·
REVIEW
·

Mechanical environment for in vitro cartilage tissue engineering assisted by in silico models

Rob Jess1,2 Tao Ling3 Yi Xiong3* Chris J. Wright1 Feihu Zhao1,2*
Show Less
1 Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
2 Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
3 School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
Submitted: 27 December 2022 | Revised: 17 January 2023 | Accepted: 27 February 2023 | Published: 28 March 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Mechanobiological study of chondrogenic cells and multipotent stem cells for articular cartilage tissue engineering (CTE) has been widely explored. The mechanical stimulation in terms of wall shear stress, hydrostatic pressure and mechanical strain has been applied in CTE in vitro. It has been found that the mechanical stimulation at a certain range can accelerate the chondrogenesis and articular cartilage tissue regeneration. This review explicitly focuses on the study of the influence of the mechanical environment on proliferation and extracellular matrix production of chondrocytes in vitro for CTE. The multidisciplinary approaches used in previous studies and the need for in silico methods to be used in parallel with in vitro methods are also discussed. The information from this review is expected to direct facial CTE research, in which mechanobiology has not been widely explored yet.

Keywords
cartilage tissue engineering ; in silico modelling ; mechanical stimulation ; mechanobiology
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Jovic, T. H.; Jessop, Z. M.; Al-Sabah, A.; Whitaker, I. S. The Clinical Need for 3D Printed Tissue in Reconstructive Surgery. In *3D Bioprinting for Reconstructive Surgery*; Thomas, D. J.; Jessop, Z. M.; Whitaker, I. S., Eds.; Woodhead Publishing: 2018; pp 235-244.

2. Francis, S. L.; Di Bella, C.; Wallace, G. G.; Choong, P. F. M. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. *Front Surg.* 2018, 5, 70.

3. Kessler, M. W.; Grande, D. A. Tissue Engineering and Cartilage. *Organogenesis.* 2008, 4, 28-32.

4. Fahy, N.; Alini, M.; Stoddart, M. J. Mechanical Stimulation of Mesenchymal Stem Cells: Implications for Cartilage Tissue Engineering. *J Orthop Res.* 2018, 36, 52-63.

5. Schuh, E.; Hofmann, S.; Stok, K.; Notbohm, H.; Müller, R.; Rotter, N. Chondrocyte Redifferentiation in 3D: The Effect of Adhesion Site Density and Substrate Elasticity. *J Biomed Mater Res A.* 2012, 100, 38-47.

6. Smith, R. L.; Rusk, S. F.; Ellison, B. E.; Wessells, P.; Tsuchiya, K.; Carter, D. R.; Caler, W. E.; Sandell, L. J.; Schurman, D. J. In Vitro Stimulation of Articular Chondrocyte mRNA and Extracellular Matrix Synthesis by Hydrostatic Pressure. *J Orthop Res.* 1996, 14, 53-60.

7. O’Conor, C. J.; Case, N.; Guilak, F. Mechanical Regulation of Chondrogenesis. *Stem Cell Res Ther.* 2013, 4, 61.

8. Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Tian, L.; Shamirzaei-Jeshvaghani, E.; Dehghani, L.; Ramakrishna, S. Structural Properties of Scaffolds: Crucial Parameters Towards Stem Cells Differentiation. *World J Stem Cells.* 2015, 7, 728-744.

9. Zhao, F.; Vaughan, T. J.; McNamara, L. M. Quantification of Fluid Shear Stress in Bone Tissue Engineering Scaffolds with Spherical and Cubical Pore Architectures. *Biomech Model Mechanobiol.* 2016, 15, 561-577.

10. O’Brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. *Mater Today.* 2011, 14, 88-95.

11. Irawan, V.; Sung, T. C.; Higuchi, A.; Ikoma, T. Collagen Scaffolds in Cartilage Tissue Engineering and Relevant Approaches for Future Development. *Tissue Eng Regen Med.* 2018, 15, 673-697.

12. Zhao, F.; van Rietbergen, B.; Ito, K.; Hofmann, S. Flow Rates in Perfusion Bioreactors to Maximise Mineralisation in Bone Tissue Engineering In Vitro. *J Biomech.* 2018, 79, 232-237.

13. Breuls, R. G.; Jiya, T. U.; Smit, T. H. Scaffold Stiffness Influences Cell Behavior: Opportunities for Skeletal Tissue Engineering. *Open Orthop J.* 2008, 2, 103-109.

14. Olivares-Navarrete, R.; Lee, E. M.; Smith, K.; Hyzy, S. L.; Doroudi, M.; Williams, J. K.; Gall, K.; Boyan, B. D.; Schwartz, Z. Substrate Stiffness Controls Osteoblastic and Chondrocytic Differentiation of Mesenchymal Stem Cells without Exogenous Stimuli. *PLoS One.* 2017, 12, e0170312.

15. Selig, M.; Lauer, J. C.; Hart, M. L.; Rolauffs, B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. *Int J Mol Sci.* 2020, 21, 5399.

16. Jiang, C.; Sun, Z. M.; Zhu, D. C.; Guo, Q.; Xu, J. J.; Lin, J. H.; Chen, Z. X.; Wu, Y. S. Inhibition of Rac1 Activity by NSC23766 Prevents Cartilage Endplate Degeneration via Wnt/β-Catenin Pathway. *J Cell Mol Med.* 2020, 24, 3582-3592.

17. Dobrokhotov, O.; Samsonov, M.; Sokabe, M.; Hirata, H. Mechanoregulation and Pathology of YAP/TAZ via Hippo and Non-Hippo Mechanisms. *Clin Transl Med.* 2018, 7, 23.

18. Sanz-Ramos, P.; Mora, G.; Vicente-Pascual, M.; Ochoa, I.; Alcaine, C.; Moreno, R.; Doblaré, M.; Izal-Azcárate, I. Response of Sheep Chondrocytes to Changes in Substrate Stiffness from 2 to 20 Pa: Effect of Cell Passaging. *Connect Tissue Res.* 2013, 54, 159-166.

19. Li, X.; Chen, S.; Li, J.; Wang, X.; Zhang, J.; Kawazoe, N.; Chen, G. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. *Polymers (Basel).* 2016, 8, 269.

20. Bachmann, B.; Spitz, S.; Schädl, B.; Teuschl, A. H.; Redl, H.; Nürnberger, S.; Ertl, P. Stiffness Matters: Fine-Tuned Hydrogel Elasticity Alters Chondrogenic Redifferentiation. *Front Bioeng Biotechnol.* 2020, 8, 373.

21. Allen, J. L.; Cooke, M. E.; Alliston, T. ECM Stiffness Primes the TGFβ Pathway to Promote Chondrocyte Differentiation. *Mol Biol Cell.* 2012, 23, 3731-3742.

22. Schuh, E.; Kramer, J.; Rohwedel, J.; Notbohm, H.; Müller, R.; Gutsmann, T.; Rotter, N. Effect of Matrix Elasticity on the Maintenance of the Chondrogenic Phenotype. *Tissue Eng Part A.* 2010, 16, 1281-1290.

23. Bergholt, N. L.; Foss, M.; Saeed, A.; Gadegaard, N.; Lysdahl, H.; Lind, M.; Foldager, C. B. Surface Chemistry, Substrate, and Topography Guide the Behavior of Human Articular Chondrocytes Cultured In Vitro. *J Biomed Mater Res A.* 2018, 106, 2805-2816.

24. Ronan, W.; Deshpande, V. S.; McMeeking, R. M.; McGarry, J. P. Cellular Contractility and Substrate Elasticity: A Numerical Investigation of the Actin Cytoskeleton and Cell Adhesion. *Biomech Model Mechanobiol.* 2014, 13, 417-435.

25. McEvoy, E.; Deshpande, V. S.; McGarry, P. Free Energy Analysis of Cell Spreading. *J Mech Behav Biomed Mater.* 2017, 74, 283-295.

26. Ristori, T.; Vigliotti, A.; Baaijens, F. P. T.; Loerakker, S.; Deshpande, V. S. Prediction of Cell Alignment on Cyclically Strained Grooved Substrates. *Biophys J.* 2016, 111, 2274-2285.

27. Ristori, T.; Notermans, T. M. W.; Foolen, J.; Kurniawan, N. A.; Bouten, C. V. C.; Baaijens, F. P. T.; Loerakker, S. Modelling the Combined Effects of Collagen and Cyclic Strain on Cellular Orientation in Collagenous Tissues. *Sci Rep.* 2018, 8, 8518.

28. Deshpande, V. S.; McMeeking, R. M.; Evans, A. G. A Bio-Chemo-Mechanical Model for Cell Contractility. *Proc Natl Acad Sci U S A.* 2006, 103, 14015-14020.

29. Ronan, W.; Pathak, A.; Deshpande, V. S.; McMeeking, R. M.; McGarry, J. P. Simulation of the Mechanical Response of Cells on Micropost Substrates. *J Biomech Eng.* 2013, 135, 101012.

30. Deshpande, V. S.; Mrksich, M.; McMeeking, R. M.; Evans, A. G. A Bio-Mechanical Model for Coupling Cell Contractility with Focal Adhesion Formation. *J Mech Phys Solids.* 2008, 56, 1484-1510.

31. O’Reilly, A.; Kelly, D. J. A Computational Model of Osteochondral Defect Repair Following Implantation of Stem Cell-Laden Multiphase Scaffolds. *Tissue Eng Part A.* 2017, 23, 30-42.

32. Burke, D. P.; Kelly, D. J. Substrate Stiffness and Oxygen as Regulators of Stem Cell Differentiation During Skeletal Tissue Regeneration: A Mechanobiological Model. *PLoS One.* 2012, 7, e40737.

33. Guo, T.; Yu, L.; Lim, C. G.; Goodley, A. S.; Xiao, X.; Placone, J. K.; Ferlin, K. M.; Nguyen, B. N.; Hsieh, A. H.; Fisher, J. P. Effect of Dynamic Culture and Periodic Compression on Human Mesenchymal Stem Cell Proliferation and Chondrogenesis. *Ann Biomed Eng.* 2016, 44, 2103-2113.

34. Hwang, N. S.; Zhang, C.; Hwang, Y. S.; Varghese, S. Mesenchymal Stem Cell Differentiation and Roles in Regenerative Medicine. *Wiley Interdiscip Rev Syst Biol Med.* 2009, 1, 97-106.

35. Ravalli, S.; Szychlinska, M. A.; Lauretta, G.; Musumeci, G. New Insights on Mechanical Stimulation of Mesenchymal Stem Cells for Cartilage Regeneration. *Appl Sci.* 2020, 10, 2927.

36. Ouyang, X.; Xie, Y.; Wang, G. Mechanical Stimulation Promotes the Proliferation and the Cartilage Phenotype of Mesenchymal Stem Cells and Chondrocytes Co-Cultured In Vitro. *Biomed Pharmacother.* 2019, 117, 109146.

37. Nebelung, S.; Gavenis, K.; Rath, B.; Tingart, M.; Ladenburger, A.; Stoffel, M.; Zhou, B.; Mueller-Rath, R. Continuous Cyclic Compressive Loading Modulates Biological and Mechanical Properties of Collagen Hydrogels Seeded with Human Chondrocytes. *Biorheology.* 2011, 48, 247-261.

38. Shahin, K.; Doran, P. M. Tissue Engineering of Cartilage Using a Mechanobioreactor Exerting Simultaneous Mechanical Shear and Compression to Simulate the Rolling Action of Articular Joints. *Biotechnol Bioeng.* 2012, 109, 1060-1073.

39. Engstrøm, A.; Gillesberg, F. S.; Bay Jensen, A. C.; Karsdal, M. A.; Thudium, C. S. Dynamic Compression Inhibits Cytokine-Mediated Type II Collagen Degradation. *Osteoarthr Cartil Open.* 2022, 4, 100292.

40. Sawatjui, N.; Limpaiboon, T.; Schrobback, K.; Klein, T. Biomimetic Scaffolds and Dynamic Compression Enhance the Properties of Chondrocyte- and MSC-Based Tissue-Engineered Cartilage. *J Tissue Eng Regen Med.* 2018, 12, 1220-1229.

41. Grogan, S. P.; Sovani, S.; Pauli, C.; Chen, J.; Hartmann, A.; Colwell, C. W., Jr.; Lotz, M. K.; D’Lima, D. D. Effects of Perfusion and Dynamic Loading on Human Neocartilage Formation in Alginate Hydrogels. *Tissue Eng Part A.* 2012, 18, 1784-1792.

42. Engstrøm, A.; Gillesberg, F. S.; Groen, S. S.; Frederiksen, P.; Bay-Jensen, A. C.; Karsdal, M. A.; Thudium, C. S. Intermittent Dynamic Compression Confers Anabolic Effects in Articular Cartilage. *Appl Sci.* 2021, 11, 7469.

43. Capuana, E.; Marino, D.; Di Gesù, R.; La Carrubba, V.; Brucato, V.; Tuan, R. S.; Gottardi, R. A High-Throughput Mechanical Activator for Cartilage Engineering Enables Rapid Screening of In Vitro Response of Tissue Models to Physiological and Supra-Physiological Loads. *Cells Tissues Organs.* 2022, 211, 670-688.

44. Vetsch, J. R.; Betts, D. C.; Müller, R.; Hofmann, S. Flow Velocity-Driven Differentiation of Human Mesenchymal Stromal Cells in Silk Fibroin Scaffolds: A Combined Experimental and Computational Approach. *PLoS One.* 2017, 12, e0180781.

45. Jin, M.; Frank, E. H.; Quinn, T. M.; Hunziker, E. B.; Grodzinsky, A. J. Tissue Shear Deformation Stimulates Proteoglycan and Protein Biosynthesis in Bovine Cartilage Explants. *Arch Biochem Biophys.* 2001, 395, 41-48.

46. Waldman, S. D.; Spiteri, C. G.; Grynpas, M. D.; Pilliar, R. M.; Kandel, R. A. Long-Term Intermittent Shear Deformation Improves the Quality of Cartilaginous Tissue Formed In Vitro. *J Orthop Res.* 2003, 21, 590-596.

47. Gooch, K. J.; Kwon, J. H.; Blunk, T.; Langer, R.; Freed, L. E.; Vunjak-Novakovic, G. Effects of Mixing Intensity on Tissue-Engineered Cartilage. *Biotechnol Bioeng.* 2001, 72, 402-407.

48. Smith, R. L.; Donlon, B. S.; Gupta, M. K.; Mohtai, M.; Das, P.; Carter, D. R.; Cooke, J.; Gibbons, G.; Hutchinson, N.; Schurman, D. J. Effects of Fluid-Induced Shear on Articular Chondrocyte Morphology and Metabolism In Vitro. *J Orthop Res.* 1995, 13, 824-831.

49. Akmal, M.; Anand, A.; Anand, B.; Wiseman, M.; Goodship, A. E.; Bentley, G. The Culture of Articular Chondrocytes in Hydrogel Constructs Within a Bioreactor Enhances Cell Proliferation and Matrix Synthesis. *J Bone Joint Surg Br.* 2006, 88, 544-553.

50. Nazempour, A.; Quisenberry, C. R.; Abu-Lail, N. I.; Van Wie, B. J. Combined Effects of Oscillating Hydrostatic Pressure, Perfusion and Encapsulation in a Novel Bioreactor for Enhancing Extracellular Matrix Synthesis by Bovine Chondrocytes. *Cell Tissue Res.* 2017, 370, 179-193.

51. Scherer, K.; Schünke, M.; Sellckau, R.; Hassenpflug, J.; Kurz, B. The Influence of Oxygen and Hydrostatic Pressure on Articular Chondrocytes and Adherent Bone Marrow Cells In Vitro. *Biorheology.* 2004, 41, 323-333.

52. Ikenoue, T.; Trindade, M. C.; Lee, M. S.; Lin, E. Y.; Schurman, D. J.; Goodman, S. B.; Smith, R. L. Mechanoregulation of Human Articular Chondrocyte Aggrecan and Type II Collagen Expression by Intermittent Hydrostatic Pressure In Vitro. *J Orthop Res.* 2003, 21, 110-116.

53. Correia, C.; Pereira, A. L.; Duarte, A. R.; Frias, A. M.; Pedro, A. J.; Oliveira, J. T.; Sousa, R. A.; Reis, R. L. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure. *Tissue Eng Part A.* 2012, 18, 1979-1991.

54. Olivares, A. L.; Marsal, E.; Planell, J. A.; Lacroix, D. Finite Element Study of Scaffold Architecture Design and Culture Conditions for Tissue Engineering. *Biomaterials.* 2009, 30, 6142-6149.

55. Melke, J.; Zhao, F.; van Rietbergen, B.; Ito, K.; Hofmann, S. Localisation of Mineralised Tissue in a Complex Spinner Flask Environment Correlates with Predicted Wall Shear Stress Level Localisation. *Eur Cell Mater.* 2018, 36, 57-68.

56. Zhao, F.; Lacroix, D.; Ito, K.; van Rietbergen, B.; Hofmann, S. Changes in Scaffold Porosity During Bone Tissue Engineering in Perfusion Bioreactors Considerably Affect Cellular Mechanical Stimulation for Mineralization. *Bone Rep.* 2020, 12, 100265.

57. Papantoniou, I.; Guyot, Y.; Sonnaert, M.; Kerckhofs, G.; Luyten, F. P.; Geris, L.; Schrooten, J. Spatial Optimization in Perfusion Bioreactors Improves Bone Tissue-Engineered Construct Quality Attributes. *Biotechnol Bioeng.* 2014, 111, 2560-2570.

58. Guyot, Y.; Papantoniou, I.; Luyten, F. P.; Geris, L. Coupling Curvature-Dependent and Shear Stress-Stimulated Neotissue Growth in Dynamic Bioreactor Cultures: A 3D Computational Model of a Complete Scaffold. *Biomech Model Mechanobiol.* 2016, 15, 169-180.

59. Guyot, Y.; Luyten, F. P.; Schrooten, J.; Papantoniou, I.; Geris, L. A Three-Dimensional Computational Fluid Dynamics Model of Shear Stress Distribution During Neotissue Growth in a Perfusion Bioreactor. *Biotechnol Bioeng.* 2015, 112, 2591-2600.

60. Shakhawath Hossain, M.; Bergstrom, D. J.; Chen, X. B. A Mathematical Model and Computational Framework for Three-Dimensional Chondrocyte Cell Growth in a Porous Tissue Scaffold Placed Inside a Bi-Directional Flow Perfusion Bioreactor. *Biotechnol Bioeng.* 2015, 112, 2601-2610.

61. Nava, M. M.; Raimondi, M. T.; Pietrabissa, R. A Multiphysics 3D Model of Tissue Growth Under Interstitial Perfusion in a Tissue-Engineering Bioreactor. *Biomech Model Mechanobiol.* 2013, 12, 1169-1179.

62. Brunelli, M.; Perrault, C. M.; Lacroix, D. Short Bursts of Cyclic Mechanical Compression Modulate Tissue Formation in a 3D Hybrid Scaffold. *J Mech Behav Biomed Mater.* 2017, 71, 165-174.

63. Zhao, F.; Mc Garrigle, M. J.; Vaughan, T. J.; McNamara, L. M. In Silico Study of Bone Tissue Regeneration in an Idealised Porous Hydrogel Scaffold Using a Mechano-Regulation Algorithm. *Biomech Model Mechanobiol.* 2018, 17, 5-18.

64. Wang, L.; Shi, Q.; Cai, Y.; Chen, Q.; Guo, X.; Li, Z. Mechanical-Chemical Coupled Modeling of Bone Regeneration Within a Biodegradable Polymer Scaffold Loaded with VEGF. *Biomech Model Mechanobiol.* 2020, 19, 2285-2306.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top