·
REVIEWS
·

Exosome-loaded biomaterials for tendon/ligament repair

Haohan Wang1 Yonglin Guo1 Yiwen Jiang3 Yingyu Ge1 Hanyi Wang1 Dingyi Shi1 Guoyang Zhang2 Jinzhong Zhao2 Yuhao Kang2* Liren Wang2*
Show Less
1 Shanghai Jiao Tong University School of Medicine, Shanghai, China
2 Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
3 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
Submitted: 12 March 2024 | Revised: 30 April 2024 | Accepted: 18 June 2024 | Published: 28 June 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Exosomes, a specialised type of extracellular vesicle, have attracted significant attention in the realm of tendon/ligament repair as a potential biologic therapeutic tool. While the competence of key substances responsible for the delivery function was gradually elucidated, series of shortcomings exemplified by the limited stability still need to be improved. Therefore, how to take maximum advantage of the biological characteristics of exosomes is of great importance. Recently, the comprehensive exploration and application of biomedical engineering has improved the availability of exosomes and revealed the future direction of exosomes combined with biomaterials. This review delves into the present application of biomaterials such as nanomaterials, hydrogels, and electrospun scaffolds, serving as the carriers of exosomes in tendon/ligament repair. By pinpointing and exploring their strengths and limitations, it offers valuable insights, paving the way the future direction of biomaterials in the application of exosomes in tendon/ligament repair in this field.

Keywords
biomaterials
electrospinning
exosomes
hydrogel microspheres
hydrogels
nanoparticles
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Zhang C, Zhang E, Yang L, Tu W, Lin J, Yuan C, Bunpetch V, Chen X, Ouyang H. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair. Biomaterials. 2018;172:66 - 82.
2. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255 - 289.
3. Natasha G, Gundogan B, Tan A, Farhatnia Y, Wu W, Rajadas J, Seifalian AM. Exosomes as immunotheranostic nanoparticles. Clin Ther. 2014;36(6):820 - 829.
4. Chen L, Chen R, Kemper S, Brigstock DR. Pathways of production and delivery of hepatocyte exosomes. J Cell Commun Signal. 2018;12(4):343 - 357.
5. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus - like vesicles, and apoptotic bodies. J Neurooncol. 2013;113(1):1 - 11.
6. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8(1):83.
7. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213 - 228.
8. Purushothaman A. Exosomes from cell culture - conditioned medium: isolation by ultracentrifugation and characterization. Methods Mol Biol. 2019;1952:233 - 244.
9. Taylor DD, Zacharias W, Gercel - Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011;728:235 - 246.
10. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto - Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214 - 222.
11. Royo F, Théry C, Falcón - Pérez JM, Nieuwland R, Witwer KW. Methods for separation and characterization of extracellular vesicles: results of a Worldwide Survey Performed by the ISEV Rigor and Standardization Subcommittee. Cells. 2020;9(8):1955.
12. Yu D, Li Y, Wang M, Gu J, Xu W, Cai H, Fang X, Zhang X. Exosomes as a new frontier of cancer liquid biopsy. Mol Cancer. 2022;21(1):56.
13. Kim S, Lee SK, Kim H, Kim TM. Exosomes secreted from induced pluripotent stem cell - derived mesenchymal stem cells accelerate skin cell proliferation. Int J Mol Sci. 2018;19(10):3119.
14. Jiang L, Dong H, Cao H, Ji X, Luan S, Liu J. Exosomes in pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Med Sci Monit. 2019;25:3329 - 3335.
15. Chew JRJ, Chuah SJ, Teo KY, Zhang S, Lai RC, Fu JH, Lim LP, Lim SK, Toh WS. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019;89:252 - 264.
16. Jin S, Wang Y, Wu X, Li Z, Zhu L, Niu Y, Zhou Y, Liu Y. Young exosome bio - nanoparticles restore aging - impaired tendon stem/progenitor cell function and reparative capacity. Adv Mater. 2023;35(14):e2211602.
17. Chamberlain CS, Kink JA, Wildenauer LA, McCaughey M, Henry K, Spiker AM, Halanski MA, Hematti P, Vanderby R. Exosome - educated macrophages and exosomes differentially improve ligament healing. Stem Cells. 2021;39(1):55 - 61.
18. Huang Y, He B, Wang L, Yuan B, Shu H, Zhang F, Sun L. Bone marrow mesenchymal stem cell - derived exosomes promote rotator cuff tendon - bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11(1):496.
19. Takayama K, Kawakami Y, Mifune Y, Matsumoto T, Tang Y, Cummins JH, Greco N, Kuroda R, Kurosaka M, Wang B, Fu FH, Huard J. The effect of blocking angiogenesis on anterior cruciate ligament healing following stem cell transplantation. Biomaterials. 2015;60:9 - 19.
20. Yanuar A, Agustina H, Budhiparama NC, Atik N. Prospect of exosome in ligament healing: a systematical review. Stem Cells Cloning. 2023;16:91 - 101.
21. Zou J, Yang W, Cui W, Li C, Ma C, Ji X, Hong J, Qu Z, Chen J, Liu A, Wu H. Therapeutic potential and mechanisms of mesenchymal stem cell - derived exosomes as bioactive materials in tendon - bone healing. J Nanobiotechnology. 2023;21(1):14.
22. Pishavar E, Luo H, Naserifar M, Hashemi M, Toosi S, Atala A, Ramakrishna S, Behravan J. Advanced hydrogels as exosome delivery systems for osteogenic differentiation of MSCs: application in bone regeneration. Int J Mol Sci. 2021;22(11):6203.
23. Wang L, Wang J, Zhou X, Sun J, Zhu B, Duan C, Chen P, Guo X, Zhang T, Guo H. A new self - healing hydrogel containing hucMSC - derived exosomes promotes bone regeneration. Front Bioeng Biotechnol. 2020;8:564731.
24. DiStefano TJ, Vaso K, Panebianco CJ, Danias G, Chionuma HN, Kunnath K, Karoulias SZ, Wang M, Xu P, Davé RN, Sahoo S, Weiser JR, Iatridis JC. Hydrogel - embedded poly(lactic - co - glycolic acid) microspheres for the delivery of hMSC - derived exosomes to promote bioactive annulus fibrosus repair. Cartilage. 2022;13(5):19476035221113959.
25. Hong J, Yeo M, Yang GH, Kim G. Cell - electrospinning and its application for tissue engineering. Int J Mol Sci. 2019;20(24):6208.
26. Imai T, Takahashi Y, Nishikawa M, Kato K, Morishita M, Yamashita T, Matsumoto A, Charoenviriyakul C, Takakura Y. Macrophage - dependent clearance of systemically administered B16BL6 - derived exosomes from the blood circulation in mice. J Extracell Vesicles. 2015;4:26238.
27. Yang B, Chen Y, Shi J. Exosome biochemistry and advanced nanotechnology for next - generation theranostic platforms. Adv Mater. 2019;31(34):e1802896.
28. Chen X, Fan H, Deng X, Wu L, Yi T, Gu L, Zhou C, Fan Y, Zhang X. Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Nanomaterials (Basel). 2018;8(12):960.
29. Wolfram J, Ferrari M. Clinical cancer nanomedicine. Nano Today. 2019;25:85 - 98.
30. Rahmati S, Khazaei M, Nadi A, Alizadeh M, Rezakhani L. Exosome - loaded scaffolds for regenerative medicine in hard tissues. Tissue Cell. 2023;82:102102.
31. Graça MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid - based wound dressings: A review. Carbohydr Polym. 2020;241:116364.
32. Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase - 9 (MMP - 9). Crit Rev Biochem Mol Biol. 2002;37(5):375 - 536.
33. Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, Gu C, Chen J, Qiu P, Mei S, Ning L, Shi Y, Fang C, Fan S, Lin X. Desktop - stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(8):2439 - 2459.
34. Jiao H, Xiao E, Graves DT. Diabetes and its effect on bone and fracture healing. Curr Osteoporos Rep. 2015;13(5):327 - 335.
35. He L, He T, Xing J, Zhou Q, Fan L, Liu C, Chen Y, Wu D, Tian Z, Liu B, Rong L. Bone marrow mesenchymal stem cell - derived exosomes protect cartilage damage and relieve knee osteoarthritis pain in a rat model of osteoarthritis. Stem Cell Res Ther. 2020;11(1):276.
36. Li M, Jia J, Li S, Cui B, Huang J, Guo Z, Ma K, Wang L, Cui C. Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochem Biophys Res Commun. 2021;536(1):88 - 94.
37. Yu H, Cheng J, Shi W, Ren B, Zhao F, Shi Y, Yang P, Duan X, Zhang J, Fu X, Hu X, Ao Y. Bone marrow mesenchymal stem cell - derived exosomes promote tendon regeneration by facilitating the proliferation and migration of endogenous tendon stem/progenitor cells. Acta Biomater. 2020;106:328 - 341.
38. Shi Z, Wang Q, Jiang D. Extracellular vesicles from bone marrow - derived multipotent mesenchymal stromal cells regulate inflammation and enhance tendon healing. J Transl Med. 2019;17(1):211.
39. Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon - bone healing. World J Stem Cells. 2021;13(6):753 - 775.
40. Davies M, B TF. Editorial commentary: Stem cell exosomes can promote healing and muscle function after rotator cuff repair. Arthroscopy. 2022;38(8):2154 - 2156.
41. Han F, Li T, Li M, Zhang B, Wang Y, Zhu Y, Wu C. Nano - calcium silicate mineralized fish scale scaffolds for enhancing tendon - bone healing. Bioact Mater. 2023;20:29 - 40.
42. Liu A, Wang Q, Zhao Z, Wu R, Wang M, Li J, Sun K, Sun Z, Lv Z, Xu J, Jiang H, Wan M, Shi D, Mao C. Nitric oxide nanomotor driving exosomes - loaded microneedles for achilles tendinopathy healing. ACS Nano. 2021;15(8):13339 - 13350.
43. Liu Y, Wang L, Liu Z, Kang Y, Chen T, Xu C, Zhu T. Durable immunomodulatory nanofiber niche for the functional remodeling of cardiovascular tissue. ACS Nano. 2024;18(2):951 - 971.
44. Jin H, Kang Y, Gao H, Lin Z, Huang D, Zheng Z, Zhao J, Wang L, Jiang J. Decellularization - based modification strategy for bioactive xenografts promoting tendon repair. Adv Healthc Mater. 2024;13(3):e2302660.
45. Podolsky KA, Devaraj NK. Synthesis of lipid membranes for artificial cells. Nat Rev Chem. 2021;5(9):676 - 694.
46. Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; TaoO.; Pham, H. M.; Tran, S. D. Smart hydrogels in tissue engineering and regenerative medicine. Materials (Basel). 2019, 12, 3323.
47. Zhang, Y. S.; Khademhosseini, A. Advances in engineering hydrogels. Science. 2017, 356, eaaf3627.
48. Hoffman, A. S. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002, 54, 3 - 12.
49. Boral, S.; Saxena, A.; Bohidar, H. B. Syneresis in agar hydrogels. Int J Biol Macromol. 2010, 46, 232 - 236.
50. Appel, E. A.; del Barrio, J.; Loh, X. J.; Scherman, O. A. Supramolecular polymeric hydrogels. Chem Soc Rev. 2012, 41, 6195 - 6214.
51. Kim, Y. G.; Choi, J.; Kim, K. Mesenchymal stem cell - derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 2020, 15, e2000082.
52. Guan, P.; Liu, C.; Xie, D.; Mao, S.; Ji, Y.; Lin, Y.; Chen, Z.; Wang, Q.; Fan, L.; Sun, Y. Exosome - loaded extracellular matrix - mimic hydrogel with anti - inflammatory property Facilitates/promotes growth plate injury repair. Bioact Mater. 2022, 10, 145 - 158.
53. Jiang, S.; Tian, G.; Yang, Z.; Gao, X.; Wang, F.; Li, J.; Tian, Z.; Huang, B.; Wei, F.; Sang, X.; Shao, L.; Zhou, J.; Wang, Z.; Liu, S.; Sui, X.; Guo, Q.; Guo, W.; Li, X. Enhancement of acellular cartilage matrix scaffold by Wharton’s jelly mesenchymal stem cell - derived exosomes to promote osteochondral regeneration. Bioact Mater. 2021, 6, 2711 - 2728.
54. Zhang, Y.; Wang, X.; Chen, J.; Qian, D.; Gao, P.; Qin, T.; Jiang, T.; Yi, J.; Xu, T.; Huang, Y.; Wang, Q.; Zhou, Z.; Bao, T.; Zhao, X.; Liu, H.; Zheng, Z.; Fan, J.; Zhao, S.; Li, Q.; Yin, G. Exosomes derived from platelet - rich plasma administration in site mediate cartilage protection in subtalar osteoarthritis. J Nanobiotechnology. 2022, 20, 56.
55. Wang, C.; Tan, J.; Zhang, Y.; Chen, D.; He, Y. In situ - forming fibrin gel encapsulation of MSC - exosomes for partial - thickness rotator cuff tears in a rabbit model: effectiveness shown in preventing tear progression and promoting healing. J Bone Joint Surg Am. 2022, 104, 1492 - 1502.
56. Lu, J.; Yang, X.; He, C.; Chen, Y.; Li, C.; Li, S.; Chen, Y.; Wu, Y.; Xiang, Z.; Kang, J.; Jiang, G.; Wang, C.; Diarra, M. D.; He, R.; Feng, G.; Yan, R. Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet - derived exosomes loaded with recombinant Yap1. Acta Biomater. 2023, 161, 80 - 99.
57. Zhang, T.; Wu, Y.; Li, X.; Zhang, A.; Liu, H.; Shi, M.; Zhang, Z.; Lu, W.; Guo, Y.; Tang, X.; Cui, Q.; Li, Z. Small extracellular vesicles derived from tendon stem cells promote the healing of injured Achilles tendons by regulating miR - 145 - 3p. Acta Biomater. 2023, 172, 280 - 296.
58. Cui, J.; Zhang, Y. J.; Li, X.; Luo, J. J.; Zhao, L. L.; Xie, X. Y.; Ding, W.; Luo, J. C.; Qin, T. W. Decellularized tendon scaffolds loaded with collagen targeted extracellular vesicles from tendon - derived stem cells facilitate tendon regeneration. J Control Release. 2023, 360, 842 - 857.
59. Zhang, J.; Cai, Z.; Feng, F.; Peng, Y.; Cui, Y.; Xu, Y. Age - different BMSCs - derived exosomes accelerate tendon - bone interface healing in rotator cuff tears model. Gene. 2024, 895, 148002.
60. Cai, J.; Xu, J.; Ye, Z.; Wang, L.; Zheng, T.; Zhang, T.; Li, Y.; Jiang, J.; Zhao, J. Exosomes derived from kartogenin - preconditioned mesenchymal stem cells promote cartilage formation and collagen maturation for enthesis regeneration in a rat model of chronic rotator cuff tear. Am J Sports Med. 2023, 51, 1267 - 1276.
61. Shi, Y.; Kang, X.; Wang, Y.; Bian, X.; He, G.; Zhou, M.; Tang, K. Exosomes derived from bone marrow stromal cells (BMSCs) enhance tendon - bone healing by regulating macrophage polarization. Med Sci Monit. 2020, 26, e923328.
62. Zhang, T.; Yan, S.; Song, Y.; Chen, C.; Xu, D.; Lu, B.; Xu, Y. Exosomes secreted by hypoxia - stimulated bone - marrow mesenchymal stem cells promote grafted tendon - bone tunnel healing in rat anterior cruciate ligament reconstruction model. J Orthop Translat. 2022, 36, 152 - 163.
63. Ma, W.; Liu, Z.; Zhu, T.; Wang, L.; Du, J.; Wang, K.; Xu, C. Fabric - enhanced vascular graft with hierarchical structure for promoting the regeneration of vascular tissue. Adv Healthc Mater. 2024, e2302676.
64. Xu, X.; Jerca, V. V.; Hoogenboom, R. Bioinspired double network hydrogels: from covalent double network hydrogels via hybrid double network hydrogels to physical double network hydrogels. Mater Horiz. 2021, 8, 1173 - 1188.
65. Zou, Z.; Li, H.; Xu, G.; Hu, Y.; Zhang, W.; Tian, K. Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases. Int J Nanomedicine. 2023, 18, 4751 - 4778.
66. Bai, J.; Wang, R.; Wang, X.; Liu, S.; Wang, X.; Ma, J.; Qin, Z.; Jiao, T. Biomineral calcium - ion - mediated conductive hydrogels with high stretchability and self - adhesiveness for sensitive iontronic sensors. Cell Rep Phys Sci. 2021, 2, 100623.
67. Hasany, M.; Thakur, A.; Taebnia, N.; Kadumudi, F. B.; Shahbazi, M. A.; Pierchala, M. K.; Mohanty, S.; Orive, G.; Andresen, T. L.; Foldager, C. B.; Yaghmaei, S.; Arpanaei, A.; Gaharwar, A. K.; Mehrali, M.; Dolatshahi - Pirouz, A. Combinatorial screening of nanoclay - reinforced hydrogels: a glimpse of the “holy grail” in orthopedic stem cell therapy? ACS Appl Mater Interfaces. 2018, 10, 34924 - 34941.
68. Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021, 9, 1235.
69. Guan, G.; Zhang, Q.; Jiang, Z.; Liu, J.; Wan, J.; Jin, P.; Lv, Q. Multifunctional silk fibroin methacryloyl microneedle for diabetic wound healing. Small. 2022, 18, e2203064.
70. Daly, A. C.; Riley, L.; Segura, T.; Burdick, J. A. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020, 5, 20 - 43.
71. Fafián - Labora, J. A.; Rodríguez - Navarro, J. A.; O’Loghlen, A. Small extracellular vesicles have GST activity and ameliorate senescence - related tissue damage. Cell Metab. 2020, 32, 71 - 86.e5.
72. Kuang, R.; Zhang, Z.; Jin, X.; Hu, J.; Gupte, M. J.; Ni, L.; Ma, P. X. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells. Adv Healthc Mater. 2015, 4, 1993 - 2000.
73. Miao, K.; Zhou, Y.; He, X.; Xu, Y.; Zhang, X.; Zhao, H.; Zhou, X.; Gu, Q.; Yang, H.; Liu, X.; Huang, L.; Shi, Q. Microenvironment - responsive bilayer hydrogel microspheres with gelatin - shell for osteoarthritis treatment. Int J Biol Macromol. 2024, 261, 129862.
74. Smoak, M. M.; Mikos, A. G. Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater Today Bio. 2020, 7, 100069.
75. Wan, J.; He, Z.; Peng, R.; Wu, X.; Zhu, Z.; Cui, J.; Hao, X.; Chen, A.; Zhang, J.; Cheng, P. Injectable photocrosslinking spherical hydrogel - encapsulated targeting peptide - modified engineered exosomes for osteoarthritis therapy. J Nanobiotechnology. 2023, 21, 284.
76. Chen, L.; Yang, J.; Cai, Z.; Huang, Y.; Xiao, P.; Chen, H.; Luo, X.; Huang, W.; Cui, W.; Hu, N. Mitochondrial - oriented injectable hydrogel microspheres maintain homeostasis of chondrocyte metabolism to promote subcellular therapy in osteoarthritis. Research (Wash D C). 2024, 7, 0306.
77. Chen, M.; Lu, Y.; Liu, Y.; Liu, Q.; Deng, S.; Liu, Y.; Cui, X.; Liang, J.; Zhang, X.; Fan, Y.; Wang, Q. Injectable microgels with hybrid exosomes of chondrocyte - targeted FGF18 gene - editing and self - renewable lubrication for osteoarthritis therapy. Adv Mater. 2024, 36, e2312559.
78. Müller, S. A.; Todorov, A.; Heisterbach, P. E.; Martin, I.; Majewski, M. Tendon healing: an overview of physiology, biology, and pathologyof tendon healing and systematic review of state of the art in tendon bioengineering. Knee Surg Sports Traumatol Arthrosc. 2015, 23, 2097 - 2105.
79. Berger, D. R.; Centeno, C. J.; Steinmetz, N. J. Platelet lysates from aged donors promote human tenocyte proliferation and migration in a concentration - dependent manner. Bone Joint Res. 2019, 8, 32 - 40.
80. Ren, Z.; Duan, Z.; Zhang, Z.; Fu, R.; Zhu, C.; Fan, D. Instantaneous self - healing and strongly adhesive self - adaptive hyaluronic acid - based hydrogel for controlled drug release to promote tendon wound healing. Int J Biol Macromol. 2023, 242, 125001.
81. Cai, C.; Zhang, X.; Li, Y.; Liu, X.; Wang, S.; Lu, M.; Yan, X.; Deng, L.; Liu, S.; Wang, F.; Fan, C. Self - healing hydrogel embodied with macrophage - regulation and responsive - gene - silencing properties for synergistic prevention of peritendinous adhesion. Adv Mater. 2022, 34, e2106564.
82. Yang, Y.; Zheng, W.; Tan, W.; Wu, X.; Dai, Z.; Li, Z.; Yan, Z.; Ji, Y.; Wang, Y.; Su, W.; Zhong, S.; Li, Y.; Sun, Y.; Li, S.; Huang, W. Injectable MMP1 - sensitive microspheres with spatiotemporally controlled exosome release promote neovascularized bone healing. Acta Biomater. 2023, 157, 321 - 336.
83. Zhao, X.; Zhou, Y.; Li, J.; Zhang, C.; Wang, J. Opportunities and challenges of hydrogel microspheres for tendon - bone healing after anterior cruciate ligament reconstruction. J Biomed Mater Res B Appl Biomater. 2022, 110, 289 - 301.
84. Czosseck, A.; Chen, M. M.; Nguyen, H.; Meeson, A.; Hsu, C. C.; Chen, C. C.; George, T. A.; Ruan, S. C.; Cheng, Y. Y.; Lin, P. J.; Hsieh, P. C. H.; Lundy, D. J. Porous scaffold for mesenchymal cell encapsulation and exosome - based therapy of ischemic diseases. J Control Release. 2022, 352, 879 - 892.
85. Su, Y.; Gao, Q.; Deng, R.; Zeng, L.; Guo, J.; Ye, B.; Yu, J.; Guo, X. Aptamer engineering exosomes loaded on biomimetic periosteum to promote angiogenesis and bone regeneration by targeting injured nerves via JNK3 MAPK pathway. Mater Today Bio. 2022, 16, 100434.
86. Dong, L.; Li, L.; Song, Y.; Fang, Y.; Liu, J.; Chen, P.; Wang, S.; Wang, C.; Xia, T.; Liu, W.; Yang, L. MSC - derived immunomodulatory extracellular matrix functionalized electrospun fibers for mitigating foreign - body reaction and tendon adhesion. Acta Biomater. 2021, 133, 280 - 296.
87. Chachques, J. C.; Gardin, C.; Lila, N.; Ferroni, L.; Migonney, V.; Falentin - Daudre, C.; Zanotti, F.; Trentini, M.; Brunello, G.; Rocca, T.; Gasbarro, V.; Zavan, B. Elastomeric cardiowrap scaffolds functionalized with mesenchymal stem cells - derived exosomes induce a positive modulation in the inflammatory and wound healing response of mesenchymal stem cell and macrophage. Biomedicines. 2021, 9, 824.
88. Li, J.; Yan, S.; Han, W.; Dong, Z.; Li, J.; Wu, Q.; Fu, X. Phospholipid - grafted PLLA electrospun micro/nanofibers immobilized with small extracellular vesicles from rat adipose mesenchymal stem cells promote wound healing in diabetic rats. Regen Biomater. 2022, 9, rbac071.
89. Wang, L.; Cheng, W.; Zhu, J.; Li, W.; Li, D.; Yang, X.; Zhao, W.; Ren, M.; Ren, J.; Mo, X.; Fu, Q.; Zhang, K. Electrospun nanoyarn and exosomes of adipose - derived stem cells for urethral regeneration: Evaluations in vitro and in vivo. Colloids Surf B Biointerfaces. 2022, 209, 112218.
90. Zhang, X.; Han, Z.; Han, K.; Zhang, H.; Huang, J.; Huangfu, X.; Zhao, J. Loading mesenchymal stem cell - derived exosomes into a traditionally designed rotator cuff patch: a potential strategy to enhance the repair of chronic rotator cuff tear associated with degenerative changes. Am J Sports Med. 2022, 50, 2234 - 2246.
91. Gao, H.; Wang, L.; Lin, Z.; Jin, H.; Lyu, Y.; Kang, Y.; Zhu, T.; Zhao, J.; Jiang, J. Bi - lineage inducible and immunoregulatory electrospun fibers scaffolds for synchronous regeneration of tendon - to - bone interface. Mater Today Bio. 2023, 22, 100749.
92. Du, C.; Wu, R.; Yan, W.; Fang, J.; Dai, W.; Wang, Y.; Cheng, J.; Hu, X.; Ao, Y.; Liang, X.; Liu, Z. Ultrasound-controlled delivery of growth factor-loaded cerasomes combined with polycaprolactone scaffolds seeded with bone marrow mesenchymal stem cells for biomimetic tendon-to-bone interface engineering. ACS Appl Mater Interfaces. 2024, 16, 292-304.
93. Su, N.; Hao, Y.; Wang, F.; Hou, W.; Chen, H.; Luo, Y. Mesenchymal stromal exosome-functionalized scaffolds induce innate and adaptive immunomodulatory responses toward tissue repair. Sci Adv. 2021, 7, eabf7207.
94. Shang, L.; Yu, Y.; Liu, Y.; Chen, Z.; Kong, T.; Zhao, Y. Spinning and applications of bioinspired fiber systems. ACS Nano. 2019, 13, 2749-2772.
95. Polonio-Alcalá, E.; Casanova-Batlle, E.; Puig, T.; Ciurana, J. The solvent chosen for the manufacturing of electrospun polycaprolactone scaffolds influences cell behavior of lung cancer cells. Sci Rep. 2022, 12, 19440.
96. Escudé Martinez de Castilla, P.; Tong, L.; Huang, C.; Sofias, A. M.; Pastorin, G.; Chen, X.; Storm, G.; Schiffelers, R. M.; Wang, J. W. Extracellular vesicles as a drug delivery system: A systematic review of preclinical studies. Adv Drug Deliv Rev. 2021, 175, 113801.
97. Debnath, K.; Heras, K. L.; Rivera, A.; Lenzini, S.; Shin, J. W. Extracellular vesicle-matrix interactions. Nat Rev Mater. 2023, 8, 390-402.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top