Global trends and hot topics in clinical applications of perovskite materials: a bibliometric analysis
In recent years, perovskite has received increasing attention in the medical field. However, there has been a lack of related bibliometric analysis in this research field. This study aims to analyse the research status and hot topics of perovskite in the medical field from a bibliometric perspective and explore the research direction of perovskite. This study collected 1852 records of perovskite research in the medical field from 1983 to 2022 in the Web of Science (WOS) database. The country, institution, journal, cited references, and keywords were analysed using CiteSpace, VOS viewer, and Bibliometrix software. The number of articles related to perovskite research in the medical field has been increasing every year. China and USA have published the most papers and are the main forces in this research field. The University of London Imperial College of Science, Technology, and Medicine is the most active institution and has contributed the most publications. ACS Applied Materials & Interfaces is the most prolific journal in this field. “Medical electronic devices”, “X–rays”, and “piezoelectric materials” are the most researched directions of perovskite in the medical field. “Performance”, “perovskite”, and “solar cells” are the most frequently used keywords in this field. Advanced Materials is the most relevant and academically influential journal for perovskite research. Halide perovskites have been a hot topic in this field in recent years and will be a future research trend. X–ray, electronic medical equipment, and medical stents are the main research directions.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
1. Correa-Baena, J. P.; Saliba, M.; Buonassisi, T.; Grätzel, M.; Abate, A.; Tress, W.; Hagfeldt, A. Promises and challenges of perovskite solar cells. Science. 2017, 358, 739-744.
2. Sinnott, B.; Ron, E.; Schneider, A. B. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 2010, 31, 756-773.
3. Meedeniya, D.; Kumarasinghe, H.; Kolonne, S.; Fernando, C.; Díez, I. T.; Marques, G. Chest X-ray analysis empowered with deep learning: a systematic review. Appl Soft Comput. 2022, 126, 109319.
4. Kim, Y. C.; Kim, K. H.; Son, D. Y.; Jeong, D. N.; Seo, J. Y.; Choi, Y. S.; Han, I. T.; Lee, S. Y.; Park, N. G. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature. 2017, 550, 87-91.
5. Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX₃, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692-3696.
6. Talianov, P. M.; Peltek, O. O.; Masharin, M.; Khubezhov, S.; Baranov, M. A.; Drabavičius, A.; Timin, A. S.; Zelenkov, L. E.; Pushkarev, A. P.; Makarov, S. V.; Zyuzin, M. V. Halide perovskite nanocrystals with enhanced water stability for upconversion imaging in a living cell. J Phys Chem Lett. 2021, 12, 8991-8998.
7. Bagchi, A.; Meka, S. R.; Rao, B. N.; Chatterjee, K. Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Nanotechnology. 2014, 25, 485101.
8. Yang, Z.; Xu, J.; Zong, S.; Xu, S.; Zhu, D.; Zhang, Y.; Chen, C.; Wang, C.; Wang, Z.; Cui, Y. Lead halide perovskite nanocrystals-phospholipid micelles and their biological applications: multiplex cellular imaging and in vitro tumor targeting. ACS Appl Mater Interfaces. 2019, 11, 47671-47679.
9. Wu, K.; Liu, Y.; Liu, L.; Peng, Y.; Pang, H.; Sun, X.; Xia, D. Emerging trends and research foci in tumor microenvironment of pancreatic cancer: a bibliometric and visualized study. Front Oncol. 2022, 12, 810774.
10. Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J Informetr. 2017, 11, 959-975.
11. Mao, M.; Zhou, Y.; Jiao, Y.; Yin, S.; Cheung, C.; Yu, W.; Gao, P.; Yang, L. Bibliometric and visual analysis of research on the links between the gut microbiota and pain from 2002 to 2021. Front Med (Lausanne). 2022, 9, 975376.
12. Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem Rev. 2019, 119, 3036-3103.
13. Zhang, Y.; Sun, R.; Ou, X.; Fu, K.; Chen, Q.; Ding, Y.; Xu, L. J.; Liu, L.; Han, Y.; Malko, A. V.; Liu, X.; Yang, H.; Bakr, O. M.; Liu, H.; Mohammed, O. F. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano. 2019, 13, 2520-2525.
14. Birowosuto, M. D.; Cortecchia, D.; Drozdowski, W.; Brylew, K.; Lachmanski, W.; Bruno, A.; Soci, C. X-ray scintillation in lead halide perovskite crystals. Sci Rep. 2016, 6, 37254.
15. Yakunin, S.; Dirin, D. N.; Shynkarenko, Y.; Morad, V.; Cherniukh, I.; Nazarenko, O.; Kreil, D.; Nauser, T.; Kovalenko, M. V. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat Photon. 2016, 10, 585-589.
16. Cui, D.; Wang, Y.; Han, L. China’s progress of perovskite solar cells in 2019. Sci Bull (Beijing). 2020, 65, 1306-1315.
17. Lanzetta, L.; Webb, T.; Marin-Beloqui, J. M.; Macdonald, T. J.; Haque, S. A. Halide chemistry in tin perovskite optoelectronics: bottlenecks and opportunities. Angew Chem Int Ed Engl. 2023, 62, e202213966.
18. Pu, H.; Gao, P.; Rong, J.; Zhang, W.; Liu, T.; Lu, H. Spectral-resolved cone-beam X-ray luminescence computed tomography with principle component analysis. Biomed Opt Express. 2018, 9, 2844-2858.
19. Sauer, K.; Zizak, I.; Forien, J. B.; Rack, A.; Scoppola, E.; Zaslansky, P. Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nat Commun. 2022, 13, 7829.
20. Shi, H. M.; Sun, Z. C.; Ju, F. H. Recommendations for reducing exposure to medical X-ray irradiation (review). Med Int (Lond). 2022, 2, 22.
21. Zhang, Y.; Liu, Y.; Xu, Z.; Ye, H.; Yang, Z.; You, J.; Liu, M.; He, Y.; Kanatzidis, M. G.; Liu, S. F. Nucleation-controlled growth of superior lead-free perovskite Cs(3)Bi(2)I(9) single-crystals for high-performance X-ray detection. Nat Commun. 2020, 11, 2304.
22. Norton, C.; Hassan, U. Bioelectronic sensor with magnetic modulation to quantify phagocytic activity of blood cells employing machine learning. ACS Sens. 2022, 7, 1936-1945.
23. Klimpel, M.; Kovalenko, M. V.; Kravchyk, K. V. Advances and challenges of aluminum-sulfur batteries. Commun Chem. 2022, 5, 77.
24. Poon, K. K.; Wurm, M. C.; Evans, D. M.; Einarsrud, M. A.; Lutz, R.; Glaum, J. Biocompatibility of (Ba,Ca)(Zr,Ti)O(3) piezoelectric ceramics for bone replacement materials. J Biomed Mater Res B Appl Biomater. 2020, 108, 1295-1303.
25. Aminzare, M.; Jiang, J.; Mandl, G. A.; Mahshid, S.; Capobianco, J. A.; Dorval Courchesne, N. M. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. Nanoscale. 2023, 15, 2997-3031.
26. Wang, R.; Xue, J.; Wang, K. L.; Wang, Z. K.; Luo, Y.; Fenning, D.; Xu, G.; Nuryyeva, S.; Huang, T.; Zhao, Y.; Yang, J. L.; Zhu, J.; Wang, M.; Tan, S.; Yavuz, I.; Houk, K. N.; Yang, Y. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science. 2019, 366, 1509-1513. 27. Gu, X.; Xiang, W.; Tian, Q.; Liu, S. F. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells. Angew Chem Int Ed Engl. 2021, 60, 23164-23170.
28. Zhang, Z.; Wang, C.; Li, F.; Liang, L.; Huang, L.; Chen, L.; Ni, Y.; Gao, P.; Wu, H. Bifunctional cellulose interlayer enabled efficient perovskite solar cells with simultaneously enhanced efficiency and stability. Adv Sci (Weinh). 2023, 10, e2207202.
29. Xu, W.; Zhu, T.; Wu, H.; Liu, L.; Gong, X. Poly(ethylene glycol) diacrylate as the passivation layer for high-performance perovskite solar cells. ACS Appl Mater Interfaces. 2020, 12, 45045-45055.
30. Sun, Y.; Jia, X.; Meng, Q. Characteristic evaluation of recombinant MiSp/poly(lactic-co-glycolic) acid (PLGA) nanofiber scaffolds as potential scaffolds for bone tissue engineering. Int J Mol Sci. 2023, 24, 1219.
31. Li, Y.; Chen, S. K.; Li, L.; Qin, L.; Wang, X. L.; Lai, Y. X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat. 2015, 3, 95-104.
32. Li, C.; Lv, H.; Du, Y.; Zhu, W.; Yang, W.; Wang, X.; Wang, J.; Chen, W. Biologically modified implantation as therapeutic bioabsorbable materials for bone defect repair. Regen Ther. 2022, 19, 9-23.
33. Jodati, H.; Evis, Z.; Tezcaner, A.; Alshemary, A. Z.; Motameni, A. 3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering. J Mech Behav Biomed Mater. 2023, 140, 105722.
34. Kulkarni, N. B.; Goyal, S. Comparison of bracket failure rate between two different materials used to fabricate transfer trays for indirect orthodontic bonding. J Contemp Dent Pract. 2022, 23, 307-312.
35. Khare, D.; Basu, B.; Dubey, A. K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials. 2020, 258, 120280.
36. Xu, Q.; Gao, X.; Zhao, S.; Liu, Y. N.; Zhang, D.; Zhou, K.; Khanbareh, H.; Chen, W.; Zhang, Y.; Bowen, C. Construction of bio-piezoelectric platforms: from structures and synthesis to applications. Adv Mater. 2021, 33, e2008452.
37. Mokhtari, F.; Azimi, B.; Salehi, M.; Hashemikia, S.; Danti, S. Recent advances of polymer-based piezoelectric composites for biomedical applications. J Mech Behav Biomed Mater. 2021, 122, 104669.
38. Dai, X.; Yao, X.; Zhang, W.; Cui, H.; Ren, Y.; Deng, J.; Zhang, X. The osteogenic role of barium titanate/polylactic acid piezoelectric composite membranes as guiding membranes for bone tissue regeneration. Int J Nanomedicine. 2022, 17, 4339-4353.
39. Wang, S.; Liao, X.; Xiong, X.; Feng, D.; Zhu, W.; Zheng, B.; Li, Y.; Yang, L.; Wei, Q. Pyroptosis in urinary malignancies: a literature review. Discov Oncol. 2023, 14, 12.
40. Li, L.; Wang, S.; Zhou, W. Balance cell apoptosis and pyroptosis of caspase-3-activating chemotherapy for better antitumor therapy. Cancers (Basel). 2022, 15, 26.
41. Chang, M.; Wang, Z.; Dong, C.; Zhou, R.; Chen, L.; Huang, H.; Feng, W.; Wang, Z.; Wang, Y.; Chen, Y. Ultrasound-amplified enzyodynamic tumor therapy by perovskite nanoenzyme-enabled cell pyroptosis and cascade catalysis. Adv Mater. 2023, 35, e2208817.
42. Zhu, J.; Pan, J.; Li, Y.; Yang, J.; Ye, B. Enzyme-nanozyme cascade colorimetric sensor platform: a sensitive method for detecting human serum creatinine. Anal Bioanal Chem. 2022, 414, 6271-6280.