·
RESEARCH ARTICLE
·

Effect of radiation sterilisation on the structure and antibacterial properties of antimicrobial peptides

Xiaodan Wang1,2* Qinmei Li1 Huawei Yang2,3*
Show Less
1 Hygea Medical Technology Co., Ltd., Beijing, China
2 State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin Province, China
3 Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
Submitted: 5 January 2023 | Revised: 17 February 2023 | Accepted: 9 March 2023 | Published: 28 March 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Antimicrobial peptides (AMPs) have recently been exploited to fabricate anti–infective medical devices due to their biocompatibility and ability to combat multidrug–resistant bacteria. Modern medical devices should be thoroughly sterilised before use to avoid cross–infection and disease transmission, consequently it is essential to evaluate whether AMPs withstand the sterilisation process or not. In this study, the effect of radiation sterilisation on the structure and properties of AMPs was explored. Fourteen AMPs formed from different monomers with different topologies were synthesised by ring–opening polymerisation of N–carboxyanhydrides. The results of solubility testing showed that the star–shaped AMPs changed from water–soluble to water–insoluble after irradiation, while the solubility of linear AMPs remained unchanged. Matrix–assisted laser desorption/ionisation time of flight mass spectrometry showed that the molecular weight of the linear AMPs underwent minimal changes after irradiation. The results of minimum inhibitory concentration assay also illustrated that radiation sterilisation had little effect on the antibacterial properties of the linear AMPs. Therefore, radiation sterilisation may be a feasible method for the sterilisation of AMPs, which have promising commercial applications in medical devices.

Keywords
antibacterial activity ; antimicrobial peptides ; radiation sterilisation
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1.Deusenbery, C.; Wang, Y.; Shukla, A. Recent innovations in bacterial infection detection and treatment. ACS Infect Dis. 2021, 7, 695-720.  
2. Yu, Q.; Wu, Z.; Chen, H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015, 16, 1-13.  
3. Bai, D.; Chen, J.; Li, P.; Huang, W. Perspectives on biomaterial-associated infection: pathogenesis and current clinical demands. In Racing for the surface: pathogenesis of implant infection and advanced antimicrobial strategies, Li, B.; Moriarty, T. F.; Webster, T.; Xing, M., eds.; Springer International Publishing: Cham, 2020; pp 75-93.  
4. Lai, N. M.; Chaiyakunapruk, N.; Lai, N. A.; O’Riordan, E.; Pau, W. S.; Saint, S. Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst Rev. 2016, 3, CD007878.  
5. Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol. 2015, 33, 637-652.  
6. Campoccia, D.; Montanaro, L.; Arciola, C. R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013, 34, 8533-8554.  
7. Chen, Y. M.; Dai, A. P.; Shi, Y.; Liu, Z. J.; Gong, M. F.; Yin, X. B. Effectiveness of silver-impregnated central venous catheters for preventing catheter-related blood stream infections: a meta-analysis. Int J Infect Dis. 2014, 29, 279-286.  
8. Rupp, M. E.; Fitzgerald, T.; Marion, N.; Helget, V.; Puumala, S.; Anderson, J. R.; Fey, P. D. Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control. 2004, 32, 445-450.  
9. Singh, R.; Hokenstad, E. D.; Wiest, S. R.; Kim-Fine, S.; Weaver, A. L.; McGree, M. E.; Klingele, C. J.; Trabuco, E. C.; Gebhart, J. B. Randomized controlled trial of silver-alloy-impregnated suprapubic catheters versus standard suprapubic catheters in assessing urinary tract infection rates in urogynecology patients. Int Urogynecol J. 2019, 30, 779-787.  
10. Saint, S.; Elmore, J. G.; Sullivan, S. D.; Emerson, S. S.; Koepsell, T. D. The efficacy of silver alloy-coated urinary catheters in preventing urinary tract infection: a meta-analysis. Am J Med. 1998, 105, 236-241.  
11. Safdar, N.; O’Horo, J. C.; Ghufran, A.; Bearden, A.; Didier, M. E.; Chateau, D.; Maki, D. G. Chlorhexidine-impregnated dressing for prevention of catheter-related bloodstream infection: a meta-analysis. Crit Care Med. 2014, 42, 1703-1713.  
12. Lorente, L. Review: chlorhexidine-impregnated dressings reduce risk of colonisation of central venous catheters and risk of catheter-related bloodstream infection. Evid Based Nurs. 2015, 18, 91.  
13. Srisang, S.; Nasongkla, N. Spray coating of foley urinary catheter by chlorhexidine-loaded poly(ε-caprolactone) nanospheres: effect of lyoprotectants, characteristics, and antibacterial activity evaluation. Pharm Dev Technol. 2019, 24, 402-409.  
14. Bayston, R.; Fisher, L. E.; Weber, K. An antimicrobial modified silicone peritoneal catheter with activity against both Gram-positive and Gram-negative bacteria. Biomaterials. 2009, 30, 3167-3173.  
15. Luther, E. M.; Schmidt, M. M.; Diendorf, J.; Epple, M.; Dringen, R. Upregulation of metallothioneins after exposure of cultured primary astrocytes to silver nanoparticles. Neurochem Res. 2012, 37, 1639-1648.  
16. Blair, J. M.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015, 13, 42-51.  
17. Tan, P.; Fu, H.; Ma, X. Design, optimization, and nanotechnology of antimicrobial peptides: From exploration to applications. Nano Today. 2021, 39, 101229.  
18. Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N. J.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev. 2020, 49, 4737-4834.  
19. Luong, H. X.; Thanh, T. T.; Tran, T. H. Antimicrobial peptides - advances in development of therapeutic applications. Life Sci. 2020, 260, 118407.  
20. Hancock, R. E.; Sahl, H. G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006, 24, 1551-1557.  
21. Ageitos, J. M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T. G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol. 2017, 133, 117-138.  
22. Mowery, B. P.; Lee, S. E.; Kissounko, D. A.; Epand, R. F.; Epand, R. M.; Weisblum, B.; Stahl, S. S.; Gellman, S. H. Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc. 2007, 129, 15474-15476.  
23. Deming, T. J. Synthesis of side-chain modified polypeptides. Chem Rev. 2016, 116, 786-808.  
24. Wang, X.; Yang, F.; Yang, H.; Zhang, X.; Tang, H.; Luan, S. Preparation of antibacterial polypeptides with different topologies and their antibacterial properties. Biomater Sci. 2022, 10, 834-845.  
25. Raza, S.; Iqbal, Y.; Ullah, I.; Mubarak, M. S.; Hameed, M. U.; Raza, M. Effects of gamma irradiation on the physico-chemical and biological properties of levofloxacin. Pak J Pharm Sci. 2018, 31, 181-186.  
26. Gomes, A. D.; de Oliveira, A. A. R.; Houmard, M.; Nunes, E. H. M. Gamma sterilization of collagen/hydroxyapatite composites: Validation and radiation effects. Appl Radiat Isot. 2021, 174, 109758.  
27. Domańska, I. M.; Oledzka, E.; Sobczak, M. Sterilization process of polyester based anticancer-drug delivery systems. Int J Pharm. 2020, 587, 119663.  

28. Maturana, P.; Gonçalves, S.; Martinez, M.; Espeche, J. C.; Santos, N. C.; Semorile, L.; Maffia, P. C.; Hollmann, A. Interactions of “de novo” designed peptides with bacterial membranes: Implications in the antimicrobial activity. Biochim Biophys Acta Biomembr. 2020, 1862, 183443.  
29. Yang, Z.; Xi, Y.; Bai, J.; Jiang, Z.; Wang, S.; Zhang, H.; Dai, W.; Chen, C.; Gou, Z.; Yang, G.; Gao, C. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials. 2021, 269, 120534.  
30. Bargh, S.; Silindir-Gunay, M.; Ozer, A. Y.; Colak, S.; Kutlu, B.; Nohutcu, R. The effects of gamma and microwave sterilization on periodontological grafts. Chemical Physics Impact. 2021, 3, 100046.  
31. Sharma, A.; Anup, N.; Tekade, R. K. Chapter 21 - Achieving sterility in biomedical and pharmaceutical products (part-II): radiation sterilization. In The future of pharmaceutical product development and research, Tekade, R. K., ed. Academic Press: 2020; pp 789-848.  
32. Nguyen, H.; Cassady, A. I.; Bennett, M. B.; Gineyts, E.; Wu, A.; Morgan, D. A.; Forwood, M. R. Reducing the radiation sterilization dose improves mechanical and biological quality while retaining sterility assurance levels of bone allografts. Bone. 2013, 57, 194-200.  
33. De Guzman, Z. M.; Cervancia, C. R.; Dimasuay, K. G.; Tolentino, M. M.; Abrera, G. B.; Cobar, M. L.; Fajardo, A. C., Jr.; Sabino, N. G.; Manila-Fajardo, A. C.; Feliciano, C. P. Radiation inactivation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays. Appl Radiat Isot. 2011, 69, 1374-1379.  
34. B.G. Porto, K. M.; Napolitano, C. M.; Borrely, S. I. Gamma radiation effects in packaging for sterilization of health products and their constituents paper and plastic film. Radiat Phys Chem. 2018, 142, 23-28.  
35. Liu, H.; Zhang, X.; Zhao, Z.; Yang, F.; Xue, R.; Yin, L.; Song, Z.; Cheng, J.; Luan, S.; Tang, H. Efficient synthesis and excellent antimicrobial activity of star-shaped cationic polypeptides with improved biocompatibility. Biomater Sci. 2021, 9, 2721-2731.  
36. Wiegand, I.; Hilpert, K.; Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008, 3, 163-175.  
37. Li, P.; Poon, Y. F.; Li, W.; Zhu, H. Y.; Yeap, S. H.; Cao, Y.; Qi, X.; Zhou, C.; Lamrani, M.; Beuerman, R. W.; Kang, E. T.; Mu, Y.; Li, C. M.; Chang, M. W.; Leong, S. S.; Chan-Park, M. B. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater. 2011, 10, 149-156.  
38. Wang, X.; Shi, H.; Tang, H.; Yu, H.; Yan, Q.; Yang, H.; Zhang, X.; Luan, S. Electrostatic assembly functionalization of poly (γ-glutamic acid) for biomedical antibacterial applications. J Mater Sci Technol. 2020, 59, 14-25.  
39. Haji-Saeid, M.; Sampa, M. H. O.; Chmielewski, A. G. Radiation treatment for sterilization of packaging materials. Radiat Phys Chem. 2007, 76, 1535-1541.  
40. Liscano, Y.; Salamanca, C. H.; Vargas, L.; Cantor, S.; Laverde-Rojas, V.; Oñate-Garzón, J. Increases in hydrophilicity and charge on the polar face of alyteserin 1c helix change its selectivity towards Gram-positive bacteria. Antibiotics (Basel). 2019, 8, 238.  
41. Palermo, E. F.; Lienkamp, K.; Gillies, E. R.; Ragogna, P. J. Antibacterial activity of polymers: discussions on the nature of amphiphilic balance. Angew Chem Int Ed Engl. 2019, 58, 3690-3693.  
42. Judzewitsch, P. R.; Nguyen, T. K.; Shanmugam, S.; Wong, E. H. H.; Boyer, C. Towards sequence-controlled antimicrobial polymers: effect of polymer block order on antimicrobial activity. Angew Chem Int Ed Engl. 2018, 57, 4559-4564.  
43. Lam, S. J.; O’Brien-Simpson, N. M.; Pantarat, N.; Sulistio, A.; Wong, E. H.; Chen, Y. Y.; Lenzo, J. C.; Holden, J. A.; Blencowe, A.; Reynolds, E. C.; Qiao, G. G. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol. 2016, 1, 16162.  
44. Osmanoğlu, Y. E.; Sütçü, K. EPR studies of the free radicals generated in gamma irradiated amino acid derivatives. J Mol Struct. 2017, 1145, 240-243.  
45. Duliu, O. G.; Bercu, V. Chapter 2 - ESr investigation of the free radicals in irradiated foods. In Electron spin resonance in food science, Shukla, A. K., ed. Academic Press: 2017; pp 17-32.  
46. Atrous, H.; Benbettaieb, N.; Hosni, F.; Danthine, S.; Blecker, C.; Attia, H.; Ghorbel, D. Effect of γ-radiation on free radicals formation, structural changes and functional properties of wheat starch. Int J Biol Macromol. 2015, 80, 64-76.  
47. Liu, W.; Wang, M.; Xing, Z.; Wu, G. The free radical species in polyacrylonitrile fibers induced by γ-radiation and their decay behaviors. Radiat Phys Chem. 2012, 81, 835-839.  
48. Zhao, Y.; Wang, M.; Tang, Z.; Wu, G. ESR study of free radicals in UHMW-PE fiber irradiated by gamma rays. Radiat Phys Chem. 2010, 79, 429-433.  

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top