Decellularised extracellular matrix-based injectable hydrogels for tissue engineering applications
Decellularised extracellular matrix (dECM) is a biomaterial derived from natural tissues that has attracted considerable attention from tissue engineering researchers due to its exceptional biocompatibility and malleability attributes. These advantageous properties often facilitate natural cell infiltration and tissue reconstruction for regenerative medicine. Due to their excellent fluidity, the injectable hydrogels can be administered in a liquid state and subsequently formed into a gel state in vivo, stabilising the target area and serving in a variety of ways, such as support, repair, and drug release functions. Thus, dECM-based injectable hydrogels have broad prospects for application in complex organ structures and various tissue injury models. This review focuses on exploring research advances in dECM-based injectable hydrogels, primarily focusing on the applications and prospects of dECM hydrogels in tissue engineering. Initially, the recent developments of the dECM-based injectable hydrogels are explained, summarising the different preparation methods with the evaluation of injectable hydrogel properties. Furthermore, some specific examples of the applicability of dECM-based injectable hydrogels are presented. Finally, we summarise the article with interesting prospects and challenges of dECM-based injectable hydrogels, providing insights into the development of these composites in tissue engineering and regenerative medicine.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
以下是去除格式后的内容:
1. Peirsman A, Nguyen HT, Van Waeyenberge M, Ceballos C, Bolivar J, Kawakita S, Vanlauwe F, Tirpáková Z, Van Dorpe S, Van Damme L, Mecwan M, Ermis M, Maity S, Mandal K, Herculano R, Depypere B, Budiharto L, Van Vlierberghe S, De Wever O, Blondeel P, Jucaud V, Dokmeci MR, Khademhosseini A. Vascularized adipose tissue engineering: moving towards soft tissue reconstruction. Biofabrication. 2023;15(3):032003.
2. Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix - based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater. 2024;11:rbad107.
3. Almela T, Brook IM, Moharamzadeh K. The significance of cell - related challenges in the clinical application of tissue engineering. J Biomed Mater Res A. 2016;104(12):3157 - 3163.
4. Li X, Liu Y, Liu S, Li - Jessen NYK, Haglund L, Huang B, Li J. Designing regenerative bioadhesives for tissue repair and regeneration. Adv Therap. 2024;7(1):2300139.
5. Zhang CY, Fu CP, Li XY, Lu XC, Hu LG, Kankala RK, Wang SB, Chen AZ. Three - dimensional bioprinting of decellularized extracellular matrix - based bioinks for tissue engineering. Molecules. 2022;27(11):3442.
6. Ryu SB, Park KM, Park KD. In situ graphene oxide - gelatin hydrogels with enhanced mechanical property for tissue adhesive and regeneration. Biochem Biophys Res Commun. 2022;592:24 - 30.
7. Poel WE. Preparation of acellular homogenates from muscle samples. Science. 1948;108(2806):390 - 391.
8. Xiao H, Chen X, Liu X, Wen G, Yu Y. Recent advances in decellularized biomaterials for wound healing. Mater Today Bio. 2023;19:100589.
9. Jin Y, Zhang J, Xu Y, Yi K, Li F, Zhou H, Wang H, Chan HF, Lao YH, Lv S, Tao Y, Li M. Stem cell - derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber - reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater. 2023;28:112 - 131.
10. Ha DH, Chae S, Lee JY, Kim JY, Yoon J, Sen T, Lee SW, Kim HJ, Cho JH, Cho DW. Therapeutic effect of decellularized extracellular matrix - based hydrogel for radiation esophagitis by 3D printed esophageal stent. Biomaterials. 2021;266:120477.
11. Zhao F, Cheng J, Zhang J, Yu H, Dai W, Yan W, Sun M, Ding G, Li Q, Meng Q, Liu Q, Duan X, Hu X, Ao Y. Comparison of three different acidic solutions in tendon decellularized extracellular matrix bio - ink fabrication for 3D cell printing. Acta Biomater. 2021;131:262 - 275.
12. Mao Q, Wang Y, Li Y, Juengpanich S, Li W, Chen M, Yin J, Fu J, Cai X. Fabrication of liver microtissue with liver decellularized extracellular matrix (dECM) bioink by digital light processing (DLP) bioprinting. Mater Sci Eng C Mater Biol Appl. 2020;109:110625.
13. Yu Y, Xiao H, Tang G, Wang H, Shen J, Sun Y, Wang S, Kong W, Chai Y, Liu X, Wang X, Wen G. Biomimetic hydrogel derived from decellularized dermal matrix facilitates skin wounds healing. Mater Today Bio. 2023;21:100725.
14. Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: from hydrogels to biomedical applications. J Control Release. 2023;354:726 - 745.
15. Baiguera S, Del Gaudio C, Di Nardo P, Manzari V, Carotenuto F, Teodori L. 3D printing decellularized extracellular matrix to design biomimetic scaffolds for skeletal muscle tissue engineering. Biomed Res Int. 2020;2020:2689701.
16. Basara G, Ozcebe SG, Ellis BW, Zorlutuna P. Tunable human myocardium derived decellularized extracellular matrix for 3D bioprinting and cardiac tissue engineering. Gels. 2021;7(3):70.
17. Brown - Etris M, Milne CT, Hodde JP. An extracellular matrix graft (Oasis(®) wound matrix) for treating full - thickness pressure ulcers: a randomized clinical trial. J Tissue Viability. 2019;28(1):21 - 26.
18. Khoshnood N, Zamanian A. Decellularized extracellular matrix bioinks and their application in skin tissue engineering. Bioprinting. 2020;20:e00095.
19. Mazza G, Al - Akkad W, Rombouts K, Pinzani M. Liver tissue engineering: From implantable tissue to whole organ engineering. Hepatol Commun. 2018;2(2):131 - 141.
20. Tan YH, Helms HR, Nakayama KH. Decellularization strategies for regenerating cardiac and skeletal muscle tissues. Front Bioeng Biotechnol. 2022;10:831300.
21. Xu J, Fang H, Zheng S, Li L, Jiao Z, Wang H, Nie Y, Liu T, Song K. A biological functional hybrid scaffold based on decellularized extracellular matrix/gelatin/chitosan with high biocompatibility and antibacterial activity for skin tissue engineering. Int J Biol Macromol. 2021;187:840 - 849.
22. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15 - 31.
23. Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, Yuan T, Dong S, Zhang J, Fan W. Crosslinker - free silk/decellularized extracellular matrix porous bioink for 3D bioprinting - based cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;118:111388.
24. Bian Z, Kawi S. Preparation, characterization and catalytic application of phyllosilicate: a review. Catal Today. 2020;339:3 - 23.
25. Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose - derived stem cells. Chem Soc Rev. 2017;46(20):6255 - 6275.
26. Wang Y, Zhu Y, Hu Y, Zeng G, Zhang Y, Zhang C, Feng C. How to construct DNA hydrogels for environmental applications: advanced water treatment and environmental analysis. Small. 2018;14(35):e1703305.
27. Brown M, Li J, Moraes C, Tabrizian M, Li - Jessen NYK. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials. 2022;289:121786.
28. Sasikumar S, Chameettachal S, Cromer B, Pati F, Kingshott P. Decellularized extracellular matrix hydrogels—cell behavior as a function of matrix stiffness. Curr Opin Biomed Eng. 2019;10:123 - 133.
29. Wu K, Wang Y, Yang H, Chen Y, Lu K, Wu Y, Liu C, Zhang H, Meng H, Yu Q, Zhang Y, Shen Z. Injectable decellularized extracellular matrix hydrogel containing stromal cell - derived factor 1 promotes transplanted cardiomyocyte engraftment and functional regeneration after myocardial infarction. ACS Appl Mater Interfaces. 2023;15(2):2578 - 2589.
30. Kushige H, Amano Y, Yagi H, Morisaku T, Kojima H, Satou A, Hamada KI, Kitagawa Y. Injectable extracellular matrix hydrogels contribute to native cell infiltration in a rat partial nephrectomy model. J Biomed Mater Res B Appl Biomater. 2023;111(1):184 - 193.
31. Bhunia BK, Bandyopadhyay A, Dey S, Mandal BB. Silk - hydrogel functionalized with human decellularized Wharton’s jelly extracellular matrix as a minimally invasive injectable hydrogel system for potential nucleus pulposus tissue replacement therapy. Int J Biol Macromol. 2024;254:127686.
32. Kim SH, Kim D, Cha M, Kim SH, Jung Y. The regeneration of large - sized and vascularized adipose tissue using a tailored elastic scaffold and dECM hydrogels. Int J Mol Sci. 2021;22(22):12560.
33. Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix - derived hydrogels. Regen Ther. 2021;18:88 - 96.
34. Dhandapani V, Vermette P. Decellularized bladder as scaffold to support proliferation and functionality of insulin - secreting pancreatic cells. J Biomed Mater Res B Appl Biomater. 2023;111(8):1890 - 1902.
35. Luo P, Huang R, Wu Y, Liu X, Shan Z, Gong L, Deng S, Liu H, Fang J, Wu S, Wu X, Liu Q, Chen Z, Yeung KWK, Qiao W, Chen S, Chen Z. Tailoring the multiscale mechanics of tunable decellularized extracellular matrix (dECM) for wound healing through immunomodulation. Bioact Mater. 2023;28:95 - 111.
36. Özdinç Ş, Sarıca S, Özkan SN, Yangın K, Kuşoğlu A, Dansık A, Karaoğlu İC, Kizilel S, Öztürk E. Development and characterization of decellularized lung extracellular matrix hydrogels. J Vis Exp. 2023;e65768.
37. Giang NN, Trinh XT, Han J, Chien PN, Lee J, Noh SR, Shin Y, Nam SY, Heo CY. Effective decellularization of human skin tissue for regenerative medicine by supercritical carbon dioxide technique. J Tissue Eng Regen Med. 2022;16(7):1196 - 1207.
38. Huang CC, Chen YJ, Liu HW. Characterization of composite nano - bioscaffolds based on collagen and supercritical fluids - assisted decellularized fibrous extracellular matrix. Polymers (Basel). 2021;13(24):4326.
39. Huang CC. Newly designed decellularized scaffolds for scaffold - based gene therapy from elastic cartilages via supercritical carbon dioxide fluid and alkaline/ protease treatments. Curr Gene Ther. 2022;22(2):162 - 167.
40. Koo MA, Jeong H, Hong SH, Seon GM, Lee MH, Park JC. Preconditioning process for dermal tissue decellularization using electroporation with sonication. Regen Biomater. 2022;9:rbab071.
41. Fitriatul N, Sha’ban M, Azhim A. Evaluation of recellularization on decellularized aorta scaffolds engineered by ultrasonication treatment. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:2072 - 2075.
42. Almeida G, da Silva - Júnior LN, Gibin MS, Dos Santos H, de Oliveira Horvath - Pereira B, Pinho LBM, Baesso ML, Sato F, Hernandes L, Long CR, Relly L, Miglino MA, Carreira ACO. Perfusion and ultrasonication produce a decellularized porcine whole - ovary scaffold with a preserved microarchitecture. Cells. 2023;12(14):1864.
43. Alshaikh AB, Padma AM, Dehlin M, Akouri R, Song MJ, Brännström M, Hellström M. Decellularization of the mouse ovary: comparison of different scaffold generation protocols for future ovarian bioengineering. J Ovarian Res. 2019;12(1):58.
44. Eivazkhani F, Abtahi NS, Tavana S, Mirzaeian L, Abedi F, Ebrahimi B, Montazeri L, Valojerdi MR, Fathi R. Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl. 2019;102:670 - 682.
45. Han Y, Zhang B, Li J, Cen L, Zhao L, Xi Z. Preparation of extracellular matrix of fish swim bladders by decellularization with supercritical carbon dioxide. Bioresour Bioprocess. 2023;10(1):14.
46. Chen Y, Chen LF, Wang Y, Duan YY, Luo SC, Zhang JT, Kankala RK, Wang SB, Chen AZ. Modeling dECM - based inflammatory cartilage microtissues in vitro for drug screening. Compos B Eng. 2023;250:110437.
47. Jeong W, Kim MK, Kang HW. Effect of detergent type on the performance of liver decellularized extracellular matrix - based bio - inks. J Tissue Eng. 2021;12:2041731421997091.
48. Klak M, Łojszczyk I, Berman A, Tymicki G, Adamiok - Ostrowska A, Sierakowski M, Olkowski R, Szczepankiewicz AA, Kamiński A, Dobrzyń A, Wszoła M. Impact of porcine pancreas decellularization conditions on the quality of obtained dECM. Int J Mol Sci. 2021;22(13):7005.
49. Li M, Zhang T, Jiang J, Mao Y, Zhang A, Zhao J. ECM coating modification generated by optimized decellularization process improves functional behavior of BMSCs. Mater Sci Eng C Mater Biol Appl. 2019;105:110039.
50. Bae JY, Park SY, Shin YH, Choi SW, Kim JK. Preparation of human decellularized peripheral nerve allograft using amphoteric detergent and nuclease. Neural Regen Res. 2021;16(10):1890 - 1896.
51. Garlíková Z, Silva AC, Rabata A, Potěšil D, Ihnatová I, Dumková J, Koledová Z, Zdráhal Z, Vinarský V, Hampl A, Pinto - do - Ó P, Nascimento DS. Generation of a close - to - native in vitro system to study lung cells - extracellular matrix crosstalk. Tissue Eng Part C Methods. 2018;24(1):1 - 13.
52. Kim JK, Koh YD, Kim JO, Seo DH. Development of a decellularization method to produce nerve allografts using less invasive detergents and hyper/hypotonic solutions. J Plast Reconstr Aesthet Surg. 2016;69(12):1690 - 1696.
53. Kc P, Hong Y, Zhang G. Cardiac tissue - derived extracellular matrix scaffolds for myocardial repair: advantages and challenges. Regen Biomater. 2019;6(3):185 - 199.
54. Hof A, Raschke S, Baier K, Nehrenheim L, Selig JI, Schomaker M, Lichtenberg A, Meyer H, Akhyari P. Challenges in developing a reseeded, tissue - engineered aortic valve prosthesis. Eur J Cardiothorac Surg. 2016;50(3):446 - 455.
55. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233 - 3243.
56. Hong JY, Seo Y, Davaa G, Kim HW, Kim SH, Hyun JK. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Acta Biomater. 2020;101:357 - 371.
57. Solarte David VA, Güiza - Argüello VR, Arango - Rodríguez ML, Sossa CL, Becerra - Bayona SM. Decellularized tissues for wound healing: towards closing the gap between scaffold design and effective extracellular matrix remodeling. Front Bioeng Biotechnol. 2022;10:821852.
58. Lin X, Zhang H, Zhang H, Zhang Z, Chen G, Zhao Y. Bioprinted hydrogel textiles based on fish skin decellularized extracellular matrix for wound healing. Engineering. 2023;25:120 - 127.
59. Wang X, Gu Z, Wan J, Zhou X, Zhu K, Wang X, Cao X, Yu X, Peng X, Tang Y. dECM based dual - responsive vascular graft with enzyme - controlled adenine release for long - term patency. Int J Biol Macromol. 2023;242:124618.
60. Weng B, Li M, Zhu W, Peng J, Mao X, Zheng Y, Zhang C, Pan S, Mao H, Zhao J. Distinguished biomimetic dECM system facilitates early detection of metastatic breast cancer cells. Bioeng Transl Med. 2024;9:e10597.
61. Cortes - Medina M, Bushman AR, Beshay PE, Adorno JJ, Menyhert MM, Hildebrand RM, Agarwal SS, Avendano A, Friedman AK, Song JW. Chondroitin sulfate, dermatan sulfate, and hyaluronic acid differentially modify the biophysical properties of collagen - based hydrogels. Acta Biomater. 2024;174:116 - 126.
62. Lin Z, Rao Z, Chen J, Chu H, Zhou J, Yang L, Quan D, Bai Y. Bioactive decellularized extracellular matrix hydrogel microspheres fabricated using a temperature - controlling microfluidic system. ACS Biomater Sci Eng. 2022;8(5):1644 - 1655.
63. Im P, Shin H, Kim J. Tilapia - derived granular hydrogel as a 3D scaffold promoting rapid wound healing. Biomacromolecules. 2024;25(4):1153 - 1161.
64. Qazi TH, Burdick JA. Granular hydrogels for endogenous tissue repair. Biomater Biosyst. 2021;1:100008.
65. Wang T, Huang Q, Rao Z, Liu F, Su X, Zhai X, Ma J, Liang Y, Quan D, Liao G, Bai Y, Zhang S. Injectable decellularized extracellular matrix hydrogel promotes salivary gland regeneration via endogenous stem cell recruitment and suppression of fibrogenesis. Acta Biomater. 2023;169:256 - 272.
66. Pouliot RA, Young BM, Link PA, Park HE, Kahn AR, Shankar K, Schneck MB, Weiss DJ, Heise RL. Porcine lung - derived extracellular matrix hydrogel properties are dependent on pepsin digestion time. Tissue Eng Part C Methods. 2020;26(5):332 - 346.
67. Kobayashi M, Kadota J, Hashimoto Y, Fujisato T, Nakamura N, Kimura T, Kishida A. Elastic modulus of ECM hydrogels derived from decellularized tissue affects capillary network formation in endothelial cells. Int J Mol Sci. 2020;21(17):6304.
68. Zhou Q, Guaiquil VH, Wong M, Escobar A, Ivakhnitskaia E, Yazdanpanah G, Jing H, Sun M, Sarkar J, Luo Y, Rosenblatt MI. Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing. Acta Biomater. 2021;134:177 - 189.
69. Mao X, Yao L, Li M, Zhang X, Weng B, Zhu W, Ni R, Chen K, Yi L, Zhao J, Mao H. Enhancement of tendon repair using tendon - derived stem cells in small intestinal submucosa via M2 macrophage polarization. Cells. 2022;11(17):2770.
70. Fang W, Yang M, Jin Y, Zhang K, Wang Y, Liu M, Wang Y, Yang R, Fu Q. Injectable decellularized extracellular matrix - based bio - ink with excellent biocompatibility for scarless urethra repair. Gels. 2023;9(12):913.
71. Wang C, Li G, Cui K, Chai Z, Huang Z, Liu Y, Chen S, Huang H, Zhang K, Han Z, Li Y, Yu G, Han ZC, Liu N, Li Z. Sulfated glycosaminoglycans in decellularized placenta matrix as critical regulators for cutaneous wound healing. Acta Biomater. 2021;122:199 - 210.
72. Bhatt A, Dhiman N, Giri PS, Kasinathan GN, Pati F, Rath SN. Biocompatibility - on - a - chip: Characterization and evaluation of decellularized tendon extracellular matrix (tdECM) hydrogel for 3D stem cell culture in a microfluidic device. Int J Biol Macromol. 2022;213:768 - 779.
73. Fernández - Pérez J, Ahearne M. The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep. 2019;9(1):14933.
74. Zhu S, Yuan Q, Yang M, You J, Yin T, Gu Z, Hu Y, Xiong S. A quantitative comparable study on multi - hierarchy conformation of acid and pepsin - solubilized collagens from the skin of grass carp (Ctenopharyngodon idella). Mater Sci Eng C Mater Biol Appl. 2019;96:446 - 457.
75. Almalla A, Elomaa L, Bechtella L, Daneshgar A, Yavvari P, Mahfouz Z, Tang P, Koksch B, Sauer I, Pagel K, Hillebrandt KH, Weinhart M. Papain - based solubilization of decellularized extracellular matrix for the preparation of bioactive, thermosensitive pregels. Biomacromolecules. 2023;24(15):5620 - 5637.
76. Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ, Rose FR, Badylak SF, Shakesheff KM, White LJ. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater. 2013;9(9):7865 - 7873.
77. Wang Y, Wang J, Liu C, Li J, Lu K, Yu Q, Zhang Y, Shen Z. Injectable decellularized extracellular matrix hydrogel loaded with exosomes encapsulating curcumin for prevention of cardiac fibrosis after myocardial infarction. J Mater Sci Technol. 2023;167:50 - 58.
78. Yuan S, Yang X, Wang X, Chen J, Tian W, Yang B. Injectable xenogeneic dental pulp decellularized extracellular matrix hydrogel promotes functional dental pulp regeneration. Int J Mol Sci. 2023;24(19):17483.
79. Liu W, Zhang X, Jiang X, Dai B, Zhang L, Zhu Y. Decellularized extracellular matrix materials for treatment of ischemic cardiomyopathy. Bioact Mater. 2024;33:460 - 482.
80. Ravari MK, Mashayekhan S, Zarei F, Sayyahpour FA, Taghiyar L, Baghban Eslaminejad M. Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: an in vitro study. Biomed Mater. 2021;16(4):045007.
81. Wassenaar JW, Braden RL, Osborn KG, Christman KL. Modulating in vivo degradation rate of injectable extracellular matrix hydrogels. J Mater Chem B. 2016;4(18):2794 - 2802.
82. Pisciotta A, Bertoni L, Vallarola A, Bertani G, Mecugni D, Carnevale G. Neural crest derived stem cells from dental pulp and tooth - associated stem cells for peripheral nerve regeneration. Neural Regen Res. 2020;15(2):373 - 381.
83. Výborný K, Vallová J, Kočí Z, Kekulová K, Jiráková K, Jendelová P, Hodan J, Kubinová Š. Genipin and EDC crosslinking of extracellular matrix hydrogel derived from human umbilical cord for neural tissue repair. Sci Rep. 2019;9(1):10674.
84. Liu Y, Zhang W, Hu C, Zheng C, Zhang F, Yang L, Li Z, Wang Y. A composite hydrogel improves the survival and differentiation of human iPSC - derived neural stem cells after ischemic stroke. Compos B Eng. 2023;259:110711.
85. Perale G, Rossi F, Sundstrom E, Bacchiega S, Masi M, Forloni G, Veglianese P. Hydrogels in spinal cord injury repair strategies. ACS Chem Neurosci. 2011;2(6):336 - 345.
86. Kojima H, Kushige H, Yagi H, Nishijima T, Moritoki N, Nagoshi N, Nakano Y, Tanaka M, Hori S, Hasegawa Y, Abe Y, Kitago M, Nakamura M, Kitagawa Y. Combinational treatment involving decellularized extracellular matrix hydrogels with mesenchymal stem cells increased the efficacy of cell therapy in pancreatitis. Cell Transplant. 2023;32:9636897231170437.
87. Gentili C, Cancedda R. Cartilage and bone extracellular matrix. Curr Pharm Des. 2009;15(12):1334 - 1348.
88. Zeng J, Huang L, Xiong H, Li Q, Wu C, Huang Y, Xie H, Shen B. Injectable decellularized cartilage matrix hydrogel encapsulating urine - derived stem cells for immunomodulatory and cartilage defect regeneration. NPJ Regen Med. 2022;7(1):75.
89. Yu X, Deng Z, Li H, Ma Y, Zheng Q. In situ fabrication of an anisotropic double - layer hydrogel as a bio - scaffold for repairing articular cartilage and subchondral bone injuries. RSC Adv. 2023;13(54):34958 - 34971.
90. Becker M, Maring JA, Schneider M, Herrera Martin AX, Seifert M, Klein O, Braun T, Falk V, Stamm C. Towards a novel patch material for cardiac applications: tissue - specific extracellular matrix introduces essential key features to decellularized amniotic membrane. Int J Mol Sci. 2018;19(4):1032.
91. Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20(1):7 - 23.
92. Kyohei F, Zhonggang F, Daisuke S, Tadashi K, Takao N, Yasuyuki S, Mitsuo U. Modulation of the mechanical properties of ventricular extracellular matrix hydrogels with a carbodiimide crosslinker and investigation of their cellular compatibility. AIMS Mater Sci. 2018;5(1):54 - 74.
93. Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B. 2019;7(31):5038 - 5055.
94. Yang X, Chen S, Chen J, Liu Y, Bai Y, Yin S, Quan D. The different effect of decellularized myocardial matrix hydrogel and decellularized small intestinal submucosa matrix hydrogel on cardiomyocytes and ischemic heart. Appl Sci. 2021;11(16):7768.
95. Wang W, Zhang X, Chao NN, Qin TW, Ding W, Zhang Y, Sang JW, Luo JC. Preparation and characterization of pro - angiogenic gel derived from small intestinal submucosa. Acta Biomater. 2016;29:135 - 148.
96. Seo Y, Jung Y, Kim SH. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 2018;67:270 - 281.
97. Diaz MD, Tran E, Spang M, Wang R, Gaetani R, Luo CG, Braden R, Hill RC, Hansen KC, DeMaria AN, Christman KL. Injectable myocardial matrix hydrogel mitigates negative left ventricular remodeling in a chronic myocardial infarction model. JACC Basic Transl Sci. 2021;6(3):350 - 361.
98. Kong P, Dong J, Li W, Li Z, Gao R, Liu X, Wang J, Su Q, Wen B, Ouyang W, Wang S, Zhang F, Feng S, Zhuang D, Xie Y, Zhao G, Yi H, Feng Z, Wang W, Pan X. Extracellular matrix/glycopeptide hybrid hydrogel as an immunomodulatory niche for endogenous cardiac repair after myocardial infarction. Adv Sci (Weinh). 2023;10(24):e2301244.
99. Gwon K, Choi D, de Hoyos - Vega JM, Baskaran H, Gonzalez - Suarez AM, Lee S, Hong HJ, Nguyen KM, Dharmesh E, Sugahara G, Ishida Y, Saito T, Stybayeva G, Revzin A. Function of hepatocyte spheroids in bioactive microcapsules is enhanced by endogenous and exogenous hepatocyte growth factor. Bioact Mater. 2023;28:183 - 195.
100. Haep N, Florentino RM, Squires JE, Bell A, Soto - Gutierrez A. The inside - out of end - stage liver disease: hepatocytes are the keystone. Semin Liver Dis. 2021;41(2):213 - 224.
101. Lee JS, Shin J, Park HM, Kim YG, Kim BG, Oh JW, Cho SW. Liver extracellular matrix providing dual functions of two - dimensional substrate coating and three - dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules. 2014;15(1):206 - 218.
102. Hussein KH, Park KM, Yu L, Kwak HH, Woo HM. Decellularized hepatic extracellular matrix hydrogel attenuates hepatic stellate cell activation and liver fibrosis. Mater Sci Eng C Mater Biol Appl. 2020;116:111160.
103. Li R, Liu K, Huang X, Li D, Ding J, Liu B, Chen X. Bioactive materials promote wound healing through modulation of cell behaviors. Adv Sci (Weinh). 2022;9(13):e2105152.
104. Toppino S, N’Krumah R, Kone BV, Koffi DY, Coulibaly ID, Tobian F, Pluschke G, Stojkovic M, Bonfoh B, Junghanss T. Skin wounds in a rural setting of Côte d’Ivoire: Population - based assessment of the burden and clinical epidemiology. PLoS Negl Trop Dis. 2022;16(10):e0010608.
105. Xu P, Cao J, Duan Y, Kankala RK, Chen A. Recent advances in fabrication of dECM - based composite materials for skin tissue engineering. Front Bioeng Biotechnol. 2024;12:1348856.
106. Song Y, You Y, Xu X, Lu J, Huang X, Zhang J, Zhu L, Hu J, Wu X, Xu X, Tan W, Du Y. Adipose - derived mesenchymal stem cell - derived exosomes biopotentiated extracellular matrix hydrogels accelerate diabetic wound healing and skin regeneration. Adv Sci (Weinh). 2023;10(32):e2304023.
107. Nishiguchi A, Ito S, Nagasaka K, Taguchi T. Tissue - adhesive decellularized extracellular matrix patches reinforced by a supramolecular gelator to repair abdominal wall defects. Biomacromolecules. 2023;24(4):1545 - 1554.
108. Shanto PC, Park S, Park M, Lee BT. Physico - biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration. Biomater Adv. 2023;145:213239.
109. Wang B, Barceló X, Von Euw S, Kelly DJ. 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks. Mater Today Bio. 2023;20:100624.