·
REVIEW
·

Spatiotemporal application of small molecules in fracture healing

Hairu Sui1,2# Zhonglin Wu3# Ziqi Xiong1,2 Hui Zhang1,2,4 Boon Chin Heng5 Jing Zhou1,2,6*
Show Less
1 Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
2 Dr. Li Dak Sum Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
3 Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
4 Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Hangzhou, Zhejiang, China
5 Department of Dental Materials Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
6 China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China
Submitted: 10 December 2024 | Revised: 19 February 2025 | Accepted: 11 March 2025 | Published: 30 April 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Skeletal injuries and disorders are major causes of physical disability worldwide, posing an intractable clinical challenge. Within the field of regenerative medicine, researchers are continuously developing new therapeutic strategies to promote bone regeneration. Small molecules, defined as bioactive compounds with a molecular weight of <1,000 Da, have emerged as promising agents capable of precisely regulating intracellular signaling pathways to enhance bone regeneration. Their cost-effectiveness, superior membrane permeability, and minimal immunogenicity have positioned them at the forefront of both fundamental research and clinical applications. In recent years, advancements in artificial intelligence have accelerated the development and screening of small-molecule drugs, broadening their potential therapeutic applications. Furthermore, innovations in dynamic drug delivery systems have advanced the concept of spatial precision, enabling the controlled release of drug doses over time and achieving the spatiotemporal application of small molecules. These systems release specific small molecules in a sequence, synchronizing therapeutic interventions with the dynamic process of bone healing. Spatiotemporal delivery strategies, which effectively replicate the complex and highly ordered processes of bone healing, have the potential to reduce drug side effects and enhance healing efficacy. However, clinical translation remains hindered by insufficient spatiotemporal control and limited pharmacokinetic precision, challenges that this review explores in depth. We systematically examine stage-specific molecular targets of signaling pathways and their corresponding small molecule modulators. In addition, we discuss current approaches to spatiotemporal delivery strategies, such as stimuli-responsive delivery systems. Finally, we explore the status of clinical applications, the challenges encountered, and potential solutions regarding the spatiotemporal release strategy. We hope this review will contribute to the development of future spatiotemporal delivery strategies, ultimately improving outcomes for patients with impaired fracture healing.

Keywords
Bone regeneration
Fracture healing
Sequential application
Signaling pathways
Small molecules
Spatiotemporal strategy
Funding
This work was supported by the National Key Research and Development Program of China (2023YFB3813000), the National Natural Science Foundation of China (T2121004, 92268203), the Key R&D Program of Zhejiang (2024SSYS0027), and the Zhejiang Provincial Natural Science Foundation of China (No. LTGY23H060009).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Wildemann B, Ignatius A, Leung F, et al. Non-union bone fractures. Nat Rev Dis Primers. 2021;7:57. doi: 10.1038/s41572-021-00289-8

 

  1. Marongiu G, Contini A, Cozzi Lepri A, Donadu M, Verona M, Capone A. The treatment of acute diaphyseal long-bones fractures with orthobiologics and pharmacological interventions for bone healing enhancement: A systematic review of clinical evidence. Bioengineering (Basel). 2020;7:22. doi: 10.3390/bioengineering7010022

 

  1. James AW, LaChaud G, Shen J, et al. A review of the clinical side effects of Bone morphogenetic protein-2. Tissue Eng Part B Rev. 2016;22:284-297. doi: 10.1089/ten.TEB.2015.0357

 

  1. Lo KWH. Effects on bone regeneration of single-dose treatment with osteogenic small molecules. Drug Discov Today. 2022;27:1538-1544. doi: 10.1016/j.drudis.2022.02.020

 

  1. Lo KWH, Jiang T, Gagnon KA, Nelson C, Laurencin CT. Small-molecule based musculoskeletal regenerative engineering. Trends Biotechnol. 2014;32:74-81. doi: 10.1016/j.tibtech.2013.12.002

 

  1. Dong QY, Wan ZQ, Li Q, et al. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration. Biomater Adv. 2024;159:213804. doi: 10.1016/j.bioadv.2024.213804

 

  1. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8:133-143. doi: 10.1038/nrrheum.2012.1

 

  1. Maruyama M, Rhee C, Utsunomiya T, et al. Modulation of the inflammatory response and bone healing. Front Endocrinol (Lausanne). 2020;11:386.doi: 10.3389/fendo.2020.00386

 

  1. Saul D, Khosla S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence. Endocr Rev. 2022;43:984-1002. doi: 10.1210/endrev/bnac008

 

  1. Ying J, Ge Q, Hu S, et al. Amygdalin promotes fracture healing through TGF-β/Smad signaling in mesenchymal stem cells. Stem Cells Int. 2020;2020:8811963. doi: 10.1155/2020/8811963

 

  1. Gerstenfeld LC, Cho TJ, Kon T, et al. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Cells Tissues Organs. 2001;169:285-294. doi: 10.1159/000047893

 

  1. Yao Q, He L, Bao C, Yan X, Ao J. The role of TNF-α in osteoporosis, bone repair and inflammatory bone diseases: A review. Tissue Cell. 2024;89:102422. doi: 10.1016/j.tice.2024.102422

 

  1. Cai L, Lv Y, Yan Q, Guo W. Cytokines: The links between bone and the immune system. Injury. 2024;55:111203. doi: 10.1016/j.injury.2023.111203

 

  1. Guo J, Wang F, Hu Y, et al. Exosome-based bone-targeting drug delivery alleviates impaired osteoblastic bone formation and bone loss in inflammatory bowel diseases. Cell Rep Med. 2023;4:100881. doi: 10.1016/j.xcrm.2022.100881

 

  1. Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev. 2015;94:3-12. doi: 10.1016/j.addr.2015.09.008

 

  1. Ming Z, Vining B, Bagheri-Fam S, Harley V. SOX9 in organogenesis: Shared and unique transcriptional functions. Cell Mol Life Sci. 2022;79:522. doi: 10.1007/s00018-022-04543-4

 

  1. Wang H, Qi L, Shema C, Jiang K, et al. Advances in the role and mechanism of fibroblasts in fracture healing. Front Endocrinol (Lausanne). 2024;15:135095815. doi: 10.3389/fendo.2024.1350958

 

  1. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: Beyond discovery and development. Cell. 2019;176:1248-1264. doi: 10.1016/j.cell.2019.01.021

 

  1. Grosso A, Lunger A, Burger MG, et al. VEGF dose controls the coupling of angiogenesis and osteogenesis in engineered bone. NPJ Regen Med. 2023;8:15.

 

  1. Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10:426-36. doi: 10.7150/thno.34126

 

  1. Qin Q, Lee S, Patel N, et al. Neurovascular coupling in bone regeneration. Exp Mol Med. 2022;54:1844-9. doi: 10.1038/s12276-022-00899-6

 

  1. Pulkkinen HH, Kiema M, Lappalainen JP, et al. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis. 2021;24:129-144. doi: 10.1007/s10456-020-09748-4

 

  1. Benedito, R, Roca, C, Sörensen, I, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137:1124-1135. doi: 10.1016/j.cell.2009.03.025

 

  1. Liang, S.T, Chen, J.R, Tsai, J.J, Lai, Y.H, Hsiao, C.D. Overexpression of Notch signaling induces hyperosteogeny in Zebrafish. Int J Mol Sci. 2019;20:3613. doi: 10.3390/ijms20153613

 

  1. Osathanon, T, Manokawinchoke, J, Sa-Ard-Iam, N, Mahanonda, R, Pavasant, P, Suwanwela, J. Jagged1 promotes mineralization in human bone-derived cells. Arch Oral Biol. 2019;99:134-140. doi: 10.1016/j.archoralbio.2019.01.013

 

  1. Lee SY, Long F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. J Clin Invest. 2018;128:5573-5586. doi: 10.1172/JCI96221

 

  1. Lawal RA, Zhou X, Batey K, et al. The Notch ligand Jagged1 regulates the osteoblastic lineage by maintaining the osteoprogenitor pool. J Bone Miner Res. 2017;32:1320-1331. doi: 10.1002/jbmr.3106

 

  1. Hilton MJ, Tu X, Wu X, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14:306-314. doi: 10.1038/nm1716

 

  1. Canalis E, Grossman TR, Carrer M, Schilling L, Yu J. Antisense oligonucleotides targeting Notch2 ameliorate the osteopenic phenotype in a mouse model of Hajdu-Cheney syndrome. J Biol Chem. 2020;295:3952-3964. doi: 10.1074/jbc.RA119.011440

 

  1. Lowery JW, Rosen V. The BMP pathway and its inhibitors in the skeleton. Physiol Rev. 2018;98:2431-2452. doi: 10.1152/physrev.00028.2017

 

  1. Omi M, Koneru T, Lyu Y, Haraguchi A, Kamiya N, Mishina Y. Increased BMP-Smad signaling does not affect net bone mass in long bones. Front Physiol. 2023;14:1145763. doi: 10.3389/fphys.2023.1145763

 

  1. Seong CH, Chiba N, Kusuyama J, et al. Bone morphogenetic protein 9 (BMP9) directly induces Notch effector molecule Hes1 through the SMAD signaling pathway in osteoblasts. FEBS Lett. 2021;595:389-403. doi: 10.1002/1873-3468.14016

 

  1. Wu, Z, Li, W, Jiang, K, et al. Regulation of bone homeostasis: Signaling pathways and therapeutic targets. MedComm (2020). 2024;5:e657. doi: 10.1002/mco2.657

 

  1. Jann J, Gascon S, Roux S, Faucheux N. Influence of the TGF-β superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions. Int J Mol Sci. 2020;21:7597. doi: 10.3390/ijms21207597

 

  1. Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203-221. doi: 10.1038/nrendo.2016.12

 

  1. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res. 2016;4:16009. doi: 10.1038/boneres.2016.9

 

  1. Wang Z, Sun J, Li Y, et al. Experimental study of the synergistic effect and network regulation mechanisms of an applied combination of BMP- 2, VEGF, and TGF-β1 on osteogenic differentiation. J Cell Biochem. 2020;121:2394-2405. doi: 10.1002/jcb.29462

 

  1. Elsafadi M, Shinwari T, Al-Malki S, et al. Convergence of TGFβ and BMP signaling in regulating human bone marrow stromal cell differentiation. Sci Rep. 2019;9:4977. doi: 10.1038/s41598-019-41543-0

 

  1. Yao H, Zou Y, Yang K, Yin L, Liu Y, Li R. TGFβ1 induces bone formation from BMP9-activated bone mesenchymal stem cells, with possible involvement of non-canonical pathways. Int J Med Sci. 2020;17:1692-1703. doi: 10.7150/ijms.45786

 

  1. Yuan G, Zhan, Y, Gou, X, Chen, Y, Yang, G. TGF-β signaling inhibits canonical BMP signaling pathway during palate development. Cell Tissue Res. 2018;371:283-291. doi: 10.1007/s00441-017-2757-y

 

  1. Kong X, Yan K, Deng P, et al. LncRNA-Smad7 mediates cross-talk between Nodal/TGF-β and BMP signaling to regulate cell fate determination of pluripotent and multipotent cells. Nucleic Acids Res. 2022;50:10526-10543. doi: 10.1093/nar/gkac780

 

  1. Xu J, Liu J, Gan Y, et al. High-Dose TGF-β1 impairs mesenchymal stem cell-mediated bone regeneration via Bmp2 inhibition. J Bone Miner Res. 2020;35:167-180. doi: 10.1002/jbmr.3871

 

  1. Choy MHV, Wong RMY, Chow SKH, et al. How much do we know about the role of osteocytes in different phases of fracture healing? A systematic review. J Orthop Translat. 2020;21:111-121. doi: 10.1016/j.jot.2019.07.005

 

  1. Chan WCW, Tan Z, To MKT, Chan D. Regulation and role of transcription factors in osteogenesis. Int J Mol Sci. 2021;22:5445. doi: 10.3390/ijms22115445

 

  1. Song D, He G, Shi Y, Ni J, Long F. Functional interaction between Wnt and Bmp signaling in periosteal bone growth. Sci Rep. 2021;11:10782.doi: 10.1038/s41598-021-90324-1

 

  1. Matsushita Y, Nagata M, Kozloff KM, et al. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat Commun. 2020;11:332. doi: 10.1038/s41467-019-14029-w

 

  1. Nelson AL, Mancino C, Gao X, et al. β-catenin mRNA encapsulated in SM-102 lipid nanoparticles enhances bone formation in a murine tibia fracture repair model. Bioact Mater. 2024;39:273-286. doi: 10.1016/j.bioactmat.2024.05.020

 

  1. Oh WT, Yang YS, Xie J, et al. WNT-modulating gene silencers as a gene therapy for osteoporosis, bone fracture, and critical-sized bone defects. Mol Ther. 2023;31:435-453. doi: 10.1016/j.ymthe.2022.09.018

 

  1. Qiu W, Ma X, Lin X, et al. Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway. J Cell Mol Med. 2020;24:317-327. doi: 10.1111/jcmm.14729

 

  1. Zhang Y, Zhao Y, Xie Z, Li M, Liu Y, Tu X. Activating Wnt/β-Catenin signaling in osteocytes promotes osteogenic differentiation of BMSCs through BMP-7. Int J Mol Sci. 2022;23:16045. doi: 10.3390/ijms232416045

 

  1. Haffner-Luntzer M, Ragipoglu D, Ahmad M, et al. Wnt1 boosts fracture healing by enhancing bone formation in the fracture callus. J Bone Miner Res. 2023;38:749-764. doi: 10.1002/jbmr.4797

 

  1. Li J, Cui Y, Xu J, et al. Suppressor of fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem. 2017;292:15814-15825. doi: 10.1074/jbc.M117.777532

 

  1. Luzzi AJ, Ferrer X, Fang F, et al. Hedgehog activation for enhanced rotator cuff tendon-to-bone healing. Am J Sports Med. 2023;51:3825-3834. doi: 10.1177/03635465231203210

 

  1. Lu W, Zheng C, Zhang H, et al. Hedgehog signaling regulates bone homeostasis through orchestrating osteoclast differentiation and osteoclast-osteoblast coupling. Cell Mol Life Sci. 2023;80:171. doi: 10.1007/s00018-023-04821-9

 

  1. Kohara Y, Haraguchi R, Kitazawa R, Imai Y, Kitazawa S. Hedgehog inhibitors suppress osteoclastogenesis in in vitro cultures, and deletion of Smo in macrophage/osteoclast lineage prevents age-related bone loss. Int J Mol Sci. 2020;21:2745. doi: 10.3390/ijms21082745

 

  1. Sun J, Shin DY, Eiseman M, et al. SLITRK5 is a negative regulator of hedgehog signaling in osteoblasts. Nat Commun. 2021;12:4611. doi: 10.1038/s41467-021-24819-w

 

  1. Einhorn TA, Gerstenfeld LC. Fracture healing: Mechanisms and interventions. Nat Rev Rheumatol. 2015;11:45-54. doi: 10.1038/nrrheum.2014.16

 

  1. Siddiqui JA, Partridge NC. Physiological bone remodeling: Systemic regulation and growth factor involvement. Physiology (Bethesda). 2016;31:233-245. doi: 10.1152/physiol.00061.2014

 

  1. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315-323.

 

  1. Tatsumi, S, Ishii, K, Amizuka, N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5:464-475. doi: 10.1016/j.cmet.2007.05.001

 

  1. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165-176. doi: 10.1016/s0092-8674(00)81569-x

 

  1. Marahleh A, Kitaura H, Ohori F, et al. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation. Front Immunol. 2019;10:2925. doi: 10.3389/fimmu.2019.02925

 

  1. Nam SY, Kim HY, Min JY, Kim HM, Jeong HJ. An osteoclastogenesis system, the RANKL/RANK signalling pathway, contributes to aggravated allergic inflammation. Br J Pharmacol. 2019;176:1664-1679. doi: 10.1111/bph.14615

 

  1. Place DE, Malireddi RKS, Kim J, Vogel P, Yamamoto M, Kanneganti TD. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nat Commun. 2021;12:496. doi: 10.1038/s41467-020-20807-8

 

  1. Bolamperti S, Villa I, Rubinacci, A. Bone remodeling: An operational process ensuring survival and bone mechanical competence. Bone Res. 2022;10:48. doi: 10.1038/s41413-022-00219-8

 

  1. Zhang Q, Pan RL, Wang H, Wang JJ, Lu SH, Zhang M. Nanoporous titanium implant surface accelerates osteogenesis via the Piezo1/Acetyl- CoA/β-catenin pathway. Nano Lett. 2024;24:8257-8267. doi: 10.1021/acs.nanolett.4c01101

 

  1. Suo J, Feng X, Li J, et al. VGLL4 promotes osteoblast differentiation by antagonizing TEADs-inhibited Runx2 transcription. Sci Adv. 2020;6:eaba4147. doi: 10.1126/sciadv.aba4147

 

  1. Zhang Z, Wang F, Huang X, et al. Engineered sensory nerve guides self-adaptive bone healing via NGF-TrkA signaling pathway. Adv Sci (Weinh). 2023;10:2206155. doi: 10.1002/advs.202206155

 

  1. Ahmad M, Krüger BT, Kroll T, et al. Inhibition of Cdk5 increases osteoblast differentiation and bone mass and improves fracture healing. Bone Res. 2022;10:33. doi: 10.1038/s41413-022-00195-z

 

  1. Zhang J, Zhao C, Sheng R, Lin K, Wang X, Zhang S. Construction of a hierarchical micro-/submicro-/nanostructured 3D-printed Ti6Al4V surface feature to promote osteogenesis: Involvement of sema7A through the ITGB1/FAK/ERK signaling pathway. ACS Appl Mater Interfaces. 2022;14:30571-3081. doi: 10.1021/acsami.2c06454

 

  1. Liu RX, Gu RH, Li ZP, et al. Trim21 depletion alleviates bone loss in osteoporosis via activation of YAP1/β-catenin signaling. Bone Res. 2023;11:56. doi: 10.1038/s41413-023-00296-3

 

  1. Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190-191:97-110. doi: 10.1016/j.biomaterials.2018.10.033

 

  1. Liu Y, Zhang Y, Zheng Z, et al. Incorporation of NGR1 promotes bone regeneration of injectable HA/nHAp hydrogels by anti-inflammation regulation via a MAPK/ERK signaling pathway. Front Bioeng Biotechnol. 2022;10:992961. doi: 10.3389/fbioe.2022.992961

 

  1. Marino S, Hannemann N, Bishop RT, et al. Anti-inflammatory, but not osteoprotective, effect of the TRAF6/CD40 inhibitor 6877002 in rodent models of local and systemic osteolysis. Biochem Pharmacol. 2022;195:114869. doi: 10.1016/j.bcp.2021.114869

 

  1. Kamal NH, Heikal LA, Ali MM, Aly RG, Abdallah OY. Development and evaluation of local regenerative biomimetic bone-extracellular matrix scaffold loaded with nano-formulated quercetin for orthopedic fractures. Biomater Adv. 2023;145:213249. doi: 10.1016/j.bioadv.2022.213249

 

  1. Feng L, Yang Z, Hou N, et al. Long non-coding RNA malat1 increases the rescuing effect of quercetin on TNFα-impaired bone marrow stem cell osteogenesis and ovariectomy-induced osteoporosis. Int J Mol Sci. 2023;24:5965. doi: 10.3390/ijms24065965

 

  1. Shah SR, Werlang CA, Kasper FK, Mikos AG. Novel applications of statins for bone regeneration. Natl Sci Rev. 2015;2:85-99. doi: 10.1093/nsr/nwu028

 

  1. Awale G, Kan HM, Laurencin CT, Lo KWH. Molecular mechanisms underlying the short-term intervention of forskolin-mediated bone regeneration. Regen Eng Transl Med. 2022;9:375-383. doi: 10.1007/s40883-022-00285-8

 

  1. Awale GM, Barajaa MA, Kan HM, et al. Regenerative engineering of long bones using the small molecule forskolin. Proc Natl Acad Sci U S A. 2023;120:e2219756120. doi: 10.1073/pnas.2219756120

 

  1. Menger MM, Bleimehl M, Bauer D, et al. Cilostazol promotes blood vessel formation and bone regeneration in a murine non-union model. Biomed Pharmacother. 2023;168:115697. doi: 10.1016/j.biopha.2023.115697

 

  1. Menger MM, Emmerich M, Scheuer C, et al. Cilostazol stimulates angiogenesis and accelerates fracture healing in aged male and female mice by increasing the expression of PI3K and RUNX2. Int J Mol Sci. 2024;25:755. doi: 10.3390/ijms25020755

 

  1. Chen C, Yan S, Geng Z, Wang, Z. Fracture repair by IOX2: Regulation of the hypoxia inducible factor-1α signaling pathway and BMSCs. Eur J Pharmacol. 2022;921:174864. doi: 10.1016/j.ejphar.2022.174864

 

  1. Liu H, Li K, Yi D, Ding Y, Gao Y, Zheng X. Deferoxamine-loaded chitosan-based hydrogel on bone implants showing enhanced bond strength and pro-angiogenic effects. J Funct Biomater. 2024;15:112. doi: 10.3390/jfb15040112

 

  1. Guo Q, Yang J, Chen Y, et al. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment. Eur J Pharmacol. 2020;884:173394. doi: 10.1016/j.ejphar.2020.173394

 

  1. Tao ZS, Li TL, Xu HG, Yang M. Hydrogel contained valproic acid accelerates bone-defect repair via activating Notch signaling pathway in ovariectomized rats. J Mater Sci Mater Med. 2021;33:4.

 

  1. Alverdy AK, Pakvasa M, Zhao C, et al. Imiquimod acts synergistically with BMP9 through the Notch pathway as an osteoinductive agent in vitro. Plast Reconstr Surg. 2019;144:1094-1103. doi: 10.1097/PRS.0000000000006159

 

  1. Helmi SA, Rohani L, Zaher AR, El Hawary YM, Rancourt DE. Enhanced osteogenic differentiation of pluripotent stem cells via γ-secretase inhibition. Int J Mol Sci. 2021;22:5215. doi: 10.3390/ijms22105215

 

  1. Tang Z, Wei J, Yu Y, et al. γ-Secretase inhibitor reverts the Notch signaling attenuation of osteogenic differentiation in aged bone marrow mesenchymal stem cells. Cell Biol Int. 2016;40:439-447. doi: 10.1002/cbin.10583

 

  1. Najafi S, Barasa L, Huang SY, Yoganathan S, Perron JC. Discovery of a novel class of benzimidazoles as highly effective agonists of bone morphogenetic protein (BMP) receptor signaling. Sci Rep. 2022;12:12146. doi: 10.1038/s41598-022-16394-x

 

  1. Kim B, Lee JH, Jin WJ, Kim HH, Ha H, Lee ZH. Trapidil induces osteogenesis by upregulating the signaling of bone morphogenetic proteins. Cell Signal. 2018;49:68-78. doi: 10.1016/j.cellsig.2018.06.001

 

  1. Andraca Harrer J, Fulton TM, Sangadala S, et al. Local FK506 delivery induces osteogenesis in rat bone defect and rabbit spine fusion models. Bone. 2024;187:117195. doi: 10.1016/j.bone.2024.117195

 

  1. Sangadala S, Devereaux EJ, Presciutti SM, Boden SD, Willet NJ. FK506 induces ligand-independent activation of the bone morphogenetic protein pathway and osteogenesis. Int J Mol Sci. 2019;20:1900. doi: 10.3390/ijms20081900

 

  1. Klemmer VA, Khera N, Siegenthaler BM, Bhattacharya I, Weber FE, Ghayor C. Effect of N-Vinyl-2-Pyrrolidone (NVP), a bromodomain-binding small chemical, on osteoblast and osteoclast differentiation and its potential application for bone regeneration. Int J Mol Sci. 2021;22:11052. doi: 10.3390/ijms222011052

 

  1. Kuttappan S, Jo JI, Sabu CK, Menon D, Tabata Y, Nair MB. Bioinspired nanocomposite fibrous scaffold mediated delivery of ONO-1301 and BMP2 enhance bone regeneration in critical sized defect. Mater Sci Eng C Mater Biol Appl. 2020;110:110591. doi: 10.1016/j.msec.2019.110591

 

  1. Srinaath N, Balagangadharan K, Pooja V, Paarkavi U, Trishla A, Selvamurugan N. Osteogenic potential of zingerone, a phenolic compound in mouse mesenchymal stem cells. Biofactors. 2019;45:575-582. doi: 10.1002/biof.1515

 

  1. Gao Y, Zou Y, Sokolowskei D, et al. Nr4a1 enhances Wnt4 transcription to promote mesenchymal stem cell osteogenesis and alleviates inflammation-inhibited bone regeneration. Mol Ther. 2024;32:1479-1496. doi: 10.1016/j.ymthe.2024.02.034

 

  1. Senarath-Yapa K, Li S, Walmsley GG, et al. Small molecule inhibition of transforming growth factor beta signaling enables the endogenous regenerative potential of the Mammalian Calvarium. Tissue Eng Part A. 2016;22:707-720. doi: 10.1089/ten.TEA.2015.0527

 

  1. Shi A, Heinayati A, Bao D, et al. Small molecule inhibitor of TGF-β signaling enables robust osteogenesis of autologous GMSCs to successfully repair minipig severe maxillofacial bone defects. Stem Cell Res Ther. 2019;10:172. doi: 10.1186/s13287-019-1281-2

 

  1. Breathwaite E, Weaver J, Odanga J, Dela Pena-Ponce M, Lee JB. 3D Bioprinted osteogenic tissue models for in vitro drug screening. Molecules. 2020;25:3442. doi: 10.3390/molecules25153442

 

  1. Lee CS, Kim S, Fan J, Hwang HS, Aghaloo T, Lee M. Smoothened agonist sterosome immobilized hybrid scaffold for bone regeneration. Sci Adv. 2020;6:eaaz7822. doi: 10.1126/sciadv.aaz7822

 

  1. Lee S, Shen J, Pan HC, et al. Calvarial defect healing induced by small molecule smoothened agonist. Tissue Eng Part A. 2016;22:1357-1366. doi: 10.1089/ten.TEA.2016.0167

 

  1. Rundle CH, Gomez GA, Pourteymoor S, Mohan S. Sequential application of small molecule therapy enhances chondrogenesis and angiogenesis in murine segmental defect bone repair. J Orthop Res. 2023;41:1471-1481. doi: 10.1002/jor.25493

 

  1. AlMuraikhi N, Binhamdan S, Alaskar H, et al. Inhibition of GSK-3β enhances osteoblast differentiation of human mesenchymal stem cells through Wnt signalling overexpressing Runx2. Int J Mol Sci. 2023;24:7164. doi: 10.3390/ijms24087164

 

  1. Wang B, Khan S, Wang P, et al. A highly selective GSK-3β inhibitor CHIR99021 promotes osteogenesis by activating canonical and autophagy-mediated Wnt signaling. Front Endocrinol (Lausanne). 2022;13:926622. doi: 10.3389/fendo.2022.926622

 

  1. Sangadala S, Kim CH, Fernandes LM, et al. Sclerostin small-molecule inhibitors promote osteogenesis by activating canonical Wnt and BMP pathways. eLife. 2023;12:e63402. doi: 10.7554/eLife.63402

 

  1. Li Z, Xing X, Gomez-Salazar MA, et al. Pharmacological inhibition of DKK1 promotes spine fusion in an ovariectomized rat model. Bone. 2022;162:116456. doi: 10.1016/j.bone.2022.116456

 

  1. Wu L, Pei X, Dou Q, et al. 3D printed calcium phosphate physiochemically dual-regulating pro-osteogenesis and antiosteolysis for enhancing bone tissue regeneration. ACS Appl Mater Interfaces. 2024;16:37007-37016. doi: 10.1021/acsami.4c06318

 

  1. Wu L, Luo Z, Liu Y, et al. Aspirin inhibits RANKL-induced osteoclast differentiation in dendritic cells by suppressing NF-κB and NFATc1 activation. Stem Cell Res Ther. 2019;10:375. doi: 10.1186/s13287-019-1500-x

 

  1. Almasoud N, Binhamdan S, Younis G, et al. Tankyrase inhibitor XAV- 939 enhances osteoblastogenesis and mineralization of human skeletal (mesenchymal) stem cells. Sci Rep. 2020;10:16746. doi: 10.1038/s41598-020-73439-9

 

  1. Kou Y, Li C, Yang P, et al. The W9 peptide inhibits osteoclastogenesis and osteoclast activity by downregulating osteoclast autophagy and promoting osteoclast apoptosis. J Mol Histol. 2022;53:27-38. doi: 10.1007/s10735-021-10030-0

 

  1. Sawa M, Wakitani S, Kamei N, Kotaka S, Adachi N, Ochi M. Local administration of WP9QY (W9) peptide promotes bone formation in a rat femur delayed-union model. J Bone Miner Metab. 2018;36:383-391. doi: 10.1007/s00774-017-0852-5

 

  1. Chen G, Goeddel DV. TNF-R1 signaling: A beautiful pathway. Science. 2002;296:1634-1635. doi: 10.1126/science.1071924

 

  1. Mo Q, Zhang W, Zhu A, Backman LJ, Chen J. Regulation of osteogenic differentiation by the pro-inflammatory cytokines IL-1β and TNF-α: Current conclusions and controversies. Hum Cell. 2022;35:957-971. doi: 10.1007/s13577-022-00711-7

 

  1. Sun X, Xie Z, Ma Y, et al. TGF-β inhibits osteogenesis by upregulating the expression of ubiquitin ligase SMURF1 via MAPK-ERK signaling. J Cell Physiol. 2018;233:596-606. doi: 10.1002/jcp.25920

 

  1. Stegen S, Carmeliet G. The skeletal vascular system-breathing life into bone tissue. Bone. 2018;115:50-58. doi: 10.1016/j.bone.2017.08.022

 

  1. Hu K, Olsen BR. The roles of vascular endothelial growth factor in bone repair and regeneration. Bone. 2016;91:30-38. doi: 10.1016/j.bone.2016.06.013

 

  1. Tzavlaki K, Moustakas A. TGF-β signaling. Biomolecules. 2020;10:487. doi: 10.3390/biom10030487

 

  1. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685-700. doi: 10.1016/s0092-8674(03)00432-x

 

  1. Huang P, Nedelcu D, Watanabe M, et al. Cellular cholesterol directly activates smoothened in hedgehog signaling. Cell. 2016;166:1176.e14- 1187.e14. doi: 10.1016/j.cell.2016.08.003

 

  1. Zhou H, Zhang L, Chen Y, Zhu CH, Chen FM, Li A. Research progress on the hedgehog signalling pathway in regulating bone formation and homeostasis. Cell Prolif. 2022;55:e13162. doi: 10.1111/cpr.13162

 

  1. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337-342. doi: 10.1038/nature01658

 

  1. Xia Y, Jing X, Wu X, Zhuang P, Guo X, Dai H. 3D-printed dual-ion chronological release functional platform reconstructs neuro-vascularization network for critical-sized bone defect regeneration. Chem Eng J. 2023;465:143015. doi: 10.1016/j.cej.2023.143015

 

  1. Zhang W, Shi W, Wu S, et al. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication. 2020;12:035020. doi: 10.1088/1758-5090/ab906e

 

  1. Lee JK, Kim DS, Park SY, et al. Osteoporotic bone regeneration via plenished biomimetic PLGA scaffold with sequential release system. Small. 2024;20:e2310734. doi: 10.1002/smll.202310734

 

  1. Sun T, Meng C, Ding Q, et al. In situ bone regeneration with sequential delivery of aptamer and BMP2 from an ECM-based scaffold fabricated by cryogenic free-form extrusion. Bioact Mater. 2021;6:4163-4175. doi: 10.1016/j.bioactmat.2021.04.013

 

  1. Lee D, Wufuer M, Kim I, et al. Sequential dual-drug delivery of BMP-2 and alendronate from hydroxyapatite-collagen scaffolds for enhanced bone regeneration. Sci Rep. 2021;11:746. doi: 10.1038/s41598-020-80608-3

 

  1. Hao L, Tianyuan Z, Zhen Y, et al. Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration. Biofabrication. 2021;14:015001. doi: 10.1088/1758-5090/ac2cd7

 

  1. Zhang W, Ling C, Zhang A, et al. An all-silk-derived functional nanosphere matrix for sequential biomolecule delivery and in situ osteochondral regeneration. Bioact Mater. 2020;5:832-843. doi: 10.1016/j.bioactmat.2020.05.003

 

  1. Xue S, Li X, Li S, et al. Bone fracture microenvironment responsive hydrogel for timing sequential release of cargoes. Colloids Surf A Physicochem Eng Aspects. 2021;629:127413. doi: 10.1016/j.colsurfa.2021.127413

 

  1. Zha K, Hu W, Xiong Y, et al. Nanoarchitecture-integrated hydrogel boosts angiogenesis-osteogenesis-neurogenesis tripling for infected bone fracture healing. Adv Sci (Weinh). 2024;11:2406439. doi: 10.1002/advs.202406439

 

  1. Xu X, Song J. Segmental long bone regeneration guided by degradable synthetic polymeric scaffolds. Biomater Transl. 2020;1:33-45. doi: 10.3877/cma.j.issn.2096-112X.2020.01.004

 

  1. Bao F, Yi J, Liu Y, et al. Free or fixed state of nHAP differentially regulates hBMSC morphology and osteogenesis through the valve role of ITGA7. Bioact Mater. 2022;18:539-551. doi: 10.1016/j.bioactmat.2022.03.016

 

  1. Xiong Z, Hong F, Wu Z, et al. Gradient scaffolds for osteochondral tissue engineering and regeneration. Chem Eng J. 2024;498:154797. doi: 10.1016/j.cej.2024.154797

 

  1. Naghavi SA, Sun C, Hejazi M, et al. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects. Biomater Transl. 2022;3:142-151. doi: 10.12336/biomatertransl.2022.02.006

 

  1. Deepanjali M, Prasad TS, Manodh P. Efficacy of simvastatin in bone regeneration after surgical removal of mandibular third molars. Oral Maxillofac Surg. 2023;27:427-432. doi: 10.1007/s10006-022-01081-y

 

  1. Diniz JA, Barbirato DS, Nascimento EHL, Pontual ADA, Dourado ACAG, Laureano Filho JR. Tomographic evaluation of the effect of simvastatin topical use on alveolar bone microarchitecture, pain and swelling after mandibular third molar extraction: A randomized controlled trial. Clin Oral Investig. 2022;26:3533-3545. doi: 10.1007/s00784-021-04322-8

 

  1. Maheshwaran KS, Banu RF, Kumar VA, Mohamed K. Comparative evaluation of simvastatin gel in enhancing periimplant osteoblastic activity during the osseointegration phase using bone scintigraphy: A prospective case-control double-blinded study. Int J Oral Maxillofac Implants. 2024;39:707-712. doi: 10.11607/jomi.10741

 

  1. Churilla BM, Perera S, Greenspan SL, Resnick NM, Kotlarczyk MP. Zoledronic acid and bone health in older adults with cognitive impairment. Osteoporos Int. 2022;33:293-298. doi: 10.1007/s00198-021-06063-6

 

  1. Hu Q, Wang Q, Liu F, Yao L, Zhang L, Chen G. Combination of calcitriol and zoledronic acid on PINP and β-CTX in postoperative patients with diabetic osteoporosis: A randomized controlled trial. Dis Markers. 2022;2022:6053410. doi: 10.1155/2022/6053410

 

  1. Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P. Improved oral absorption of quercetin from quercetin phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab Pharmacokinet. 2019;44:169-177. doi: 10.1007/s13318-018-0517-3

 

  1. Van Houdt CIA, Gabbai-Armelin PR, Lopez-Perez PM, et al. Alendronate release from calcium phosphate cement for bone regeneration in osteoporotic conditions. Sci Rep. 2018;8:15398. doi: 10.1038/s41598-018-33692-5

 

  1. Della Bella E, Buetti-Dinh A, Licandro G, et al. Dexamethasone induces changes in osteogenic differentiation of human mesenchymal stromal cells via SOX9 and PPARG, but not RUNX2. Int J Mol Sci. 2021;22:4785. doi: 10.3390/ijms22094785

 

  1. Doorn J, Siddappa R, Van Blitterswijk CA, Boer J. Forskolin enhances in vivo bone formation by human mesenchymal stromal cells. Tissue Eng Part A. 2012;18:558-567. doi: 10.1089/ten.tea.2011.0312

 

  1. Daughton CG, Ruhoy IS. Lower-dose prescribing: Minimizing “side effects” of pharmaceuticals on society and the environment. Sci Total Environ. 2013;443:324-337. doi: 10.1016/j.scitotenv.2012.10.092

 

  1. Awale GM, Barajaa MA, Kan HM, Lo KWH, Laurencin CT. Single-dose induction of osteogenic differentiation of mesenchymal stem cells using a cyclic AMP activator, forskolin. Regen Eng Transl Med. 2023;9:97-107. doi: 10.1007/s40883-022-00262-1

 

  1. Liu M, Tan J, Li S, et al. Psoralen synergies with zinc implants to promote bone repair by regulating ZIP4 in rats with bone defect. Biomater Res. 2023;27:129. doi: 10.1186/s40824-023-00472-w

 

  1. Jiang M, Wang X, Lv B, et al. Psoralen induces hepatotoxicity by covalently binding to glutathione-S-transferases and the hepatic cytochrome P450. Phytomedicine. 2022;104:154165. doi: 10.1016/j.phymed.2022.154165

 

  1. Oryan A, Sahvieh S. Effects of bisphosphonates on osteoporosis: Focus on zoledronate. Life Sci. 2021;264:118681. doi: 10.1016/j.lfs.2020.118681

 

  1. Chen Y, Zheng G, Bian Y, et al. Hybrid multilayer coating as the psoralen delivery vehicle promoting bone regeneration on titanium mesh scaffolds in a Posterolateral Spinal Fusion model. Appl Mater Today. 2022;28:101530. doi: 10.1016/j.apmt.2022.101530

 

  1. Boluk A, Guzelipek M, Savli H, Temel I, Ozişik HI, Kaygusuz A. The effect of valproate on bone mineral density in adult epileptic patients. Pharmacol Res. 2004;50:93-97. doi: 10.1016/j.phrs.2003.11.011

 

  1. Hakami T, O’Brien TJ, Petty SJ, et al. Monotherapy with levetiracetam versus older AEDs: A randomized comparative trial of effects on bone health. Calcif Tissue Int. 2016;98:556-565. doi: 10.1007/s00223-016-0109-7

 

  1. Krishnamoorthy G, Nair R, Sundar U, Kini P, Shrivastava M. Early predisposition to osteomalacia in Indian adults on phenytoin or valproate monotherapy and effective prophylaxis by simultaneous supplementation with calcium and 25-hydroxy vitamin D at recommended daily allowance dosage: A prospective study. Neurol India. 2010;58:213-219. doi: 10.4103/0028-3886.63796

 

  1. Oner N, Kaya M, Karasalihoğlu S, Karaca H, Celtik C, Tütüncüler F. Bone mineral metabolism changes in epileptic children receiving valproic acid. J Paediatr Child Health. 2004;40:470-473. doi: 10.1111/j.1440-1754.2004.00431.x

 

  1. Xie X, Cheng P, Hu L, et al. Bone-targeting engineered small extracellular vesicles carrying anti-miR-6359-CGGGAGC prevent valproic acid-induced bone loss. Signal Transduct Target Ther. 2024;9:24. doi: 10.1038/s41392-023-01726-8

 

  1. Li X, Li L, Wang D, et al. Fabrication of polymeric microspheres for biomedical applications. Mater Horiz. 2024;11:2820-2855. doi: 10.1039/d3mh01641b

 

  1. Navarro J, Clohessy RM, Holder RC, et al. In vivo evaluation of three-dimensional printed, keratin-based hydrogels in a porcine thermal burn model. Tissue Eng Part A. 2020;26:265-278. doi: 10.1089/ten.TEA.2019.0181

 

  1. Kim JH, Ryu CH, Chon CH, et al. Three months extended-release microspheres prepared by multi-microchannel microfluidics in beagle dog models. Int J Pharm. 2021;608:121039. doi: 10.1016/j.ijpharm.2021.121039

 

  1. Hao H, Teng P, Liu C, Liu G. The correlation between osteoporotic vertebral fracture and paravertebral muscle condition and its clinical treatment. Nano Biomed Eng. 2024;16:203-218. doi:10.26599/NBE.2024.9290051

 

  1. Zhao Y, Kang H, Wu X, et al. Multifunctional scaffold for osteoporotic pathophysiological microenvironment improvement and vascularized bone defect regeneration. Adv Healthc Mater. 2023;12:e2203099. doi: 10.1002/adhm.202203099

 

  1. Li G, Sun B, Li Y, Luo C, He Z, Sun J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small. 2021;17:e2101460. doi: 10.1002/smll.202101460

 

  1. Li C, Zhang D, Pan Y, Chen B. Human serum albumin based nanodrug delivery systems: Recent advances and future perspective. Polymers (Basel). 2023;15:3354. doi: 10.3390/polym15163354

 

  1. Li, G, Sun, B, Li, Y, Luo, C, He, Z, Sun, J. Small-molecule prodrug nanoassemblies: An emerging nanoplatform for anticancer drug delivery. Small. 2021;17:e2101460.

 

  1. Xiang J, Liu X, Yuan G, et al. Nanomedicine from amphiphilized prodrugs: Concept and clinical translation. Adv Drug Deliv Rev. 2021;179:114027. doi: 10.1016/j.addr.2021.114027

 

  1. Du Y, Jamasb AR, Guo J, et al. Machine learning-aided generative molecular design. Nat Mach Intell. 2024;6:589-604. doi: 10.1038/s42256-024-00843-5

 

  1. Jayatunga MK, Ayers M, Bruens L, Jayanth D, Meier C. How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons. Drug Discov Today. 2024;29:104009. doi: 10.1016/j.drudis.2024.104009

 

  1. Jiang M, Liu R, Liu L, et al. Identification of osteogenic progenitor cell-targeted peptides that augment bone formation. Nat Commun. 2020;11:4278. doi: 10.1038/s41467-020-17417-9

 

  1. Wei X, Qiu J, Lai R, et al. A human organoid drug screen identifies α2-adrenergic receptor signaling as a therapeutic target for cartilage regeneration. Cell Stem Cell. 2024;31:1813.e8-1830.e8. doi: 10.1016/j.stem.2024.09.001

 

  1. Hesse J, Boldini D, Sieber SA. Machine learning-driven data valuation for optimizing high-throughput screening pipelines. J Chem Inf Model. 2024;64:8142-8152. doi: 10.1021/acs.jcim.4c01547

 

  1. Tosh C, Tec M, White JB, et al. A Bayesian active learning platform for scalable combination drug screens. Nat Commun. 2025;16:156. doi: 10.1038/s41467-024-55287-7

 

  1. Zhang W, Ning R, Ran T, et al. Development of 3-acetylindole derivatives that selectively target BRPF1 as new inhibitors of receptor activator of NF-κB ligand (RANKL)-Induced osteoclastogenesis. Bioorg Med Chem. 2023;96:117440. doi: 10.1016/j.bmc.2023.117440

 

  1. Fu H, Chen H, Blazhynska M, et al. Accurate determination of protein: Ligand standard binding free energies from molecular dynamics simulations. Nat Protoc. 2022;17:1114-1141. doi: 10.1038/s41596-021-00676-1.

 

  1. Mohan S, Muthusamy K, Nagamani S, Kesavan C. Computational prediction of small molecules with predicted binding to FGFR3 and testing biological effects in bone cells. Exp Biol Med (Maywood). 2021;246:1660-1667. doi: 10.1177/15353702211002181

 

  1. Velmurugan Y, Natarajan SR, Chakkarapani N, Jayaraman S, Madhukar H, Venkatachalam R. In silico and in vitro studies for the identification of small molecular inhibitors from Euphorbia hirta Linn for rheumatoid arthritis: Targeting TNF-α-mediated inflammation. Mol Divers. 2024;29:1189-1206. doi: 10.1007/s11030-024-10900-1

 

  1. Zhou G, Rusnac DV, Park H, et al. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat Commun. 2024;15:7761. doi: 10.1038/s41467-024-52061-7

 

  1. Gentile F, Yaacoub JC, Gleave J, et al. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc. 2022;17:672-697. doi: 10.1038/s41596-021-00659-2

 

  1. Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol Divers. 2021;25:1315-1360. doi: 10.1007/s11030-021-10217-3

 

  1. Zhao C, Huang D, Li R, et al. Identifying novel anti-osteoporosis leads with a chemotype-assembly approach. J Med Chem. 2019;62:5885-5900. doi: 10.1021/acs.jmedchem.9b00517

 

  1. Ajay Kumar TV, Athavan AAS, Loganathan C, Saravanan K, Kabilan S, Parthasarathy V. Design, 3D QSAR modeling and docking of TGF-β type I inhibitors to target cancer. Comput Biol Chem. 2018;76:232-244. doi: 10.1016/j.compbiolchem.2018.07.011

 

  1. Li X, Fourches D. Inductive transfer learning for molecular activity prediction: Next-Gen QSAR Models with MolPMoFiT. J Cheminform. 2020;12:27. doi: 10.1186/s13321-020-00430-x

 

  1. Moret M, Pachon Angona I, Cotos L, et al. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat Commun. 2023;14:114. doi: 10.1038/s41467-022-35692-6

 

  1. Peterson AA, Liu DR. Small-molecule discovery through DNA-encoded libraries. Nat Rev Drug Discov. 2023;22:699-722. doi: 10.1038/s41573-023-00713-6

 

  1. Suo Y, Qian X, Xiong Z, et al. Enhancing the predictive power of machine learning models through a chemical space complementary DEL screening strategy. J Med Chem. 2024;67:18969-18980. doi: 10.1021/acs.jmedchem.4c01416
Share
Back to top