·
RESEARCH ARTICLES
·

Electrical stimulation with polypyrrole-coated polycaprolactone/silk fibroin scaffold promotes sacral nerve regeneration by modulating macrophage polarisation

Haofeng Cheng1,2,3,4 Jun Bai2,3,4 Xingyu Zhou1,2,3,4 Nantian Chen1,2,3,4 Qingyu Jiang2,3 Zhiqi Ren2,3 Xiangling Li3 Tianqi Su2,3 Lijing Liang3,5,6 Wenli Jiang6 Yu Wang3,4* Jiang Peng3,4* Aijia Shang1,2*
Show Less
1 School of Medicine, Nankai University, Tianjin, China
2 Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
3 Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA; Beijing, China
4 Co-innovation Center of Neuroregeneration; Nantong University, Nantong, Jiangsu Province, China
5 Graduate School of Chinese PLA General Hospital, Beijing, China
6 Department of Ultrasound, Chinese PLA General Hospital, Beijing, China
Submitted: 27 March 2024 | Revised: 18 May 2024 | Accepted: 28 June 2024 | Published: 28 June 2024
Copyright © 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Peripheral nerve injury poses a great threat to neurosurgery and limits the regenerative potential of sacral nerves in the neurogenic bladder. It remains unknown whether electrical stimulation can facilitate sacral nerve regeneration in addition to modulate bladder function. The objective of this study was to utilise electrical stimulation in sacra nerve crush injury with newly constructed electroconductive scaffold and explore the role of macrophages in electrical stimulation with crushed nerves. As a result, we generated a polypyrrole-coated polycaprolactone/silk fibroin scaffold through which we applied electrical stimulation. The electrical stimulation boosted nerve regeneration and polarised the macrophages towards the M2 phenotype. An in vitro test using bone marrow derived macrophages revealed that the pro-regenerative polarisation of M2 were significantly enhanced by electrical stimulation. Bioinformatics analysis showed that the expression of signal transducer and activator of transcriptions (STATs) was differentially regulated in a way that promoted M2-related genes expression. Our work indicated the feasibility of electricals stimulation used for sacral nerve regeneration and provided a firm demonstration of a pivotal role which macrophages played in electrical stimulation.

Keywords
electrical stimulation ; JAK-STAT signalling pathway ; macrophage polarisation ; peripheral nerve regeneration ; polypyrrole ; sacral nerve injury
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1. Hamid, R.; Averbeck, M. A.; Chiang, H.; Garcia, A.; Al Mousa, R. T.; Oh, S. J.; Patel, A.; Plata, M.; Del Popolo, G. Epidemiology and pathophysiology of neurogenic bladder after spinal cord injury. World J Urol. 2018, 36, 1517-1527.
2. Li, J.; Li, S.; Wang, Y.; Shang, A. Functional, morphological and molecular characteristics in a novel rat model of spinal sacral nerve injury-surgical approach, pathological process and clinical relevance. Sci Rep. 2022, 12, 10026.
3. Gill, B. C.; Thomas, S.; Barden, L.; Jelovsek, J. E.; Meyer, I.; Chermansky, C.; Komesu, Y. M.; Menefee, S.; Myers, D.; Smith, A.; Mazloomdoost, D.; Amundsen, C. L. Intraoperative predictors of sacral neuromodulation implantation and treatment response: results from the ROSETTA trial. J Urol. 2023, 210, 331-340.
4. Liao, L. Evaluation and management of neurogenic bladder: what is new in China? Int J Mol Sci. 2015, 16, 18580-18600.
5. Gordon, T. Peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci. 2020, 21, 8652.
6. Menorca, R. M.; Fussell, T. S.; Elfar, J. C. Nerve physiology: mechanisms of injury and recovery. Hand Clin. 2013, 29, 317-330.
7. Dubový, P. Wallerian degeneration and peripheral nerve conditions for both axonal regeneration and neuropathic pain induction. Ann Anat. 2011, 193, 267-275.
8. Singh, B.; Xu, Q. G.; Franz, C. K.; Zhang, R.; Dalton, C.; Gordon, T.; Verge, V. M.; Midha, R.; Zochodne, D. W. Accelerated axon outgrowth, guidance, and target reinnervation across nerve transection gaps following a brief electrical stimulation paradigm. J Neurosurg. 2012, 116, 498-512.
9. Zigmond, R. E.; Echevarria, F. D. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol. 2019, 173, 102-121.
10. Zhou, D.; Huang, C.; Lin, Z.; Zhan, S.; Kong, L.; Fang, C.; Li, J. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal. 2014, 26, 192-197.
11. Murray, P. J. Macrophage polarization. Annu Rev Physiol. 2017, 79, 541-566.
12. Liu, P.; Peng, J.; Han, G. H.; Ding, X.; Wei, S.; Gao, G.; Huang, K.; Chang, F.; Wang, Y. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res. 2019, 14, 1335-1342.
13. Chen, P.; Piao, X.; Bonaldo, P. Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 2015, 130, 605-618.
14. Liu, P. S.; Wang, H.; Li, X.; Chao, T.; Teav, T.; Christen, S.; Di Conza, G.; Cheng, W. C.; Chou, C. H.; Vavakova, M.; Muret, C.; Debackere, K.; Mazzone, M.; Huang, H. D.; Fendt, S. M.; Ivanisevic, J.; Ho, P. C. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat Immunol. 2017, 18, 985-994.
15. Juckett, L.; Saffari, T. M.; Ormseth, B.; Senger, J. L.; Moore, A. M. The effect of electrical stimulation on nerve regeneration following peripheral nerve injury. Biomolecules. 2022, 12, 1856.
16. Chu, X. L.; Song, X. Z.; Li, Q.; Li, Y. R.; He, F.; Gu, X. S.; Ming, D. Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation. Neural Regen Res. 2022, 17, 2185-2193.
17. Zhao, Y.; Liang, Y.; Ding, S.; Zhang, K.; Mao, H. Q.; Yang, Y. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials. 2020, 255, 120164.
18. Li, X.; Zhang, T.; Li, C.; Xu, W.; Guan, Y.; Li, X.; Cheng, H.; Chen, S.; Yang, B.; Liu, Y.; Ren, Z.; Song, X.; Jia, Z.; Wang, Y.; Tang, J. Electrical stimulation accelerates Wallerian degeneration and promotes nerve regeneration after sciatic nerve injury. Glia. 2023, 71, 758-774.
19. Keane, G. C.; Pan, D.; Roh, J.; Larson, E. L.; Schellhardt, L.; Hunter, D. A.; Snyder-Warwick, A. K.; Moore, A. M.; Mackinnon, S. E.; Wood, M. D. The effects of intraoperative electrical stimulation on regeneration and recovery after nerve isograft repair in a rat model. Hand (N Y). 2022, 17, 540-548.
20. Rouabhia, M.; Park, H.; Meng, S.; Derbali, H.; Zhang, Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 2013, 8, e71660.
21. Rajendran, S. B.; Challen, K.; Wright, K. L.; Hardy, J. G. Electrical stimulation to enhance wound healing. J Funct Biomater. 2021, 12, 40.
22. Oliveira, K. M. C.; Barker, J. H.; Berezikov, E.; Pindur, L.; Kynigopoulos, S.; Eischen-Loges, M.; Han, Z.; Bhavsar, M. B.; Henrich, D.; Leppik, L. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep. 2019, 9, 11433.
23. Hu, L.; Klein, J. D.; Hassounah, F.; Cai, H.; Zhang, C.; Xu, P.; Wang, X. H. Low-frequency electrical stimulation attenuates muscle atrophy in CKD--a potential treatment strategy. J Am Soc Nephrol. 2015, 26, 626-635.
24. Schiavone, G.; Kang, X.; Fallegger, F.; Gandar, J.; Courtine, G.; Lacour, S. P. Guidelines to study and develop soft electrode systems for neural stimulation. Neuron. 2020, 108, 238-258.
25. Zhang, J.; Qiu, K.; Sun, B.; Fang, J.; Zhang, K.; Ei-Hamshary, H.; AlDeyab, S. S.; Mo, X. The aligned core-sheath nanofibers with electrical conductivity for neural tissue engineering. J Mater Chem B. 2014, 2, 7945-7954.
26. Zheng, X. S.; Griffith, A. Y.; Chang, E.; Looker, M. J.; Fisher, L. E.; Clapsaddle, B.; Cui, X. T. Evaluation of a conducting elastomeric composite material for intramuscular electrode application. Acta Biomater. 2020, 103, 81-91.
27. Wu, S.; Qi, Y.; Shi, W.; Kuss, M.; Chen, S.; Duan, B. Electrospun conductive nanofiber yarns for accelerating mesenchymal stem cells differentiation and maturation into Schwann cell-like cells under a combination of electrical stimulation and chemical induction. Acta Biomater. 2022, 139, 91-104.
28. Wang, J.; Tian, L.; Chen, N.; Ramakrishna, S.; Mo, X. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Mater Sci Eng C Mater Biol Appl. 2018, 91, 715-726.
29. Mao, W.; Lee, E.; Cho, W.; Kang, B. J.; Yoo, H. S. Cell-directed assembly of luminal nanofibril fillers in nerve conduits for peripheral nerve repair. Biomaterials. 2023, 301, 122209.
30. Guo, W.; Zhang, X.; Yu, X.; Wang, S.; Qiu, J.; Tang, W.; Li, L.; Liu, H.; Wang, Z. L. Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3,4ethylenedioxythiophene) hybrid microfibers. ACS Nano. 2016, 10, 5086-5095.
31. Guan, Y.; Ren, Z.; Yang, B.; Xu, W.; Wu, W.; Li, X.; Zhang, T.; Li, D.; Chen, S.; Bai, J.; Song, X.; Jia, Z.; Xiong, X.; He, S.; Li, C.; Meng, F.; Wu, T.; Zhang, J.; Liu, X.; Meng, H.; Peng, J.; Wang, Y. Dual-bionic regenerative microenvironment for peripheral nerve repair. Bioact Mater. 2023, 26, 370-386.
32. Lee, J. Y.; Bashur, C. A.; Goldstein, A. S.; Schmidt, C. E. Polypyrrolecoated electrospun PLGA nanofibers for neural tissue applications. Biomaterials. 2009, 30, 4325-4335.
33. Sun, B.; Wu, T.; Wang, J.; Li, D.; Wang, J.; Gao, Q.; Bhutto, M. A.; ElHamshary, H.; Al-Deyab, S. S.; Mo, X. Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous membranes promoting neural cell proliferation and differentiation with electrical stimulation. J Mater Chem B. 2016, 4, 6670-6679.
34. Hardy, J. G.; Cornelison, R. C.; Sukhavasi, R. C.; Saballos, R. J.; Vu, P.; Kaplan, D. L.; Schmidt, C. E. Electroactive tissue scaffolds with aligned pores as instructive platforms for biomimetic tissue engineering. Bioengineering (Basel). 2015, 2, 15-34.
35. Sapountzi, E.; Chateaux, J. F.; Lagarde, F. Combining electrospinning and vapor-phase polymerization for the production of polyacrylonitrile/ polypyrrole core-shell nanofibers and glucose biosensor application. Front Chem. 2020, 8, 678.
36. Wang, Y.; Yao, D.; Li, L.; Qian, Z.; He, W.; Ding, R.; Liu, H.; Fan, Y. Effect of electrospun silk fibroin-silk sericin films on macrophage polarization and vascularization. ACS Biomater Sci Eng. 2020, 6, 35023512.
37. National Research Council. Guide for the Care and Use of Laboratory Animals, 8th edition. National Academies Press: Washington, DC, USA.
38. Ayanwuyi, L.; Tokarska, N.; McLean, N. A.; Johnston, J. M.; Verge, V. M. K. Brief electrical nerve stimulation enhances intrinsic repair capacity of the focally demyelinated central nervous system. Neural Regen Res. 2022, 17, 1042-1050.
39. McLean, N. A.; Verge, V. M. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve. Glia. 2016, 64, 1546-1561.
40. Bailey, J. D.; Shaw, A.; McNeill, E.; Nicol, T.; Diotallevi, M.; Chuaiphichai, S.; Patel, J.; Hale, A.; Channon, K. M.; Crabtree, M. J. Isolation and culture of murine bone marrow-derived macrophages for nitric oxide and redox biology. Nitric Oxide. 2020, 100-101, 17-29.
41. Halimani, N.; Nesterchuk, M.; Andreichenko, I. N.; Tsitrina, A. A.; Elchaninov, A.; Lokhonina, A.; Fatkhudinov, T.; Dashenkova, N. O.; Brezgina, V.; Zatsepin, T. S.; Mikaelyan, A. S.; Kotelevtsev, Y. V. Phenotypic alteration of BMDM in vitro using small interfering RNA. Cells. 2022, 11, 2498.
42. Liu, Y.; Wu, Y.; Wang, C.; Hu, W.; Zou, S.; Ren, H.; Zuo, Y.; Qu, L. MiR-127-3p enhances macrophagic proliferation via disturbing fatty acid profiles and oxidative phosphorylation in atherosclerosis. J Mol Cell Cardiol. 2024, 193, 36-52.
43. Zhu, H. T.; Luo, J.; Peng, Y.; Cheng, X. F.; Wu, S. Z.; Zhao, Y. D.; Chang, L.; Sun, Z. J.; Dong, D. L. Nitazoxanide protects against experimental ulcerative colitis through improving intestinal barrier and inhibiting inflammation. Chem Biol Interact. 2024, 395, 111013.
44. Yoshida, M.; Kwon, A. T.; Qin, X. Y.; Nishimura, H.; Maeda, S.; Miyamoto, Y.; Yoshida, Y.; Hoshino, Y.; Suzuki, H. Transcriptome analysis of long non-coding RNAs in Mycobacterium avium complexinfected macrophages. Front Immunol. 2024, 15, 1374437.
45. Tian, L.; Zhao, J. L.; Kang, J. Q.; Guo, S. B.; Zhang, N.; Shang, L.; Zhang, Y. L.; Zhang, J.; Jiang, X.; Lin, Y. Astragaloside IV alleviates the experimental DSS-induced colitis by remodeling macrophage polarization through STAT signaling. Front Immunol. 2021, 12, 740565.
46. Cheung, W. A.; Johnson, A. F.; Rowell, W. J.; Farrow, E.; Hall, R.; Cohen, A. S. A.; Means, J. C.; Zion, T. N.; Portik, D. M.; Saunders, C. T.; Koseva, B.; Bi, C.; Truong, T. K.; Schwendinger-Schreck, C.; Yoo, B.; Johnston, J. J.; Gibson, M.; Evrony, G.; Rizzo, W. B.; Thiffault, I.; Younger, S. T.; Curran, T.; Wenger, A. M.; Grundberg, E.; Pastinen, T. Direct haplotype-resolved 5-base HiFi sequencing for genome-wide profiling of hypermethylation outliers in a rare disease cohort. Nat Commun. 2023, 14, 3090.
47. Carbon, S.; Ireland, A.; Mungall, C. J.; Shu, S.; Marshall, B.; Lewis, S. AmiGO: online access to ontology and annotation data. Bioinformatics. 2009, 25, 288-289.
48. Gene Ontology Consortium; Aleksander, S. A.; Balhoff, J.; Carbon, S.; Cherry, J. M.; Drabkin, H. J.; Ebert, D.; Feuermann, M.; Gaudet, P.; Harris, N. L.; Hill, D. P.; Lee, R.; Mi, H.; Moxon, S.; Mungall, C. J.; Muruganugan, A.; Mushayahama, T.; Sternberg, P. W.; Thomas, P. D.; Van Auken, K.; Ramsey, J.; Siegele, D. A.; Chisholm, R. L.; Fey, P.; Aspromonte, M. C.; Nugnes, M. V.; Quaglia, F.; Tosatto, S.; Giglio, M.; Nadendla, S.; Antonazzo, G.; Attrill, H.; Dos Santos, G.; Marygold, S.; Strelets, V.; Tabone, C. J.; Thurmond, J.; Zhou, P.; Ahmed, S. H.; Asanitthong, P.; Luna Buitrago, D.; Erdol, M. N.; Gage, M. C.; Ali Kadhum, M.; Li, K. Y. C.; Long, M.; Michalak, A.; Pesala, A.; Pritazahra, A.; Saverimuttu, S. C. C.; Su, R.; Thurlow, K. E.; Lovering, R. C.; Logie, C.; Oliferenko, S.; Blake, J.; Christie, K.; Corbani, L.; Dolan, M. E.; Drabkin, H. J.; Hill, D. P.; Ni, L.; Sitnikov, D.; Smith, C.; Cuzick, A.; Seager, J.; Cooper, L.; Elser, J.; Jaiswal, P.; Gupta, P.; Jaiswal, P.; Naithani, S.; Lera-Ramirez, M.; Rutherford, K.; Wood, V.; De Pons, J. L.; Dwinell, M. R.; Hayman, G. T.; Kaldunski, M. L.; Kwitek, A. E.; Laulederkind, S. J. F.; Tutaj, M. A.; Vedi, M.; Wang, S. J.; D’Eustachio, P.; Aimo, L.; Axelsen, K.; Bridge, A.; Hyka-Nouspikel, N.; Morgat, A.; Aleksander, S. A.; Cherry, J. M.; Engel, S. R.; Karra, K.; Miyasato, S. R.; Nash, R. S.; Skrzypek, M. S.; Weng, S.; Wong, E. D.; Bakker, E.; Berardini, T. Z.; Reiser, L.; Auchincloss, A.; Axelsen, K.; Argoud-Puy, G.; Blatter, M. C.; Boutet, E.; Breuza, L.; Bridge, A.; Casals-Casas, C.; Coudert, E.; Estreicher, A.; Livia Famiglietti, M.; Feuermann, M.; Gos, A.; Gruaz-Gumowski, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Pedruzzi, I.; Pourcel, L.; Poux, S.; Rivoire, C.; Sundaram, S.; Bateman, A.; BowlerBarnett, E.; Bye, A. J. H.; Denny, P.; Ignatchenko, A.; Ishtiaq, R.; Lock, A.; Lussi, Y.; Magrane, M.; Martin, M. J.; Orchard, S.; Raposo, P.; Speretta, E.; Tyagi, N.; Warner, K.; Zaru, R.; Diehl, A. D.; Lee, R.; Chan, J.; Diamantakis, S.; Raciti, D.; Zarowiecki, M.; Fisher, M.; JamesZorn, C.; Ponferrada, V.; Zorn, A.; Ramachandran, S.; Ruzicka, L.; Westerfield, M. The Gene Ontology knowledgebase in 2023. Genetics. 2023, 224, iyad031.
49. Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.; Dolinski, K.; Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-Tarver, L.; Kasarskis, A.; Lewis, S.; Matese, J. C.; Richardson, J. E.; Ringwald, M.; Rubin, G. M.; Sherlock, G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25, 25-29.
50. Thomas, P. D.; Ebert, D.; Muruganujan, A.; Mushayahama, T.; Albou, L. P.; Mi, H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022, 31, 8-22.
51. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A. L.; Fang, T.; Doncheva, N. T.; Pyysalo, S.; Bork, P.; Jensen, L. J.; von Mering, C. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638-D646.
52. Maeng, W. Y.; Tseng, W. L.; Li, S.; Koo, J.; Hsueh, Y. Y. Electroceuticals for peripheral nerve regeneration. Biofabrication. 2022, 14, 042002.
53. Li, M.; Sun, X.; Zhao, J.; Xia, L.; Li, J.; Xu, M.; Wang, B.; Guo, H.; Yu, C.; Gao, Y.; Wu, H.; Kong, X.; Xia, Q. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell Mol Immunol. 2020, 17, 753-764.
54. Frangogiannis, N. G.; Ren, G.; Dewald, O.; Zymek, P.; Haudek, S.; Koerting, A.; Winkelmann, K.; Michael, L. H.; Lawler, J.; Entman, M. L. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation. 2005, 111, 2935-2942.
55. Hegdekar, N.; Sarkar, C.; Bustos, S.; Ritzel, R. M.; Hanscom, M.; Ravishankar, P.; Philkana, D.; Wu, J.; Loane, D. J.; Lipinski, M. M. Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy. 2023, 19, 2026-2044.
56. McArthur, S.; Juban, G.; Gobbetti, T.; Desgeorges, T.; Theret, M.; Gondin, J.; Toller-Kawahisa, J. E.; Reutelingsperger, C. P.; Chazaud, B.; Perretti, M.; Mounier, R. Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest. 2020, 130, 1156-1167.
57. Li, R.; Li, D.; Wu, C.; Ye, L.; Wu, Y.; Yuan, Y.; Yang, S.; Xie, L.; Mao, Y.; Jiang, T.; Li, Y.; Wang, J.; Zhang, H.; Li, X.; Xiao, J. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration. Theranostics. 2020, 10, 1649-1677.
58. Nishi, K.; Izumi, H.; Tomonaga, T.; Nagano, C.; Morimoto, Y.; Horie, S. IL-6-mediated upregulated miRNAs in extracellular vesicles derived from lund human mesencephalic (LUHMES) cells: effects on astrocytes and microglia. Biomolecules. 2023, 13, 718.
59. Merchant, J. L.; Ding, L. Hedgehog signaling links chronic inflammation to gastric cancer precursor lesions. Cell Mol Gastroenterol Hepatol. 2017, 3, 201-210.
60. Xu, F.; Cui, W. Q.; Wei, Y.; Cui, J.; Qiu, J.; Hu, L. L.; Gong, W. Y.; Dong, J. C.; Liu, B. J. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018, 37, 207.
61. Gaojian, T.; Dingfei, Q.; Linwei, L.; Xiaowei, W.; Zheng, Z.; Wei, L.; Tong, Z.; Benxiang, N.; Yanning, Q.; Wei, Z.; Jian, C. Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discov. 2020, 6, 97.
62. Zhang, X.; He, B.; Li, H.; Wang, Y.; Zhou, Y.; Wang, W.; Song, T.; Du, N.; Gu, X.; Luo, Y.; Wang, Y. SOCS3 attenuates GM-CSF/IFN-γ-mediated inflammation during spontaneous spinal cord regeneration. Neurosci Bull. 2020, 36, 778-792.
63. Zhao, S. J.; Kong, F. Q.; Jie, J.; Li, Q.; Liu, H.; Xu, A. D.; Yang, Y. Q.; Jiang, B.; Wang, D. D.; Zhou, Z. Q.; Tang, P. Y.; Chen, J.; Wang, Q.; Zhou, Z.; Chen, Q.; Yin, G. Y.; Zhang, H. W.; Fan, J. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics. 2020, 10, 17-35.
64. Hoare, J. I.; Rajnicek, A. M.; McCaig, C. D.; Barker, R. N.; Wilson, H. M. Electric fields are novel determinants of human macrophage functions. J Leukoc Biol. 2016, 99, 1141-1151.
65. Kurosawa, M.; Oda, M.; Domon, H.; Isono, T.; Nakamura, Y.; Saitoh, I.; Hayasaki, H.; Yamaguchi, M.; Kawabata, S.; Terao, Y. Streptococcus pyogenes CAMP factor promotes calcium ion uptake in RAW264.7 cells. Microbiol Immunol. 2018, 62, 617-623.
66. Thuraisingam, T.; Xu, Y. Z.; Eadie, K.; Heravi, M.; Guiot, M. C.; Greemberg, R.; Gaestel, M.; Radzioch, D. MAPKAPK-2 signaling is critical for cutaneous wound healing. J Invest Dermatol. 2010, 130, 278-286.
67. Takahashi, M.; Umehara, Y.; Yue, H.; Trujillo-Paez, J. V.; Peng, G.; Nguyen, H. L. T.; Ikutama, R.; Okumura, K.; Ogawa, H.; Ikeda, S.; Niyonsaba, F. The antimicrobial peptide human β-defensin-3 accelerates wound healing by promoting angiogenesis, cell migration, and proliferation through the FGFR/JAK2/STAT3 signaling pathway. Front Immunol. 2021, 12, 712781.
68. Xiao, X.; Xu, M.; Yu, H.; Wang, L.; Li, X.; Rak, J.; Wang, S.; Zhao, R. C. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther. 2021, 6, 354.
69. Zhang, X.; Rotllan, N.; Canfrán-Duque, A.; Sun, J.; Toczek, J.; Moshnikova, A.; Malik, S.; Price, N. L.; Araldi, E.; Zhong, W.; Sadeghi, M. M.; Andreev, O. A.; Bahal, R.; Reshetnyak, Y. K.; Suárez, Y.; Fernández-Hernando, C. Targeted suppression of miRNA-33 Using pHLIP improves atherosclerosis regression. Circ Res. 2022, 131, 77-90. 
70. Creaney, J.; Patch, A. M.; Addala, V.; Sneddon, S. A.; Nones, K.; Dick, I.M.; Lee, Y. C. G.; Newell, F.; Rouse, E. J.; Naeini, M. M.; Kondrashova, O.; Lakis, V.; Nakas, A.; Waller, D.; Sharkey, A.; Mukhopadhyay, P.; Kazakoff, S. H.; Koufariotis, L. T.; Davidson, A. L.; Ramarao-Milne, P.; Holmes, O.; Xu, Q.; Leonard, C.; Wood, S.; Grimmond, S. M.; Bueno, R.; Fennell, D. A.; Pearson, J. V.; Robinson, B. W.; Waddell, N. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med. 2022, 14, 58.
71. Sutherland, T. E.; Dyer, D. P.; Allen, J. E. The extracellular matrix and the immune system: A mutually dependent relationship. Science. 2023, 379, eabp8964.
72. Xu, X.; Gu, S.; Huang, X.; Ren, J.; Gu, Y.; Wei, C.; Lian, X.; Li, H.; Gao, Y.; Jin, R.; Gu, B.; Zan, T.; Wang, Z. The role of macrophages in the formation of hypertrophic scars and keloids. Burns Trauma. 2020, 8, tkaa006.
73. Zhang, Y.; Gao, Z.; Jiang, F.; Yan, H.; Yang, B.; He, Q.; Luo, P.; Xu, Z.; Yang, X. JAK-STAT signaling as an ARDS therapeutic target: status and future trends. Biochem Pharmacol. 2023, 208, 115382.
74. Wang, C.; Ma, C.; Gong, L.; Guo, Y.; Fu, K.; Zhang, Y.; Zhou, H.; Li, Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol. 2021, 12, 803037.
75. Bunn, S. J.; Lai, A.; Li, J. DC electric fields induce perpendicular alignment and enhanced migration in schwann cell cultures. Ann Biomed Eng. 2019, 47, 1584-1595.
76. Huang, J.; Ye, Z.; Hu, X.; Lu, L.; Luo, Z. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia. 2010, 58, 622-631.
77. Haastert-Talini, K.; Schmitte, R.; Korte, N.; Klode, D.; Ratzka, A.; Grothe, C. Electrical stimulation accelerates axonal and functional peripheral nerve regeneration across long gaps. J Neurotrauma. 2011, 28, 661-674.
78. Wang, N.; Wang, W.; Wang, X.; Mang, G.; Chen, J.; Yan, X.; Tong, Z.; Yang, Q.; Wang, M.; Chen, L.; Sun, P.; Yang, Y.; Cui, J.; Yang, M.; Zhang, Y.; Wang, D.; Wu, J.; Zhang, M.; Yu, B. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 2022, 131, 893-908.
79. Salm, D. C.; Horewicz, V. V.; Tanaka, F.; Ferreira, J. K.; de Oliveira, B. H.; Maio, J. M. B.; Donatello, N. N.; Ludtke, D. D.; Mazzardo-Martins, L.; Dutra, A. R.; Mack, J. M.; de, C. H. K. D.; Cargnin-Ferreira, E.; Salgado, A. S. I.; Bittencourt, E. B.; Bianco, G.; Piovezan, A. P.; Bobinski, F.; Moré, A. O. O.; Martins, D. F. Electrical stimulation of the auricular branch vagus nerve using random and alternating frequencies triggers a rapid onset and pronounced antihyperalgesia via peripheral annexin A1-formyl peptide receptor 2/ALX pathway in a mouse model of persistent inflammatory pain. Mol Neurobiol. 2023, 60, 2889-2909. 
80. Wu, H.; Dong, H.; Tang, Z.; Chen, Y.; Liu, Y.; Wang, M.; Wei, X.; Wang, N.; Bao, S.; Yu, D.; Wu, Z.; Yang, Z.; Li, X.; Guo, Z.; Shi, L. Electrical stimulation of piezoelectric BaTiO3 coated Ti6Al4V scaffolds promotes anti-inflammatory polarization of macrophages and bone repair via MAPK/JNK inhibition and OXPHOS activation. Biomaterials. 2023, 293, 121990.
81. Wang, J. Y.; Yuan, Y.; Zhang, S. Y.; Lu, S. Y.; Han, G. J.; Bian, M. X.; Huang, L.; Meng, D. H.; Su, D. H.; Xiao, L.; Xiao, Y.; Zhang, J.; Gong, N. J.; Jiang, L. B. Remodeling of the intra-conduit inflammatory microenvironment to improve peripheral nerve regeneration with a neuromechanical matching protein-based conduit. Adv Sci (Weinh). 2024, 11, e2302988.
82. Wang, X.; Zhang, S.; Pasricha, P. J.; Chen, J. D. Z. Ameliorating effects of sacral neuromodulation on gastric and small intestinal dysmotility mediated via a sacral afferent-vagal efferent pathway. Neurogastroenterol Motil. 2020, 32, e13837.
83. Huang, J.; Hu, X.; Lu, L.; Ye, Z.; Zhang, Q.; Luo, Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A. 2010, 93, 164-174.
84. Tsui, J. H.; Ostrovsky-Snider, N. A.; Yama, D. M. P.; Donohue, J. D.; Choi, J. S.; Chavanachat, R.; Larson, J. D.; Murphy, A. R.; Kim, D. H. Conductive silk-polypyrrole composite scaffolds with bioinspired nanotopographic cues for cardiac tissue engineering. J Mater Chem B. 2018, 6, 7185-7196.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top