Harnessing decellularised extracellular matrix microgels into modular bioinks for extrusion-based bioprinting with good printability and high post-printing cell viability
The printability of bioink and post-printing cell viability is crucial for extrusion-based bioprinting. A proper bioink not only provides mechanical support for structural fidelity, but also serves as suitable three-dimensional (3D) microenvironment for cell encapsulation and protection. In this study, a hydrogel-based composite bioink was developed consisting of gelatin methacryloyl (GelMA) as the continuous phase and decellularised extracellular matrix microgels (DMs) as the discrete phase. A flow-focusing microfluidic system was employed for the fabrication of cell-laden DMs in a high-throughput manner. After gentle mixing of the DMs and GelMA, both rheological characterisations and 3D printing tests showed that the resulting DM-GelMA hydrogel preserved the shear-thinning nature, mechanical properties, and good printability from GelMA. The integration of DMs not only provided an extracellular matrix-like microenvironment for cell encapsulation, but also considerable shear-resistance for high post-printing cell viability. The DM sizes and inner diameters of the 3D printer needles were correlated and optimised for nozzle-based extrusion. Furthermore, a proof-of-concept bioink composedg of RSC96 Schwann cells encapsulated DMs and human umbilical vein endothelial cell-laden GelMA was successfully bioprinted into 3D constructs, resulting in a modular co-culture system with distinct cells/materials distribution. Overall, the modular DM-GelMA bioink provides a springboard for future precision biofabrication and will serve in numerous biomedical applications such as tissue engineering and drug screening.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Daly, A. C.; Prendergast, M. E.; Hughes, A. J.; Burdick, J. A. Bioprinting for the Biologist. *Cell.* 2021, 184, 18-32.
2. Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances. *Bioact Mater.* 2018, 3, 144-156.
3. Gungor-Ozkerim, P. S.; Inci, I.; Zhang, Y. S.; Khademhosseini, A.; Dokmeci, M. R. Bioinks for 3D Bioprinting: An Overview. *Biomater Sci.* 2018, 6, 915-946.
4. Unagolla, J. M.; Jayasuriya, A. C. Hydrogel-Based 3D Bioprinting: A Comprehensive Review on Cell-Laden Hydrogels, Bioink Formulations, and Future Perspectives. *Appl Mater Today.* 2020, 18, 100479.
5. Ying, G.; Jiang, N.; Yu, C.; Zhang, Y. S. Three-Dimensional Bioprinting of Gelatin Methacryloyl (GelMA). *Bio-des Manuf.* 2018, 1, 215-224.
6. Bandyopadhyay, A.; Mandal, B. B.; Bhardwaj, N. 3D Bioprinting of Photo-Crosslinkable Silk Methacrylate (SilMA)-Polyethylene Glycol Diacrylate (PEGDA) Bioink for Cartilage Tissue Engineering. *J Biomed Mater Res A.* 2022, 110, 884-898.
7. Lee, J. M.; Suen, S. K. Q.; Ng, W. L.; Ma, W. C.; Yeong, W. Y. Bioprinting of Collagen: Considerations, Potentials, and Applications. *Macromol Biosci.* 2021, 21, e2000280.
8. Jia, J.; Richards, D. J.; Pollard, S.; Tan, Y.; Rodriguez, J.; Visconti, R. P.; Trusk, T. C.; Yost, M. J.; Yao, H.; Markwald, R. R.; Mei, Y. Engineering Alginate as Bioink for Bioprinting. *Acta Biomater.* 2014, 10, 4323-4331.
9. Gao, Q.; Niu, X.; Shao, L.; Zhou, L.; Lin, Z.; Sun, A.; Fu, J.; Chen, Z.; Hu, J.; Liu, Y.; He, Y. 3D Printing of Complex GelMA-Based Scaffolds with Nanoclay. *Biofabrication.* 2019, 11, 035006.
10. Busch, R.; Strohbach, A.; Pennewitz, M.; Lorenz, F.; Bahls, M.; Busch, M. C.; Felix, S. B. Regulation of the Endothelial Apelin/APJ System by Hemodynamic Fluid Flow. *Cell Signal.* 2015, 27, 1286-1296.
11. Xu, H. Q.; Liu, J. C.; Zhang, Z. Y.; Xu, C. X. A Review on Cell Damage, Viability, and Functionality During 3D Bioprinting. *Mil Med Res.* 2022, 9, 70.
12. Adhikari, J.; Roy, A.; Das, A.; Ghosh, M.; Thomas, S.; Sinha, A.; Kim, J.; Saha, P. Effects of Processing Parameters of 3D Bioprinting on the Cellular Activity of Bioinks. *Macromol Biosci.* 2021, 21, e2000179.
13. Luan, C.; Liu, P.; Chen, R.; Chen, B. Hydrogel-Based 3D Carriers in the Application of Stem Cell Therapy by Direct Injection. *Nanotechnol Rev.* 2017, 6, 435-448.
14. Highley, C. B.; Song, K. H.; Daly, A. C.; Burdick, J. A. Jammed Microgel Inks for 3D Printing Applications. *Adv Sci (Weinh).* 2019, 6, 1801076.
15. Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel Microparticles for Biomedical Applications. *Nat Rev Mater.* 2020, 5, 20-43.
16. Fang, Y.; Guo, Y.; Ji, M.; Li, B.; Guo, Y.; Zhu, J.; Zhang, T.; Xiong, Z. 3D Printing of Cell-Laden Microgel-Based Biphasic Bioink with Heterogeneous Microenvironment for Biomedical Applications. *Adv Funct Mater.* 2022, 32, 2109810.
17. Chen, J.; Huang, D.; Wang, L.; Hou, J.; Zhang, H.; Li, Y.; Zhong, S.; Wang, Y.; Wu, Y.; Huang, W. 3D Bioprinted Multiscale Composite Scaffolds Based on Gelatin Methacryloyl (GelMA)/Chitosan Microspheres as a Modular Bioink for Enhancing 3D Neurite Outgrowth and Elongation. *J Colloid Interface Sci.* 2020, 574, 162-173.
18. Xin, S.; Deo, K. A.; Dai, J.; Pandian, N. K. R.; Chimene, D.; Moebius, R. M.; Jain, A.; Han, A.; Gaharwar, A. K.; Alge, D. L. Generalizing Hydrogel Microparticles into a New Class of Bioinks for Extrusion Bioprinting. *Sci Adv.* 2021, 7, eabk3087.
19. Feng, Q.; Li, D.; Li, Q.; Li, H.; Wang, Z.; Zhu, S.; Lin, Z.; Cao, X.; Dong, H. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting. *ACS Appl Mater Interfaces.* 2022, 14, 15653-15666.
20. Zhao, X.; Liu, S.; Yildirimer, L.; Zhao, H.; Ding, R.; Wang, H.; Cui, W.; Weitz, D. Injectable Stem Cell-Laden Photocrosslinkable Microspheres Fabricated Using Microfluidics for Rapid Generation of Osteogenic Tissue Constructs. *Adv Funct Mater.* 2016, 26, 2809-2819.
21. An, C.; Liu, W.; Zhang, Y.; Pang, B.; Liu, H.; Zhang, Y.; Zhang, H.; Zhang, L.; Liao, H.; Ren, C.; Wang, H. Continuous Microfluidic Encapsulation of Single Mesenchymal Stem Cells Using Alginate Microgels as Injectable Fillers for Bone Regeneration. *Acta Biomater.* 2020, 111, 181-196.
22. Riederer, M. S.; Requist, B. D.; Payne, K. A.; Way, J. D.; Krebs, M. D. Injectable and Microporous Scaffold of Densely-Packed, Growth Factor-Encapsulating Chitosan Microgels. *Carbohydr Polym.* 2016, 152, 792-801.
23. Xu, Y.; Zhou, J.; Liu, C.; Zhang, S.; Gao, F.; Guo, W.; Sun, X.; Zhang, C.; Li, H.; Rao, Z.; Qiu, S.; Zhu, Q.; Liu, X.; Guo, X.; Shao, Z.; Bai, Y.; Zhang, X.; Quan, D. Understanding the Role of Tissue-Specific Decellularized Spinal Cord Matrix Hydrogel for Neural Stem/Progenitor Cell Microenvironment Reconstruction and Spinal Cord Injury. *Biomaterials.* 2021, 268, 120596.
24. Kim, B. S.; Das, S.; Jang, J.; Cho, D. W. Decellularized Extracellular Matrix-Based Bioinks for Engineering Tissue- and Organ-Specific Microenvironments. *Chem Rev.* 2020, 120, 10608-10661.
25. Lin, Z.; Rao, Z.; Chen, J.; Chu, H.; Zhou, J.; Yang, L.; Quan, D.; Bai, Y. Bioactive Decellularized Extracellular Matrix Hydrogel Microspheres Fabricated Using a Temperature-Controlling Microfluidic System. *ACS Biomater Sci Eng.* 2022, 8, 1644-1655.
26. Abaci, A.; Guvendiren, M. Designing Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting. *Adv Healthc Mater.* 2020, 9, e2000734.
27. Wang, T.; Han, Y.; Wu, Z.; Qiu, S.; Rao, Z.; Zhao, C.; Zhu, Q.; Quan, D.; Bai, Y.; Liu, X. Tissue-Specific Hydrogels for Three-Dimensional Printing and Potential Application in Peripheral Nerve Regeneration. *Tissue Eng Part A.* 2022, 28, 161-174.
28. Kim, M. K.; Jeong, W.; Lee, S. M.; Kim, J. B.; Jin, S.; Kang, H. Decellularized Extracellular Matrix-Based Bio-Ink with Enhanced 3D Printability and Mechanical Properties. *Biofabrication.* 2020, 12, 025003.
29. Li, X.; Chen, S.; Li, J.; Wang, X.; Zhang, J.; Kawazoe, N.; Chen, G. 3D Culture of Chondrocytes in Gelatin Hydrogels with Different Stiffness. *Polymers (Basel).* 2016, 8, 269.
30. Fairbanks, B. D.; Schwartz, M. P.; Bowman, C. N.; Anseth, K. S. Photoinitiated Polymerization of PEG-Diacrylate with Lithium Phenyl-2,4,6-Trimethylbenzoylphosphinate: Polymerization Rate and Cytocompatibility. *Biomaterials.* 2009, 30, 6702-6707.
31. Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. *Nat Methods.* 2012, 9, 671-675.
32. Ouyang, L.; Yao, R.; Zhao, Y.; Sun, W. Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells. *Biofabrication.* 2016, 8, 035020.
33. Gal, I.; Edri, R.; Noor, N.; Rotenberg, M.; Namestnikov, M.; Cabilly, I.; Shapira, A.; Dvir, T. Injectable Cardiac Cell Microdroplets for Tissue Regeneration. *Small.* 2020, 16, e1904806.
34. Akartuna, I.; Aubrecht, D. M.; Kodger, T. E.; Weitz, D. A. Chemically Induced Coalescence in Droplet-Based Microfluidics. *Lab Chip.* 2015, 15, 1140-1144.
35. Zheng, Y.; Wu, Z.; Khan, M.; Mao, S.; Manibalan, K.; Li, N.; Lin, J. M.; Lin, L. Multifunctional Regulation of 3D Cell-Laden Microsphere Culture on an Integrated Microfluidic Device. *Anal Chem.* 2019, 91, 12283-12289.
36. Xu, J.; Fang, H.; Zheng, S.; Li, L.; Jiao, Z.; Wang, H.; Nie, Y.; Liu, T.; Song, K. A Biological Functional Hybrid Scaffold Based on Decellularized Extracellular Matrix/Gelatin/Chitosan with High Biocompatibility and Antibacterial Activity for Skin Tissue Engineering. *Int J Biol Macromol.* 2021, 187, 840-849.
37. Ning, L.; Yang, B.; Mohabatpour, F.; Betancourt, N.; Sarker, M. D.; Papagerakis, P.; Chen, X. Process-Induced Cell Damage: Pneumatic Versus Screw-Driven Bioprinting. *Biofabrication.* 2020, 12, 025011.
38. Rao, Z.; Lin, Z.; Song, P.; Quan, D.; Bai, Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. *Front Cell Neurosci.* 2022, 16, 926222.
39. Ogunshola, O. O.; Antic, A.; Donoghue, M. J.; Fan, S. Y.; Kim, H.; Stewart, W. B.; Madri, J. A.; Ment, L. R. Paracrine and Autocrine Functions of Neuronal Vascular Endothelial Growth Factor (VEGF) in the Central Nervous System. *J Biol Chem.* 2002, 277, 11410-11415.
40. Zou, J. L.; Liu, S.; Sun, J. H.; Yang, W. H.; Xu, Y. W.; Rao, Z. L.; Jiang, B.; Zhu, Q. T.; Liu, X. L.; Wu, J. L.; Chang, C.; Mao, H. Q.; Ling, E. A.; Quan, D. P.; Zeng, Y. S. Peripheral Nerve-Derived Matrix Hydrogel Promotes Remyelination and Inhibits Synapse Formation. *Adv Funct Mater.* 2018, 28, 1705739.
41. Chen, S.; Du, Z.; Zou, J.; Qiu, S.; Rao, Z.; Liu, S.; Sun, X.; Xu, Y.; Zhu, Q.; Liu, X.; Mao, H. Q.; Bai, Y.; Quan, D. Promoting Neurite Growth and Schwann Cell Migration by the Harnessing Decellularized Nerve Matrix onto Nanofibrous Guidance. *ACS Appl Mater Interfaces.* 2019, 11, 17167-17176.