·
REVIEW
·

Non-viral gene delivery systems for osteoarthritis therapy

Chenglin Zhang1# Hongyang Zhao2# Zheng Zhang1# Yifan Gao2 Rui Gao1* Junyou Wang2* Xuhui Zhou1*
Show Less
1 Department of Orthopedics, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
2 State-Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, China
Submitted: 19 November 2024 | Revised: 1 January 2025 | Accepted: 28 February 2025 | Published: 30 April 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Osteoarthritis (OA) is a degenerative joint disease marked by periarticular bony overgrowth and the degradation of articular cartilage, leading to severe pain, impaired joint function, and reduced quality of life for those affected. Current OA treatments, including pharmacotherapy, physical therapy, and joint replacement surgery, often provide limited therapeutic benefits and are associated with various side effects. As a result, there is a pressing need for alternative treatment options. Gene therapy has emerged as a promising approach for achieving longer-lasting benefits by repairing or modulating the molecular and cellular mechanisms within the joint. Specifically, gene therapy for OA involves either suppressing the expression of detrimental genes or enhancing the expression of therapeutic genes. The success of these approaches, however, significantly depends on the safe and efficient delivery platforms used. Given the risks of insertional mutations and high production costs associated with viral vectors, considerable efforts have been made to develop non-viral systems as safer and more cost-effective alternatives for gene delivery. Over the past few decades, a variety of innovative non-viral vectors with integrated functions have been proposed, successfully overcoming the challenges of gene delivery. The substantial progress made in the rational design of these vectors, along with their enhanced performance in OA gene therapy, warrants a comprehensive and timely review. This article aims to summarize these advancements, starting with a discussion of representative therapeutic gene targets for OA treatment. We then review the innovative non-viral vectors used in OA gene therapy, including lipids, extracellular vesicles, natural and synthetic polymers, inorganic nanoparticles, and protein/peptide carriers. Finally, we address key aspects that need further optimization to facilitate the design of non-viral vectors and promote their therapeutic application in OA treatment. 

Keywords
Osteoarthritis
Gene therapy
Delivery systems
Non-viral vector
Gene target
Funding
This project was supported by the “Changzheng Hospital Pyramid Talent Project” (YQ700) and the People’s Liberation Army (PLA) Army Program No. BHJ22J031.
Conflict of interest
The authors declare no competing financial interest.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019;393:1745-1759. doi: 10.1016/S0140-6736(19)30417-9

 

  1. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023;5(9):e508-e522. doi: 10.1016/S2665-9913(23)00163-7

 

  1. Quicke JG, Conaghan PG, Corp N, Peat G. Osteoarthritis year in review 2021: Epidemiology and therapy. Osteoarthritis Cartilage. 2022;30(2):196-206. doi: 10.1016/j.joca.2021.10.003

 

  1. Richard MJ, Driban JB, McAlindon TE. Pharmaceutical treatment of osteoarthritis. Osteoarthritis Cartilage. 2023;31(4):458-466. doi: 10.1016/j.joca.2022.11.005

 

  1. Kumar D, Su F, Wu D, et al. Frontal plane knee mechanics and early cartilage degeneration in people with anterior cruciate ligament reconstruction: A longitudinal study. Am J Sports Med. 2018;46(2):378-387. doi: 10.1177/0363546517739605

 

  1. Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol. 2023;64(2):222-238. doi: 10.1007/s12016-022-08941-1

 

  1. Pang L, Jin H, Lu Z, et al. Treatment with mesenchymal stem cell-derived nanovesicle-containing gelatin methacryloyl hydrogels alleviates osteoarthritis by modulating chondrogenesis and macrophage polarization. Adv Healthc Mater. 2023;12(17):e2300315. doi: 10.1056/NEJMoa1300955

 

  1. Abramoff B, Caldera FE. Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 2020;104(2):293-311. doi: 10.1016/j.mcna.2019.10.007

 

  1. Bannuru RR, Osani MC, Vaysbrot EE, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage. 2019;27(11):1578-1589. doi: 10.1016/j.joca.2019.06.011

 

  1. Yao Q, Wu X, Tao C, et al. Osteoarthritis: Pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):56. doi: 10.1038/s41392-023-01330-w

 

  1. Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA. 2021;286(8):954-959. doi: 10.1001/jama.286.8.954

 

  1. Grayson CW, Decker RC. Total joint arthroplasty for persons with osteoarthritis. PM R. 2012;4 (5 Suppl):S97-103. doi: 10.1016/j.pmrj.2012.02.018

 

  1. Oo WM, Yu SP, Daniel MS, Hunter DJ. Disease-modifying drugs in osteoarthritis: Current understanding and future therapeutics. Expert Opin Emerg Drugs. 2018;23(4):331-347. doi: 10.1080/14728214.2018.1547706

 

  1. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018;359:eaan4672. doi: 10.1126/science.aan4672

 

  1. Chen T, Weng W, Liu Y, et al. Update on novel non-operative treatment for osteoarthritis: Current status and future trends. Front Pharmacol. 2021;12:755230. doi: 10.3389/fphar.2021.755230

 

  1. Wirth T, Parker N, Yla-Herttuala S. History of gene therapy. Gene. 2013;525(2):162-169. doi: 10.1016/j.gene.2013.03.137

 

  1. Deviatkin AA, Vakulenko YA, Akhmadishina LV, et al. Emerging concepts and challenges in rheumatoid arthritis gene therapy. Biomedicines. 2020;8(1):9. doi: 10.3390/biomedicines8010009

 

  1. Lin W, Hu S, Li K, et al. Breaking osteoclast-acid vicious cycle to rescue osteoporosis via an acid responsive organic framework-based neutralizing and gene editing platform. Small. 2024;20(22):e2307595. doi: 10.1002/smll.202307595

 

  1. Li X, Shen L, Deng Z, Huang Z. New treatment for osteoarthritis: Gene therapy. Precis Clin Med. 2023;6(2):pbad014. doi: 10.1093/pcmedi/pbad014

 

  1. Zhang X, Liu Y, Xiao C, Guan Y, Gao Z, Huang W. Research advances in nucleic acid delivery system for rheumatoid arthritis therapy. Pharmaceutics. 2023;15(4):1237. doi: 10.3390/pharmaceutics15041237

 

  1. Gao J, Xia Z, Vohidova D, Joseph J, Luo JN, Joshi N. Progress in non-viral localized delivery of siRNA therapeutics for pulmonary diseases. Acta Pharm Sin B. 2023;13(4):1400-1428. doi: 10.1016/j.apsb.2022.07.010

 

  1. Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies. Acta Pharm Sin B. 2021;11(5):1158-1174. doi: 10.1016/j.apsb.2021.03.013

 

  1. Gantenbein B, Tang S, Guerrero J, et al. Non-viral gene delivery methods for bone and joints. Front Bioeng Biotechnol. 2020;8:598466. doi: 10.3389/fbioe.2020.598466

 

  1. Nishimura R, Hata K, Takahata Y, et al. Role of signal transduction pathways and transcription factors in cartilage and joint diseases. Int J Mol Sci. 2020;21(4):1340. doi: 10.3390/ijms21041340

 

  1. Aini H, Itaka K, Fujisawa A, et al. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci Rep. 2016;6:18743. doi: 10.1038/srep18743

 

  1. Catheline SE, Hoak D, Chang M, et al. Chondrocyte-specific RUNX2 overexpression accelerates post-traumatic osteoarthritis progression in adult mice. J Bone Miner Res. 2019;34(9):1676-1689. doi: 10.1002/jbmr.3737

 

  1. Nagata K, Hojo H, Chang SH, et al. Runx2 and Runx3 differentially regulate articular chondrocytes during surgically induced osteoarthritis development. Nat Commun. 2022;13(1):6187. doi: 10.1038/s41467-022-33744-5

 

  1. Ouyang Y, Wang W, Tu B, Zhu Y, Fan C, Li Y. Overexpression of SOX9 alleviates the progression of human osteoarthritis in vitro and in vivo. Drug Des Devel Ther. 2019;13:2833-2842. doi: 10.2147/DDDT.S203974

 

  1. Zhang FJ, Luo W, Lei GH. Role of HIF-1alpha and HIF-2alpha in osteoarthritis. Joint Bone Spine. 2015;82(3):144-147. doi: 10.1016/j.jbspin.2014.10.003

 

  1. Wen C, Xu L, Xu X, Wang D, Liang Y, Duan L. Insulin-like growth factor-1 in articular cartilage repair for osteoarthritis treatment. Arthritis Res Ther. 2021;23(1):277. doi: 10.1186/s13075-021-02662-0

 

  1. Ortved KF, Begum L, Mohammed HO, Nixon AJ. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol Ther. 2015;23(2):363-373. doi: 10.1038/mt.2014.198

 

  1. Poulsen RC, Jain L, Dalbeth N. Re-thinking osteoarthritis pathogenesis: What can we learn (and what do we need to unlearn) from mouse models about the mechanisms involved in disease development. Arthritis Res Ther. 2023;25(1):59. doi: 10.1186/s13075-023-03042-6

 

  1. Vincent TL, Miller RE. Molecular pathogenesis of OA pain: Past, present, and future. Osteoarthritis Cartilage. 2024;32(4):398-405. doi: 10.1016/j.joca.2024.01.005

 

  1. Juma SN, Liao J, Huang Y, et al. Osteoarthritis versus psoriasis arthritis: Physiopathology, cellular signaling, and therapeutic strategies. Genes Dis. 2024;11(3):100986. doi: 10.1016/j.gendis.2023.04.021

 

  1. Steinert AF, Proffen B, Kunz M, et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res Ther. 2009;11(5):R148. doi: 10.1186/ar2822

 

  1. Feng J, Zhang Q, Pu F, et al. Signalling interaction between beta-catenin and other signalling molecules during osteoarthritis development. Cell Prolif. 2024;57(6):e13600. doi: 10.1111/cpr.13600

 

  1. Vilim J, Ghazalova T, Petulova E, et al. Computer-assisted stabilization of fibroblast growth factor FGF-18. Comput Struct Biotechnol J. 2023;21:5144-5152. doi: 10.1016/j.csbj.2023.10.009

 

  1. Xie B, Ma H, Yang F, et al. Development and evaluation of 3D composite scaffolds with piezoelectricity and biofactor synergy for enhanced articular cartilage regeneration. J Mater Chem B. 2024;12(40):10416-10433. doi: 10.1039/D4TB01319K

 

  1. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011;7(1):33-42. doi: 10.1038/nrrheum.2010.196

 

  1. van Meegeren ME, Roosendaal G, Jansen NW, et al. IL-4 alone and in combination with IL-10 protects against blood-induced cartilage damage. Osteoarthritis Cartilage. 2012;20(7):764-772. doi: 10.1016/j.joca.2012.04.002

 

  1. Song SY, Hong J, Go S, et al. Interleukin-4 gene transfection and spheroid formation potentiate therapeutic efficacy of mesenchymal stem cells for osteoarthritis. Adv Healthc Mater. 2020;9(5):e1901612. doi: 10.1002/adhm.201901612

 

  1. Moss KL, Jiang Z, Dodson ME, et al. Sustained interleukin-10 transgene expression following intra-articular AAV5-IL-10 administration to horses. Hum Gene Ther. 2020;31(1-2):110-118. doi: 10.1089/hum.2019.195

 

  1. Pekacova A, Baloun J, Svec X, Senolt L. Non-coding RNAs in diseases with a focus on osteoarthritis. WIREs RNA. 2023;14(3):e1756. doi: 10.1002/wrna.1756

 

  1. Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol. 2021;17(11):692-705. doi: 10.1038/s41584-021-00687-y

 

  1. Lei J, Fu Y, Zhuang Y, Zhang K, Lu D. miR-382-3p suppressed IL-1beta induced inflammatory response of chondrocytes via the TLR4/MyD88/ NF-kappaB signaling pathway by directly targeting CX43. J Cell Physiol. 2019;234(12):23160-23168. doi: 10.1002/jcp.28882

 

  1. Lei J, Fu Y, Zhuang Y, Zhang K, Lu D. LncRNA SNHG1 alleviates IL-1beta-induced osteoarthritis by inhibiting miR-16-5p-mediated p38 MAPK and NF-kappaB signaling pathways. Biosci Rep. 2019;39(9):BSR20191523. doi: 10.1042/BSR20191523

 

  1. Zhu Y, Wang Y, Sun Y, et al. In situ self imine-crosslinked nanocomplexes loaded with small noncoding RNA for efficient osteoarthritis attenuation. Chem Eng J. 2021;420:127631. doi: 10.1016/j.cej.2020.127631

 

  1. Oh H, Kwak JS, Yang S, et al. Reciprocal regulation by hypoxia-inducible factor-2alpha and the NAMPT-NAD(+)-SIRT axis in articular chondrocytes is involved in osteoarthritis. Osteoarthritis Cartilage. 2015;23(12):2288-2296. doi: 10.1016/j.joca.2015.07.009

 

  1. Sun K, Guo J, Yao X, Guo Z, Guo F. Growth differentiation factor 5 in cartilage and osteoarthritis: A possible therapeutic candidate. Cell Prolif. 2021;54(3):e12998. doi: 10.1111/cpr.12998

 

  1. Molnar V, Matisic V, Kodvanj I, et al. Cytokines and chemokines involved in osteoarthritis pathogenesis. Int J Mol Sci. 2021;22(17):9208. doi: 10.3390/ijms22179208

 

  1. Bellavia D, Veronesi F, Carina V, et al. Gene therapy for chondral and osteochondral regeneration: is the future now? Cell Mol Life Sci. 2018;75(4):649-667. doi: 10.1007/s00018-017-2637-3

 

  1. Wu H, Peng Z, Xu Y, et al. Engineered adipose-derived stem cells with IGF-1-modified mRNA ameliorates osteoarthritis development. Stem Cell Res Ther. 2022;13(1):19. doi: 10.1186/s13287-021-02695-x

 

  1. Conte R, Finicelli M, Borrone A, et al. MMP-2 Silencing through siRNA loaded positively-charged nanoparticles (AcPEI-NPs) counteracts chondrocyte de-differentiation. Polymers. 2023;15(5):1172. doi: 10.3390/polym15051172

 

  1. Kim SG, Song J, Ryplida B, et al. Touchable electrochemical hydrogel sensor for detection of reactive oxygen species‐induced cellular senescence in articular chondrocytes. Adv Funct Mater. 2023;33(17):2213887. doi: 10.1002/adfm.202213887

 

  1. Deng RH, Qiu B, Zhou PH. Chitosan/hyaluronic acid/plasmid-DNA nanoparticles encoding interleukin-1 receptor antagonist attenuate inflammation in synoviocytes induced by interleukin-1 beta. J Mater Sci Mater Med. 2018;29(10):155. doi: 10.1007/s10856-018-6160-3

 

  1. Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res. 2004;22(4):742-750. doi: 10.1016/j.orthres.2003.12.007

 

  1. Chen H, Chen F, Hu F et al. MicroRNA-224-5p nanoparticles balance homeostasis via inhibiting cartilage degeneration and synovial inflammation for synergistic alleviation of osteoarthritis. Acta Biomater. 2023;167:401-415. doi: 10.1016/j.actbio.2023.06.010

 

  1. Yang K, Ni M, Xu C, et al. Microfluidic one-step synthesis of a metal-organic framework for osteoarthritis therapeutic microRNAs delivery. Front Bioeng Biotechnol. 2023;11:1239364. doi: 10.3389/fbioe.2023.1239364

 

  1. Wang J, Sun T. Mir-25-3p in extracellular vesicles from fibroblast-like synoviocytes alleviates pyroptosis of chondrocytes in knee osteoarthritis. J Bioenerg Biomembr. 2023;55(5):365-380. doi: 10.1007/s10863-023-09964-9

 

  1. Li B, Wang F, Hu F, et al. Injectable “nano-micron” combined gene-hydrogel microspheres for local treatment of osteoarthritis. NPG Asia Mater. 2022;14(1):1. doi: 10.1038/s41427-021-00351-7

 

  1. Zhou ZB, Huang GX, Fu Q, et al. circRNA.33186 Contributes to the pathogenesis of osteoarthritis by sponging miR-127-5p. Mol Ther. 2019;27(3):531-541. doi: 10.1016/j.ymthe.2019.01.006

 

  1. He K, Huang X, Shan R, et al. Intra-articular injection of lornoxicam and MicroRNA-140 co-loaded cationic liposomes enhanced the therapeutic treatment of experimental osteoarthritis. AAPS PharmSciTech. 2022;23(1):9. doi: 10.1208/s12249-021-02149-w

 

  1. Wang S, Wei X, Sun X, et al. A novel therapeutic strategy for cartilage diseases based on lipid nanoparticle-RNAi delivery system. Int J Nanomedicine. 2018;13:617-631. doi: 10.2147/IJN.S142797

 

  1. Cao H, Chen M, Cui X, et al. Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS Nano. 2023;17(14):13358-13376. doi: 10.1021/acsnano.3c01612

 

  1. Liang Y, Xu X, Li X, et al. Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. ACS Appl Mater Interfaces. 2020;12(33):36938-36947. doi: 10.1021/acsami.0c10458

 

  1. Celik E, Bayram C, Denkbas EB. Chondrogenesis of human mesenchymal stem cells by microRNA loaded triple polysaccharide nanoparticle system. Mater Sci Eng C. 2019;102:756-763. doi: 10.1016/j.msec.2019.05.006

 

  1. Deng J, Fukushima Y, Nozaki K, et al. Anti-inflammatory therapy for temporomandibular joint osteoarthritis using mRNA medicine encoding interleukin-1 receptor antagonist. Pharmaceutics. 2022;14(9):1785. doi: 10.3390/pharmaceutics14091785

 

  1. Zhang ZJ, Hou YK, Chen MW, et al. A pH-responsive metal-organic framework for the co-delivery of HIF-2alpha siRNA and curcumin for enhanced therapy of osteoarthritis. J Nanobiotechnol. 2023;21(1):18. doi: 10.1186/s12951-022-01758-2

 

  1. Duan X, Cai L, Pham CT, et al. Amelioration of posttraumatic osteoarthritis in mice using intraarticular silencing of periostin via nanoparticle-based small interfering RNA. Arthritis Rheumatol. 2021;73(12):2249-2260. doi: 10.1002/art.41794

 

  1. Yan H, Duan X, Pan H, et al. Development of a peptide-siRNA nanocomplex targeting NF- kappaB for efficient cartilage delivery. Sci Rep. 2019;9(1):442. doi: 10.1038/s41598-018-37018-3

 

  1. Monteiro N, Martins A, Reis RL, Neves NM. Liposomes in tissue engineering and regenerative medicine. J R Soc Interface. 2014;11(101):20140459. doi: 10.1098/rsif.2014.0459

 

  1. Gao Y, Liu X, Chen N, Yang X, Tang F. Recent advance of liposome nanoparticles for nucleic acid therapy. Pharmaceutics. 2023;15(1):178. doi: 10.3390/pharmaceutics15010178

 

  1. Duong VA, Nguyen TT, Maeng HJ. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics. 2023;15(1):207. doi: 10.3390/pharmaceutics15010207

 

  1. Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037

 

  1. Wang C, Lan X, Zhu L, et al. Construction strategy of functionalized liposomes and multidimensional application. Small. 2024;20(25):e2309031. doi: 10.1002/smll.202309031

 

  1. Tseu GY, Kamaruzaman KA. A review of different types of liposomes and their advancements as a form of gene therapy treatment for breast cancer. Molecules. 2023;28(3):1498. doi: 10.3390/molecules28031498

 

  1. Dizaj SM, Jafari S, Khosroushahi AY. A sight on the current nanoparticle-based gene delivery vectors. Nanoscale Res Lett. 2014;9:252. doi: 10.1186/1556-276X-9-252

 

  1. Nakamura T, Sato Y, Yamada Y, et al. Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev. 2022;188:114417. doi: 10.1016/j.addr.2022.114417

 

  1. Horejs C. From lipids to lipid nanoparticles to mRNA vaccines. Nat Rev Mater. 2021;6(12):1075-1076. doi: 10.1038/s41578-021-00379-9

 

  1. Zhang M, Jiang H, Wu L, et al. Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J Control Release. 2022;352:422-437. doi: 10.1016/j.jconrel.2022.10.020

 

  1. Cai W, Luo T, Chen X, Mao L, Wang M. A Combinatorial library of biodegradable lipid nanoparticles preferentially deliver mRNA into tumor cells to block mutant RAS signaling. Adv Funct Mater. 2022;32(41):2204947. doi: 10.1002/adfm.202204947

 

  1. Kim Y, Choi J, Kim EH, et al. Design of PD-L1-targeted lipid nanoparticles to turn on PTEN for efficient cancer therapy. Adv Sci. 2024;11:e2309917. doi: 10.1002/advs.202309917

 

  1. Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release. 2006;114(1):100-109. doi: 10.1016/j.jconrel.2006.04.014

 

  1. Jansen MA, Klausen LH, Thanki K, et al. Lipidoid-polymer hybrid nanoparticles loaded with TNF siRNA suppress inflammation after intra-articular administration in a murine experimental arthritis model. Eur J Pharm Biopharm. 2019;142:38-48. doi: 10.1016/j.ejpb.2019.06.009

 

  1. Song P, Yang C, Thomsen JS, et al. Lipidoid-siRNA nanoparticle-mediated IL-1beta gene silencing for systemic arthritis therapy in a mouse model. Mol Ther. 2019;27(8):1424-1435. doi: 10.1016/j.ymthe.2019.05.002

 

  1. Park SA, Hwang D, Kim JH, et al. Formulation of lipid nanoparticles containing ginsenoside Rg2 and protopanaxadiol for highly efficient delivery of mRNA. Biomater Sci. 2024;12(24):6299-6309. doi: 10.1051/epjap/2012120166

 

  1. Paunovska K, Loughrey D, Dahlman JE. Drug delivery systems for RNA therapeutics. Nat Rev Genet. 2022;23(5):265-280. doi: 10.1038/s41576-021-00439-4

 

  1. Li Y, Ye Z, Yang H, Xu Q. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm Sin B. 2022;12(6):2624-2639. doi: 10.1016/j.apsb.2022.04.013

 

  1. Monteiro N, Ribeiro D, Martins A, et al. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. ACS Nano. 2014;8(8):8082-8094. doi: 10.1021/nn5021049

 

  1. Yan J, Zhang C, Zhao Y, et al. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials. 2014;35(27):7734-7749. doi: 10.1016/j.biomaterials.2014.05.089

 

  1. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 2020;21(10):585-606. doi: 10.1038/s41580-020-0251-y

 

  1. Trubiani O, Marconi GD, Pierdomenico SD, Piattelli A, Diomede F, Pizzicannella J. Human oral stem cells, biomaterials and extracellular vesicles: A promising tool in bone tissue repair. Int J Mol Sci. 2019;20(20):4987. doi: 10.3390/ijms20204987

 

  1. Pizzicannella J, Gugliandolo A, Orsini T, et al. Engineered extracellular vesicles from human periodontal-ligament stem cells increase VEGF/VEGFR2 expression during bone regeneration. Front Physiol. 2019;10:512. doi: 10.3389/fphys.2019.00512

 

  1. Rilla K, Mustonen AM, Arasu UT, Harkonen K, Matilainen J, Nieminen P. Extracellular vesicles are integral and functional components of the extracellular matrix. Matrix Biol. 2019;75-76:201-219. doi: 10.1016/j.matbio.2017.10.003

 

  1. Pomatto MA, Bussolati B, D’Antico S, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs. Mol Ther Methods Clin Dev. 2019;13:133-144. doi: 10.1016/j.omtm.2019.01.001

 

  1. Zhang M, Shao W, Yang T, et al. Conscription of immune cells by light-activatable silencing NK-derived exosome (LASNEO) for synergetic tumor eradication. Adv Sci. 2022;9(22):e2201135. doi: 10.1002/advs.202201135

 

  1. Marolt Presen D, Traweger A, Gimona M, Redl H. Mesenchymal stromal cell-based bone regeneration therapies: From cell transplantation and tissue engineering to therapeutic secretomes and extracellular vesicles. Front Bioeng Biotechnol. 2019;7:352. doi: 10.3389/fbioe.2019.00352

 

  1. Liu W, Liu A, Li X, et al. Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact Mater. 2023;30:169-183. doi: 10.1016/j.bioactmat.2023.06.012

 

  1. Pontes AP, Welting TJ, Rip J, Creemers LB. Polymeric nanoparticles for drug delivery in osteoarthritis. Pharmaceutics. 2022;14(12):2639. doi: 10.3390/pharmaceutics14122639

 

  1. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: Identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. doi: 10.1038/s41392-021-00512-8

 

  1. Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: Present status and applications. Acta Pharm Sin B. 2012;2(5):439-449. doi: 10.1016/j.apsb.2012.07.004

 

  1. Jiang T, Xu L, Zhao M, et al. Dual targeted delivery of statins and nucleic acids by chitosan-based nanoparticles for enhanced antiatherosclerotic efficacy. Biomaterials. 2022;280:121324. doi: 10.1016/j.biomaterials.2021.121324

 

  1. Garcia JP, Stein J, Cai Y, et al. Fibrin-hyaluronic acid hydrogel-based delivery of antisense oligonucleotides for ADAMTS5 inhibition in co-delivered and resident joint cells in osteoarthritis. J Control Release. 2019;294:247-258. doi: 10.1016/j.jconrel.2018.12.030

 

  1. Garcia-Fuentes M, Alonso MJ. Chitosan-based drug nanocarriers: where do we stand? J Control Release. 2012;161(2):496-504. doi: 10.1016/j.jconrel.2012.03.017

 

  1. Zhou M, Dong J, Huang J, et al. Chitosan-Gelatin-EGCG nanoparticle-meditated LncRNA TMEM44-AS1 silencing to activate the P53 signaling pathway for the synergistic reversal of 5-FU resistance in gastric cancer. Adv Sci. 2022;9(22):e2105077. doi: 10.1002/advs.202105077

 

  1. Rahimi M, Charmi G, Matyjaszewski K, Banquy X, Pietrasik J. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis. Acta Biomater. 2021;123:31-50. doi: 10.1016/j.actbio.2021.01.003

 

  1. Shen X, Dirisala A, Toyoda M, et al. pH-responsive polyzwitterion covered nanocarriers for DNA delivery. J Control Release. 2023;360:928-939. doi: 10.1016/j.jconrel.2023.07.038

 

  1. Agarwal S, Zhang Y, Maji S, Greiner A. PDMAEMA based gene delivery materials. Mater Today. 2012;15(9):388-393. doi: 10.1016/S1369-7021(12)70165-7

 

  1. Patil S, Gao YG, Lin X, et al. The Development of functional non-viral vectors for gene delivery. Int J Mol Sci. 2019;20(21):5491. doi: 10.3390/ijms20215491

 

  1. Li Y, Wang X, He Z, et al. 3D Macrocyclic structure boosted gene delivery: Multi-cyclic poly(beta-amino ester)s from step growth polymerization. J Am Chem Soc. 2023;145(31):17187-17200. doi: 10.1021/jacs.3c04191

 

  1. Zhou D, Cutlar L, Gao Y, et al. The transition from linear to highly branched poly(b-amino ester)s: Branching matters for gene delivery. Sci Adv. 2016;2:e1600102. doi: 10.1126/sciadv.1600102

 

  1. Jones CH, Chen CK, Ravikrishnan A, Rane S, Pfeifer BA. Overcoming nonviral gene delivery barriers: Perspective and future. Mol Pharm. 2013;10(11):4082-4098. doi: 10.1021/mp400467x

 

  1. Guo X, Huang L. Recent advances in nonviral vectors for gene delivery. Acc Chem Res. 2011;45(7):971-979. doi: 10.1021/ar200151m

 

  1. Zhou HF, Yan H, Pan H, et al. Peptide-siRNA nanocomplexes targeting NF-kappaB subunit p65 suppress nascent experimental arthritis. J Clin Invest. 2014;124 (10):4363-4374. doi: 10.1172/JCI75673

 

  1. Duan W, Li H. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J Nanobiotechnol. 2018;16(1):58. doi: 10.1186/s12951-018-0382-x

 

  1. Pirmardvand Chegini S, Varshosaz J, Taymouri S. Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artif Cells Nanomed Biotechnol. 2018;46 (S2):502-514. doi: 10.1080/21691401.2018.1460373

 

  1. Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol. 2012;303(6):H629-H638. doi: 10.1152/ajpheart.00126.2012

 

  1. Zalba S, Ten Hagen TL, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Facing the PEG dilemma. J Control Release. 2022;351:22-36. doi: 10.1016/j.jconrel.2022.09.002

 

  1. Wang H, Li Y, Zhang M, et al. Redox-activatable ATP-depleting micelles with dual modulation characteristics for multidrug-resistant cancer therapy. Adv Healthc Mater. 2017;6(8):1601293. doi: 10.1002/adhm.201601293

 

  1. Shin HJ, Park H, Shin N, et al. p66shc siRNA Nanoparticles ameliorate chondrocytic mitochondrial dysfunction in osteoarthritis. Int J Nanomedicine. 2020;15:2379-2390. doi: 10.2147/IJN.S234198

 

  1. Wagner DE, Bhaduri SB. Progress and outlook of inorganic nanoparticles for delivery of nucleic acid sequences related to orthopedic pathologies: A review. Tissue Eng Part B Rev. 2012;18(1):1-14. doi: 10.1089/ten.TEB.2011.0081

 

  1. Riley MK, Vermerris W. Recent advances in nanomaterials for gene delivery-a review. Nanomaterials. 2017;7(5):94. doi: 10.3390/nano7050094

 

  1. Olton D, Li J, Wilson ME, et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials. 2007;28(6):1267-1279. doi: 10.1016/j.biomaterials.2006.10.026

 

  1. Curtin CM, Tierney EG, McSorley K, Cryan SA, Duffy GP, O’Brien FJ. Combinatorial gene therapy accelerates bone regeneration: Non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv Healthc Mater. 2015;4(2):223-227. doi: 10.1002/adhm.201400397

 

  1. Keeney M, van den Beucken JJ, van der Kraan PM, Jansen JA, Pandit A. The ability of a collagen/calcium phosphate scaffold to act as its own vector for gene delivery and to promote bone formation via transfection with VEGF(165). Biomaterials. 2010;31(10):2893-2902. doi: 10.1016/j.biomaterials.2009.12.041

 

  1. McCarthy HO, McCaffrey J, McCrudden CM, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release. 2014;189:141-149. doi: 10.1016/j.jconrel.2014.06.048

 

  1. Kang Z, Meng Q, Liu K. Peptide-based gene delivery vectors. J Mater Chem B. 2019;7(11):1824-1841. doi: 10.1039/C8TB03124J

 

  1. Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release. 2022;343:600-619. doi: 10.1016/j.jconrel.2022.02.010

 

  1. Wang H, Feng Z, Xu B. Supramolecular assemblies of peptides or nucleopeptides for gene delivery. Theranostics. 2019;9(11):3213-3222. doi: 10.7150/thno.31854

 

  1. Dehghani S, Alibolandi M, Tehranizadeh ZA, et al. Self-assembly of an aptamer-decorated chimeric peptide nanocarrier for targeted cancer gene delivery. Colloids Surf B Biointerfaces. 2021;208:112047. doi: 10.1016/j.colsurfb.2021.112047

 

  1. Shen WJ, Tian DM, Fu L, et al. Elastin-derived VGVAPG fragment decorated cell-penetrating peptide with improved gene delivery efficacy. Pharmaceutics. 2023;15(2):670. doi: 10.3390/pharmaceutics15020670

 

  1. Chen S, Li J, Ma X, Liu F, Yan G. Cationic peptide-modified gold nanostars as efficient delivery platform for RNA interference antitumor therapy. Polymers. 2021;13(21):3764. doi: 10.3390/polym13213764

 

  1. Tian Y, Zhou M, Shi H, et al. Integration of cell-penetrating peptides with rod-like bionanoparticles: Virus-inspired gene-silencing technology. Nano Lett. 2018;18(9):5453-5460. doi: 10.1021/acs.nanolett.8b01805

 

  1. Gonzalez-Fernandez T, Sathy BN, Hobbs C, et al. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater. 2017;55:226-238. doi: 10.1016/j.actbio.2017.03.044

 

  1. Pei H, Deng H, Wang C, Zhou Y, Chen X. Cellular trafficking of nanotechnology-mediated mRNA delivery. Adv Mater. 2023;36:2307822. doi: 10.1002/adma.202307822

 

  1. Amirsaadat S, Amirazad H, Hashemihesar R, Zarghami N. An update on the effect of intra-articular intervention strategies using nanomaterials in osteoarthritis: Possible clinical application. Front Bioeng Biotechnol. 2023;11:1128856. doi: 10.3389/fbioe.2023.1128856

 

  1. Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic controlled release strategies for human osteoarthritis. Adv Healthc Mater. 2024;14:e2402737. doi: 10.1002/adhm.202402737

 

  1. Wang X, Liu S, Sun Y, et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc. 2023;18(1):265-291. doi: 10.1038/s41596-022-00755-x

 

  1. Chen H, Li Z, Li X, et al. Biomaterial-based gene delivery: Advanced tools for enhanced cartilage regeneration. Drug Des Devel Ther. 2023;17:3605-3624. doi: 10.2147/DDDT.S432056
Share
Back to top