chen, H.; Hu, B.; Wang, X.; Zhu, S.; Cao, Y.; Ni, S.; Wan, M.; Yang, L.; Luo, Z.; Cao, X. Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration. J Clin Invest. 2019, 129, 2578-2594.
131. Gan, Y.; He, J.; Zhu, J.; Xu, Z.; Wang, Z.; Yan, J.; Hu, O.; Bai, Z.; Chen, L.; Xie, Y.; Jin, M.; Huang, S.; Liu, B.; Liu, P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021, 9, 37.