·
RESEARCH ARTICLE
·

Systematic evaluation of three porcine-derived collagen membranes for guided bone regeneration

Andrew Tai1,2 Euphemie Landao-Bassonga1,2 Ziming Chen1 Minh Tran3 Brent Allan1,3,4 Rui Ruan1 Dax Calder3 Mithran Goonewardene3 Hien Ngo3 Ming Hao Zheng1,2*
Show Less
1 Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
2 Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
3 UWA Dental School, The University of Western Australia, Nedlands, Western Australia, Australia
4 Oral and Maxillofacial Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia
Submitted: 4 December 2022 | Revised: 22 February 2023 | Accepted: 2 March 2023 | Published: 28 March 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Guided bone regeneration is one of the most common surgical treatment modalities performed when an additional alveolar bone is required to stabilize dental implants in partially and fully edentulous patients. The addition of a barrier membrane prevents non–osteogenic tissue invasion into the bone cavity, which is key to the success of guided bone regeneration. Barrier membranes can be broadly classified as non–resorbable or resorbable. In contrast to non–resorbable membranes, resorbable barrier membranes do not require a second surgical procedure for membrane removal. Commercially available resorbable barrier membranes are either synthetically manufactured or derived from xenogeneic collagen. Although collagen barrier membranes have become increasingly popular amongst clinicians, largely due to their superior handling qualities compared to other commercially available barrier membranes, there have been no studies to date that have compared commercially available porcine–derived collagen membranes with respect to surface topography, collagen fibril structure, physical barrier property, and immunogenic composition. This study evaluated three commercially available non–crosslinked porcine–derived collagen membranes (Striate+TM, Bio–Gide® and CreosTM Xenoprotect). Scanning electron microscopy revealed similar collagen fibril distribution on both the rough and smooth sides of the membranes as well as the similar diameters of collagen fibrils. However, D–periodicity of the fibrillar collagen is significantly different among the membranes, with Striate+TM membrane having the closest D–periodicity to native collagen I. This suggests that there is less deformation of collagen during manufacturing process. All collagen membranes showed superior barrier property evidenced by blocking 0.2–16.4 µm beads passing through the membranes. To examine the immunogenic agents in these membranes, we examined the membranes for the presence of DNA and alpha–gal by immunohistochemistry. No alpha–gal or DNA was detected in any membranes. However, using a more sensitive detection method (real–time polymerase chain reaction), a relatively strong DNA signal was detected in Bio–Gide® membrane, but not Striate+TM and CreosTM Xenoprotect membranes. Our study concluded that these membranes are similar but not identical, probably due to the different ages and sources of porcine tissues, as well as different manufacturing processes. We recommend further studies to understand the clinical implications of these findings.

Keywords
barrier membrane ; collagen membrane ; dental implant ; guided bone regeneration ; immunogen
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1.Dahlin, C.; Linde, A.; Gottlow, J.; Nyman, S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988, 81, 672-676.  
2. Sasaki, J. I.; Abe, G. L.; Li, A.; Thongthai, P.; Tsuboi, R.; Kohno, T.; Imazato, S. Barrier membranes for tissue regeneration in dentistry. Biomater Investig Dent. 2021, 8, 54-63.  
3. Sbricoli, L.; Guazzo, R.; Annunziata, M.; Gobbato, L.; Bressan, E.; Nastri, L. Selection of collagen membranes for bone regeneration: a literature review. Materials (Basel). 2020, 13, 786.  
4. Lee, S. W.; Kim, S. G. Membranes for the guided bone regeneration. Maxillofac Plast Reconstr Surg. 2014, 36, 239-246.  
5. Kadler, K. E.; Holmes, D. F.; Trotter, J. A.; Chapman, J. A. Collagen fibril formation. Biochem J. 1996, 316 (Pt 1), 1-11.  
6. Pace, J. M.; Corrado, M.; Missero, C.; Byers, P. H. Identification, characterization and expression analysis of a new fibrillar collagen gene, COL27A1. Matrix Biol. 2003, 22, 3-14.  
7. Boot-Handford, R. P.; Tuckwell, D. S.; Plumb, D. A.; Rock, C. F.; Poulsom, R. A novel and highly conserved collagen (pro(alpha)1(XXVII)) with a unique expression pattern and unusual molecular characteristics establishes a new clade within the vertebrate fibrillar collagen family. J Biol Chem. 2003, 278, 31067-31077.  
8. Exposito, J. Y.; Valcourt, U.; Cluzel, C.; Lethias, C. The fibrillar collagen family. Int J Mol Sci. 2010, 11, 407-426.  
9. Hodge, A. J.; Petruska, J. A. Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule. In Aspects of Protein Structure, Ramachandran, G. N., Ed. Academic Press: New York, 1963; pp 289-300.  
10. Chapman, J. A.; Tzaphlidou, M.; Meek, K. M.; Kadler, K. E. The collagen fibril--a model system for studying the staining and fixation of a protein. Electron Microsc Rev. 1990, 3, 143-182.  
11. Orgel, J. P.; Irving, T. C.; Miller, A.; Wess, T. J. Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A. 2006, 103, 9001-9005.  
12. Wallace, J. M.; Chen, Q.; Fang, M.; Erickson, B.; Orr, B. G.; Banaszak Holl, M. M. Type I collagen exists as a distribution of nanoscale morphologies in teeth, bones, and tendons. Langmuir. 2010, 26, 7349-7354.  
13. Kemp, A. D.; Harding, C. C.; Cabral, W. A.; Marini, J. C.; Wallace, J. M. Effects of tissue hydration on nanoscale structural morphology and mechanics of individual type I collagen fibrils in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol. 2012, 180, 428-438.  
14. Wells, H. C.; Sizeland, K. H.; Kelly, S. J. R.; Kirby, N.; Hawley, A.; Mudie, S.; Haverkamp, R. G. Collagen fibril intermolecular spacing changes with 2-propanol: a mechanism for tissue stiffness. ACS Biomater Sci Eng. 2017, 3, 2524-2532.  
15. Watanabe-Nakayama, T.; Itami, M.; Kodera, N.; Ando, T.; Konno, H. High-speed atomic force microscopy reveals strongly polarized movement of clostridial collagenase along collagen fibrils. Sci Rep. 2016, 6, 28975.  
16. Uitto, V. J.; Suomalainen, K.; Sorsa, T. Salivary collagenase. Origin, characteristics and relationship to periodontal health. J Periodontal Res. 1990, 25, 135-142.  
17. Hilger, C.; Fischer, J.; Wölbing, F.; Biedermann, T. Role and mechanism of galactose-alpha-1,3-galactose in the elicitation of delayed anaphylactic reactions to red meat. Curr Allergy Asthma Rep. 2019, 19, 3.  
18. Zheng, M. H.; Chen, J.; Kirilak, Y.; Willers, C.; Xu, J.; Wood, D. Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater. 2005, 73, 61-67.  
19. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012, 9, 671-675.  
20. Rezakhaniha, R.; Agianniotis, A.; Schrauwen, J. T.; Griffa, A.; Sage, D.; Bouten, C. V.; van de Vosse, F. N.; Unser, M.; Stergiopulos, N. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol. 2012, 11, 461-473.  
21. Yoshida, T.; Nomura, T.; Shinoda, N.; Kusama, T.; Kadowaki, K.; Sugiura, K. Development of PCR primers for the detection of porcine DNA in feed using mtATP6 as the target sequence. Shokuhin Eiseigaku Zasshi. 2009, 50, 89-92.  
22. Zitzmann, N. U.; Naef, R.; Schärer, P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration. Int J Oral Maxillofac Implants. 1997, 12, 844-852.  
23. Jiménez Garcia, J.; Berghezan, S.; Caramês, J. M. M.; Dard, M. M.; Marques, D. N. S. Effect of cross-linked vs non-cross-linked collagen membranes on bone: A systematic review. J Periodontal Res. 2017, 52, 955-964.  

24. Becker, J.; Al-Nawas, B.; Klein, M. O.; Schliephake, H.; Terheyden, H.; Schwarz, F. Use of a new cross-linked collagen membrane for the treatment of dehiscence-type defects at titanium implants: a prospective, randomized-controlled double-blinded clinical multicenter study. Clin Oral Implants Res. 2009, 20, 742-749.  
25. Zhu, M.; Duan, B.; Hou, K.; Mao, L.; Wang, X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J Biomed Mater Res B Appl Biomater. 2023, 111, 568-578.  
26. Chen, P.; Wang, A.; Haynes, W.; Landao-Bassonga, E.; Lee, C.; Ruan, R.; Breidahl, W.; Shiroud Heidari, B.; Mitchell, C. A.; Zheng, M. A bio-inductive collagen scaffold that supports human primary tendon-derived cell growth for rotator cuff repair. J Orthop Translat. 2021, 31, 91-101.  
27. Elgali, I.; Omar, O.; Dahlin, C.; Thomsen, P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017, 125, 315-337.  
28. Panahipour, L.; Kargarpour, Z.; Luza, B.; Lee, J. S.; Gruber, R. TGF-β activity related to the use of collagen membranes: in vitro bioassays. Int J Mol Sci. 2020, 21, 6636.  
29. Kuravi, K. V.; Sorrells, L. T.; Nellis, J. R.; Rahman, F.; Walters, A. H.; Matheny, R. G.; Choudhary, S. K.; Ayares, D. L.; Commins, S. P.; Bianchi, J. R.; Turek, J. W. Allergic response to medical products in patients with alpha-gal syndrome. J Thorac Cardiovasc Surg. 2022, 164, e411-e424.  
30. Steinke, J. W.; Platts-Mills, T. A.; Commins, S. P. The alpha-gal story: lessons learned from connecting the dots. J Allergy Clin Immunol. 2015, 135, 589-596; quiz 597.  

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top