·
RESEARCH ARTICLE
·

Three-dimensional biofabrication of nanosecond laser micromachined nanofibre meshes for tissue engineered scaffolds

Ross H. McWilliam1 Wenlong Chang2 Zhao Liu3 Jiayuan Wang3 Fengxuan Han3 Richard A. Black1 Junxi Wu1 Xichun Luo2 Bin Li3 Wenmiao Shu1*
Show Less
1 Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
2 Centre for Precision Manufacturing, Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow, UK
3 Orthopaedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
Submitted: 27 January 2023 | Revised: 19 April 2023 | Accepted: 20 June 2023 | Published: 28 June 2023
Copyright © 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

There is a high demand for bespoke grafts to replace damaged or malformed bone and cartilage tissue. Three-dimensional (3D) printing offers a method of fabricating complex anatomical features of clinically relevant sizes. However, the construction of a scaffold to replicate the complex hierarchical structure of natural tissues remains challenging. This paper reports a novel biofabrication method that is capable of creating intricately designed structures of anatomically relevant dimensions. The beneficial properties of the electrospun fibre meshes can finally be realised in 3D rather than the current promising breakthroughs in two-dimensional (2D). The 3D model was created from commercially available computer-aided design software packages in order to slice the model down into many layers of slices, which were arrayed. These 2D slices with each layer of a defined pattern were laser cut, and then successfully assembled with varying thicknesses of 100 µm or 200 µm. It is demonstrated in this study that this new biofabrication technique can be used to reproduce very complex computer-aided design models into hierarchical constructs with micro and nano resolutions, where the clinically relevant sizes ranging from a simple cube of 20 mm dimension, to a more complex, 50 mm-tall human ears were created. In-vitro cell-contact studies were also carried out to investigate the biocompatibility of this hierarchal structure. The cell viability on a micromachined electrospun polylactic-co-glycolic acid fibre mesh slice, where a range of hole diameters from 200 µm to 500 µm were laser cut in an array where cell confluence values of at least 85% were found at three weeks. Cells were also seeded onto a simpler stacked construct, albeit made with micromachined poly fibre mesh, where cells can be found to migrate through the stack better with collagen as bioadhesives. This new method for biofabricating hierarchical constructs can be further developed for tissue repair applications such as maxillofacial bone injury or nose/ear cartilage replacement in the future.

Keywords
3D biofabrication ; electrospinning ; hierarchical scaffold ; micromachining ; tissue engineering
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Templer, J.; Renner, G. J. Injuries of the External Ear. *Otolaryngol Clin North Am.* 1990, 23, 1003-1018.

2. Harris, J.; Källén, B.; Robert, E. The Epidemiology of Anotia and Microtia. *J Med Genet.* 1996, 33, 809-813.

3. Gassner, R.; Tuli, T.; Hächl, O.; Rudisch, A.; Ulmer, H. Cranio-Maxillofacial Trauma: A 10 Year Review of 9,543 Cases with 21,067 Injuries. *J Craniomaxillofac Surg.* 2003, 31, 51-61.

4. Subhashraj, K.; Nandakumar, N.; Ravindran, C. Review of Maxillofacial Injuries in Chennai, India: A Study of 2748 Cases. *Br J Oral Maxillofac Surg.* 2007, 45, 637-639.

5. Turnbull, G.; Clarke, J.; Picard, F.; Riches, P.; Jia, L.; Han, F.; Li, B.; Shu, W. 3D Bioactive Composite Scaffolds for Bone Tissue Engineering. *Bioact Mater.* 2018, 3, 278-314.

6. Xu, L.; Qin, H.; Tan, J.; Cheng, Z.; Luo, X.; Tan, H.; Huang, W. Clinical Study of 3D Printed Personalized Prosthesis in the Treatment of Bone Defect after Pelvic Tumor Resection. *J Orthop Translat.* 2021, 29, 163-169.

7. Pu, F.; Wu, W.; Jing, D.; Yu, Y.; Peng, Y.; Liu, J.; Wu, Q.; Wang, B.; Zhang, Z.; Shao, Z. Three-Dimensional-Printed Titanium Prostheses with Bone Trabeculae Enable Mechanical-Biological Reconstruction after Resection of Bone Tumours. *Biomater Transl.* 2022, 3, 134-141.

8. Long, J.; Teng, B.; Zhang, W.; Li, L.; Zhang, M.; Chen, Y.; Yao, Z.; Meng, X.; Wang, X.; Qin, L.; Lai, Y. Preclinical Evaluation of Acute Systemic Toxicity of Magnesium Incorporated Poly(Lactic-Co-Glycolic Acid) Porous Scaffolds by Three-Dimensional Printing. *Biomater Transl.* 2021, 2, 272-284.

9. Luquetti, D. V.; Leoncini, E.; Mastroiacovo, P. Microtia-Anotia: A Global Review of Prevalence Rates. *Birth Defects Res A Clin Mol Teratol.* 2011, 91, 813-822.

10. Duscher, D.; Shiffman, M. A. Regenerative Medicine and Plastic Surgery. *Springer Nature Switzerland: Cham, Switzerland,* 2019.

11. Posnick, J. C. Grafts Frequently Used During Orthognathic Surgery and for Adjunctive Procedures. In *Orthognathic Surgery,* Posnick, J. C., ed. W.B. Saunders: St. Louis, 2014; pp 607-639.

12. Elsalanty, M. E.; Genecov, D. G. Bone Grafts in Craniofacial Surgery. *Craniomaxillofac Trauma Reconstr.* 2009, 2, 125-134.

13. Pacifici, L.; F, D. E. A.; Orefici, A.; Cielo, A. Metals Used in Maxillofacial Surgery. *Oral Implantol (Rome).* 2016, 9, 107-111.

14. Sun, H.; Guo, Q.; Shi, C.; McWilliam, R. H.; Chen, J.; Zhu, C.; Han, F.; Zhou, P.; Yang, H.; Liu, J.; Sun, X.; Meng, B.; Shu, W.; Li, B. CD271 Antibody-Functionalized Microspheres Capable of Selective Recruitment of Reparative Endogenous Stem Cells for In Situ Bone Regeneration. *Biomaterials.* 2022, 280, 121243.

15. Yang, T.; Tamaddon, M.; Jiang, L.; Wang, J.; Liu, Z.; Liu, Z.; Meng, H.; Hu, Y.; Gao, J.; Yang, X.; Zhao, Y.; Wang, Y.; Wang, A.; Wu, Q.; Liu, C.; Peng, J.; Sun, X.; Xue, Q. Bilayered Scaffold with 3D Printed Stiff Subchondral Bony Compartment to Provide Constant Mechanical Support for Long-Term Cartilage Regeneration. *J Orthop Translat.* 2021, 30, 112-121.

16. Yin, H. W.; Feng, J. T.; Yu, B. F.; Shen, Y. D.; Gu, Y. D.; Xu, W. D. 3D Printing-Assisted Percutaneous Fixation Makes the Surgery for Scaphoid Nonunion More Accurate and Less Invasive. *J Orthop Translat.* 2020, 24, 138-143.

17. Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? *Adv Mater.* 2004, 16, 1151-1170.

18. Frenot, A.; Chronakis, I. S. Polymer Nanofibers Assembled by Electrospinning. *Curr Opin Colloid Interface Sci.* 2003, 8, 64-75.

19. Tuzlakoglu, K.; Bolgen, N.; Salgado, A. J.; Gomes, M. E.; Piskin, E.; Reis, R. L. Nano- and Micro-Fiber Combined Scaffolds: A New Architecture for Bone Tissue Engineering. *J Mater Sci Mater Med.* 2005, 16, 1099-1104.

20. Sun, B.; Long, Y. Z.; Zhang, H. D.; Li, M. M.; Duvail, J. L.; Jiang, X. Y.; Yin, H. L. Advances in Three-Dimensional Nanofibrous Macrostructures via Electrospinning. *Prog Polym Sci.* 2014, 39, 862-890.

21. Brown, T. D.; Dalton, P. D.; Hutmacher, D. W. Melt Electrospinning Today: An Opportune Time for an Emerging Polymer Process. *Prog Polym Sci.* 2016, 56, 116-166.

22. Nayak, R.; Padhye, R.; Arnold, L. Melt-Electrospinning of Nanofibers. In *Electrospun Nanofibers,* Afshari, M., ed. Woodhead Publishing: 2017; pp 11-40.

23. Zhang, L. H.; Duan, X. P.; Yan, X.; Yu, M.; Ning, X.; Zhao, Y.; Long, Y. Z. Recent Advances in Melt Electrospinning. *RSC Adv.* 2016, 6, 53400-53414.

24. Brown, T. D.; Edin, F.; Detta, N.; Skelton, A. D.; Hutmacher, D. W.; Dalton, P. D. Melt Electrospinning of Poly(ε-Caprolactone) Scaffolds: Phenomenological Observations Associated with Collection and Direct Writing. *Mater Sci Eng C Mater Biol Appl.* 2014, 45, 698-708.

25. Sun, W.; Starly, B.; Daly, A. C.; Burdick, J. A.; Groll, J.; Skeldon, G.; Shu, W.; Sakai, Y.; Shinohara, M.; Nishikawa, M.; Jang, J.; Cho, D. W.; Nie, M.; Takeuchi, S.; Ostrovidov, S.; Khademhosseini, A.; Kamm, R. D.; Mironov, V.; Moroni, L.; Ozbolat, I. T. The Bioprinting Roadmap. *Biofabrication.* 2020, 12, 022002.

26. Holmes, A. M.; Charlton, A.; Derby, B.; Ewart, L.; Scott, A.; Shu, W. Rising to the Challenge: Applying Biofabrication Approaches for Better Drug and Chemical Product Development. *Biofabrication.* 2017, 9, 033001.

27. Holland, I.; Logan, J.; Shi, J.; McCormick, C.; Liu, D.; Shu, W. 3D Biofabrication for Tubular Tissue Engineering. *Biodes Manuf.* 2018, 1, 89-100.

28. Cornelissen, D. J.; Faulkner-Jones, A.; Shu, W. Current Developments in 3D Bioprinting for Tissue Engineering. *Curr Opin Biomed Eng.* 2017, 2, 76-82.

29. Sahranavard, M.; Sarkari, S.; Safavi, S.; Ghorbani, F. Three-Dimensional Bio-Printing of Decellularized Extracellular Matrix-Based Bio-Inks for Cartilage Regeneration: A Systematic Review. *Biomater Transl.* 2022, 3, 105-115.

30. Turnbull, G.; Clarke, J.; Picard, F.; Zhang, W.; Riches, P.; Li, B.; Shu, W. 3D Biofabrication for Soft Tissue and Cartilage Engineering. *Med Eng Phys.* 2020, 82, 13-39.

31. Groll, J.; Boland, T.; Blunk, T.; Burdick, J. A.; Cho, D. W.; Dalton, P. D.; Derby, B.; Forgacs, G.; Li, Q.; Mironov, V. A.; Moroni, L.; Nakamura, M.; Shu, W.; Takeuchi, S.; Vozzi, G.; Woodfield, T. B.; Xu, T.; Yoo, J. J.; Malda, J. Biofabrication: Reappraising the Definition of an Evolving Field. *Biofabrication.* 2016, 8, 013001.

32. Kang, H. W.; Lee, S. J.; Ko, I. K.; Kengla, C.; Yoo, J. J.; Atala, A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. *Nat Biotechnol.* 2016, 34, 312-319.

33. Murphy, S. V.; Atala, A. 3D Bioprinting of Tissues and Organs. *Nat Biotechnol.* 2014, 32, 773-785.

34. Wu, Z.; Su, X.; Xu, Y.; Kong, B.; Sun, W.; Mi, S. Bioprinting Three-Dimensional Cell-Laden Tissue Constructs with Controllable Degradation. *Sci Rep.* 2016, 6, 24474.

35. Yu, Y.; Hua, S.; Yang, M.; Fu, Z.; Teng, S.; Niu, K.; Zhao, Q.; Yi, C. Fabrication and Characterization of Electrospinning/3D Printing Bone Tissue Engineering Scaffold. *RSC Adv.* 2016, 6, 110557-110565.

36. Gao, Q.; Gu, H.; Zhao, P.; Zhang, C.; Cao, M.; Fu, J.; He, Y. Fabrication of Electrospun Nanofibrous Scaffolds with 3D Controllable Geometric Shapes. *Mater Des.* 2018, 157, 159-169.

37. Gao, Q.; Zhao, P.; Zhou, R.; Wang, P.; Fu, J.; He, Y. Rapid Assembling Organ Prototypes with Controllable Cell-Laden Multi-Scale Sheets. *Bio-des Manuf.* 2019, 2, 1-9.

38. Moroni, L.; Burdick, J. A.; Highley, C.; Lee, S. J.; Morimoto, Y.; Takeuchi, S.; Yoo, J. J. Biofabrication Strategies for 3D In Vitro Models and Regenerative Medicine. *Nat Rev Mater.* 2018, 3, 21-37.

39. Dalton, P. D.; Woodfield, T. B. F.; Mironov, V.; Groll, J. Advances in Hybrid Fabrication Toward Hierarchical Tissue Constructs. *Adv Sci (Weinh).* 2020, 7, 1902953.

40. Sankar, S.; Sharma, C. S.; Rath, S. N.; Ramakrishna, S. Electrospun Nanofibres to Mimic Natural Hierarchical Structure of Tissues: Application in Musculoskeletal Regeneration. *J Tissue Eng Regen Med.* 2018, 12, e604-e619.

41. Kong, B.; Sun, W.; Chen, G.; Tang, S.; Li, M.; Shao, Z.; Mi, S. Tissue-Engineered Cornea Constructed with Compressed Collagen and Laser-Perforated Electrospun Mat. *Sci Rep.* 2017, 7, 970.

42. Lee, B. L.; Jeon, H.; Wang, A.; Yan, Z.; Yu, J.; Grigoropoulos, C.; Li, S. Femtosecond Laser Ablation Enhances Cell Infiltration into Three-Dimensional Electrospun Scaffolds. *Acta Biomater.* 2012, 8, 2648-2658.

43. Aquino-Martínez, R.; Angelo, A. P.; Pujol, F. V. Calcium-Containing Scaffolds Induce Bone Regeneration by Regulating Mesenchymal Stem Cell Differentiation and Migration. *Stem Cell Res Ther.* 2017, 8, 265.

44. Laco, F.; Grant, M. H.; Black, R. A. Collagen-Nanofiber Hydrogel Composites Promote Contact Guidance of Human Lymphatic Microvascular Endothelial Cells and Directed Capillary Tube Formation. *J Biomed Mater Res A.* 2013, 101, 1787-1799.

45. Li, H.; Cheng, F.; Robledo-Lara, J. A.; Liao, J.; Wang, Z.; Zhang, Y. S. Fabrication of Paper-Based Devices for In Vitro Tissue Modeling. *Bio-des Manuf.* 2020, 3, 252-265.

46. Moe, S. T.; Skjaak-Braek, G.; Elgsaeter, A.; Smidsroed, O. Swelling of Covalently Crosslinked Alginate Gels: Influence of Ionic Solutes and Nonpolar Solvents. *Macromolecules.* 1993, 26, 3589-3597.

47. No authors listed. Rapid Analysis of Human Adipose-Derived Stem Cells and 3T3-L1 Differentiation Towards Adipocytes Using the ScepterTM 2.0 Cell Counter. *Biotechniques.* 2012, 53, 2.

48. Laurencin, C. T.; Ambrosio, A. M.; Borden, M. D.; Cooper, J. A., Jr. Tissue Engineering: Orthopedic Applications. *Annu Rev Biomed Eng.* 1999, 1, 19-46.

49. Bridle, H.; Wang, W.; Gavriilidou, D.; Amalou, F.; Hand, D. P.; Shu, W. Static Mode Microfluidic Cantilevers for Detection of Waterborne Pathogens. *Sens Actuators A Phys.* 2016, 247, 144-149.

50. Faulkner-Jones, A.; Fyfe, C.; Cornelissen, D. J.; Gardner, J.; King, J.; Courtney, A.; Shu, W. Bioprinting of Human Pluripotent Stem Cells and Their Directed Differentiation into Hepatocyte-Like Cells for the Generation of Mini-Livers in 3D. *Biofabrication.* 2015, 7, 044102.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top