·
REVIEW
·

Advances and perspective on the translational medicine of biodegradable metals

Hongtao Yang1,2 Wenjiao Lin3,4 Yufeng Zheng1*
Show Less
1 School of Materials Science and Engineering, Peking University, Beijing, China
2 School of Engineering Medicine, Beihang University, Beijing, China
3 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang Province, China
4 Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen, Guangdong Province, China
Submitted: 30 May 2021 | Revised: 16 July 2021 | Accepted: 21 July 2021 | Published: 28 September 2021
Copyright © 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Biodegradable metals, designed to be safely degraded and absorbed by the body after fulfil the intended functions, are of particular interest in the 21st century. The marriage of advanced biodegradable metals with clinical needs have yield unprecedented possibility. Magnesium, iron, and zinc-based materials constitute the main components of temporary, implantable metallic medical devices. A burgeoning number of studies on biodegradable metals have driven the clinical translation of biodegradable metallic devices in the fields of cardiology and orthopaedics over the last decade. Their ability to degrade as well as their beneficial biological functions elicited during degradation endow this type of material with the potential to shift the paradigm in the treatment of musculoskeletal and cardiovascular diseases. This review provides an insight into the degradation mechanism of these metallic devices in specific application sites and introduces state-of-the-art translational research in the field of biodegradable metals, as well as highlighting some challenges for materials design strategies in the context of mechanical and biological compatibility.

Keywords
biodegradable metals ; cardiovascular applications ; clinical translation ; degradation mechanism ; orthopaedic applications
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

1.  National Bureau of Statistics. The main data of the seventh national census, National Bureau of Statistics of China. http://www.stats.gov.cn/tjsj/zxfb/202105/t20210510_1817176.html. Accessed by May, 2021.
2.  Navarro, M.; Michiardi, A.; Castaño, O.; Planell, J. A. Biomaterials in orthopaedics. J R Soc Interface. 2008, 5, 1137-1158.
3.  Li, C.; Guo, C.; Fitzpatrick, V.; Ibrahim, A.; Zwierstra, M. J.; Hanna, P.; Lechtig, A.; Nazarian, A.; Lin, S. J.; Kaplan, D. L. Design of biodegradable, implantable devices towards clinical translation. Nat Rev Mater. 2020, 5, 61-81.
4.  Haseeb, M.; Butt, M. F.; Altaf, T.; Muzaffar, K.; Gupta, A.; Jallu, A. Indications of implant removal: A study of 83 cases. Int J Health Sci (Qassim). 2017, 11, 1-7.
5.  Reith, G.; Schmitz-Greven, V.; Hensel, K. O.; Schneider, M. M.; Tinschmann, T.; Bouillon, B.; Probst, C. Metal implant removal: benefits and drawbacks--a patient survey. BMC Surg. 2015, 15, 96.
6.  Wentzel, J. J.; Whelan, D. M.; van der Giessen, W. J.; van Beusekom, H. M.; Andhyiswara, I.; Serruys, P. W.; Slager, C. J.; Krams, R. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech. 2000, 33, 1287-1295.
7.  Han, H. S.; Loffredo, S.; Jun, I.; Edwards, J.; Kim, Y. C.; Seok, H. K.; Witte, F.; Mantovani, D.; Glyn-Jones, S. Current status and outlook on the clinical translation of biodegradable metals. Mater Today. 2019, 23, 57-71.
8.  Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials. 2017, 112, 287-302.
9.  Venezuela, J.; Dargusch, M. S. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater. 2019,  87, 1-40.
10. Hench, L. L.; Polak, J. M. Third-generation biomedical materials. Science. 2002, 295, 1014-1017.
11. Liu, Y.; Zheng, Y.; Chen, X. H.; Yang, J. A.; Pan, H.; Chen, D.; Wang, L.; Zhang, J.; Zhu, D.; Wu, S.; Yeung, K. W. K.; Zeng, R. C.; Han, Y.; Guan, S. Fundamental theory of biodegradable metals—definition, criteria, and design. Adv Funct Mater. 2019, 29, 1805402.
12. Williams, D. The williams dictionary of biomaterials. Liverpool University Press: 1999.
13. Tamada, J. A.; Langer, R. Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci U S A. 1993, 90, 552-556.
14. Hench, L. L. The future of bioactive ceramics. J Mater Sci Mater Med. 2015, 26, 86.
15. Williams, D. F. On the mechanisms of biocompatibility. Biomaterials. 2008, 29, 2941-2953.
16. Aykul, S.; Martinez-Hackert, E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal Biochem. 2016, 508, 97-103.
17. Zbinden, G.; Flury-Roversi, M. Significance of the LD50-test for the toxicological evaluation of chemical substances. Arch Toxicol. 1981, 47,  77-99.
18. Zoroddu, M. A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V. M. The essential metals for humans: a brief overview. J Inorg Biochem. 2019, 195, 120-129.
19. Li, H. F.; Zheng, Y. F. Recent advances in bulk metallic glasses for biomedical applications. Acta Biomater. 2016, 36, 1-20.
20. Virtanen, S. Biodegradable Mg and Mg alloys: corrosion and biocompatibility. Mater Sci Eng B. 2011, 176, 1600-1608.
21. Hermawan, H. Updates on the research and development of absorbable metals for biomedical applications. Prog Biomater. 2018, 7, 93-110.
22. Ye, X.; Chen, M.; Yang, M.; Wei, J.; Liu, D. In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg-Zn-Zr composites. J Mater Sci Mater Med. 2010, 21, 1321-1328.
23. Witte, F.; Feyerabend, F.; Maier, P.; Fischer, J.; Störmer, M.; Blawert, C.; Dietzel, W.; Hort, N. Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials. 2007, 28, 2163-2174.
24. Narita, K.; Tian, Q.; Johnson, I.; Zhang, C.; Kobayashi, E.; Liu, H. Degradation behaviors and cytocompatibility of Mg/β-tricalcium phosphate composites produced by spark plasma sintering. J Biomed Mater Res B Appl Biomater. 2019, 107, 2238-2253.
25. Wong, H. M.; Wu, S.; Chu, P. K.; Cheng, S. H.; Luk, K. D.; Cheung, K. M.; Yeung, K. W. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials. 2013, 34, 7016-7032.
26. Lei, T.; Tang, W.; Cai, S. H.; Feng, F. F.; Li, N. F. On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros Sci. 2012, 54, 270-277.
27. Yang, H. T.; Wang, Z. H.; Li, H. F.; Zheng, Y. F.; Li, Y. W.; Li, R. In vitro study on novel Zn-ZnO composites with tunable degradation rate. Eur Cell Mater. 2014, 25, S5.
28. Esmaily, M.; Svensson, J. E.; Fajardo, S.; Birbilis, N.; Frankel, G. S.; Virtanen, S.; Arrabal, R.; Thomas, S.; Johansson, L. G. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017, 89,  92-193.
29. Lee, J. W.; Han, H. S.; Han, K. J.; Park, J.; Jeon, H.; Ok, M. R.; Seok, H. K.; Ahn, J. P.; Lee, K. E.; Lee, D. H.; Yang, S. J.; Cho, S. Y.; Cha, P. R.; Kwon, H.; Nam, T. H.; Han, J. H.; Rho, H. J.; Lee, K. S.; Kim, Y. C.; Mantovani, D. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy. Proc Natl Acad Sci U S A.  2016, 113, 716-721.
30. Bennett, J.; De Hemptinne, Q.; McCutcheon, K. Magmaris resorbable magnesium scaffold for the treatment of coronary heart disease: overview of its safety and efficacy. Expert Rev Med Devices. 2019, 16, 757- 769.
31. Wittchow, E.; Adden, N.; Riedmüller, J.; Savard, C.; Waksman, R.; Braune, M. Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model. EuroIntervention. 2013, 8, 1441-1450.
32. Ahmad, Z. Principles of corrosion engineering and corrosion control. Elsevier: 2006.
33. Lin, W. J.; Zhang, D. Y.; Zhang, G.; Sun, H. T.; Qi, H. P.; Chen, L. P.; Liu, Z. Q.; Gao, R. L.; Zheng, W. Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Mater Des. 2016, 91, 72-79.
34. Lin, W.; Qin, L.; Qi, H.; Zhang, D.; Zhang, G.; Gao, R.; Qiu, H.; Xia, Y.; Cao, P.; Wang, X.; Zheng, W. Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold. Acta Biomater. 2017, 54, 454-468.
35. Thomas, S.; Birbilis, N.; Venkatraman, M. S.; Cole, I. S. Corrosion of zinc as a function of pH. Corrosion. 2012, 68:015009-1-015009-9.
36. Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat Commun. 2020, 11, 401.
37. Yang, H.; Qu, X.; Wang, M.; Cheng, H.; Jia, B.; Nie, J.; Dai, K.; Zheng, Y. Zn-0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites. Chem Eng J. 2021, 417, 129317.
38. He, J.; Fang, J.; Wei, P.; Li, Y.; Guo, H.; Mei, Q.; Ren, F. Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants. Acta Biomater. 2021, 121, 665-681.
39. Yang, H.; Qu, X.; Lin, W.; Chen, D.; Zhu, D.; Dai, K.; Zheng, Y. Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design. ACS Biomater Sci Eng. 2019, 5, 453-467.
40. Bowen, P. K.; Drelich, J.; Goldman, J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013, 25, 2577- 2582.
41. Drelich, A. J.; Zhao, S.; Guillory, R. J., 2nd; Drelich, J. W.; Goldman, J. Long-term surveillance of zinc implant in murine artery: Surprisingly steady biocorrosion rate. Acta Biomater. 2017, 58, 539-549.
42. Yang, H.; Wang, C.; Liu, C.; Chen, H.; Wu, Y.; Han, J.; Jia, Z.; Lin, W.; Zhang, D.; Li, W.; Yuan, W.; Guo, H.; Li, H.; Yang, G.; Kong, D.; Zhu, D.; Takashima, K.; Ruan, L.; Nie, J.; Li, X.; Zheng, Y. Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials. 2017, 145, 92-105.
43. Zhou, C.; Li, H. F.; Yin, Y. X.; Shi, Z. Z.; Li, T.; Feng, X. Y.; Zhang, J. W.; Song, C. X.; Cui, X. S.; Xu, K. L.; Zhao, Y. W.; Hou, W. B.; Lu, S. T.; Liu, G.; Li, M. Q.; Ma, J. Y.; Toft, E.; Volinsky, A. A.; Wan, M.; Yao, X. J.; Wang, C. B.; Yao, K.; Xu, S. K.; Lu, H.; Chang, S. F.; Ge, J. B.; Wang, L. N.; Zhang, H. J. Long-term in vivo study of biodegradable Zn-Cu stent: A 2-year implantation evaluation in porcine coronary artery. Acta Biomater. 2019, 97, 657-670.
44. Huse, E. C. A new ligature? Chicago Med J Exam. 1878, 172, 11.
45. Windhagen, H.; Radtke, K.; Weizbauer, A.; Diekmann, J.; Noll, Y.; Kreimeyer, U.; Schavan, R.; Stukenborg-Colsman, C.; Waizy, H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng Online. 2013, 12, 62.
46. Erbel, R.; Di Mario, C.; Bartunek, J.; Bonnier, J.; de Bruyne, B.; Eberli, F. R.; Erne, P.; Haude, M.; Heublein, B.; Horrigan, M.; Ilsley, C.; Böse, D.; Koolen, J.; Lüscher, T. F.; Weissman, N.; Waksman, R.; PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) Investigators. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet. 2007, 369, 1869-1875.
47. Campos, C. M.; Muramatsu, T.; Iqbal, J.; Zhang, Y. J.; Onuma, Y.; Garcia-Garcia, H. M.; Haude, M.; Lemos, P. A.; Warnack, B.; Serruys, P. W. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease. Int J Mol Sci. 2013, 14, 24492- 24500.
48. Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P. A.; von Birgelen, C.; Christiansen, E. H.; Wijns, W.; Neumann, F. J.; Kaiser, C.; Eeckhout, E.; Lim, S. T.; Escaned, J.; Onuma, Y.; Garcia-Garcia, H. M.; Waksman, R. Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial. Eur Heart J. 2016, 37,  2701-2709.
49. Haude, M.; Ince, H.; Abizaid, A.; Toelg, R.; Lemos, P. A.; von Birgelen, C.; Christiansen, E. H.; Wijns, W.; Neumann, F. J.; Kaiser, C.; Eeckhout, E.; Lim, S. T.; Escaned, J.; Garcia-Garcia, H. M.; Waksman, R. Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial. Lancet. 2016, 387, 31-39.
50. Haude, M.; Ince, H.; Kische, S.; Abizaid, A.; Tölg, R.; Alves Lemos, P.; Van Mieghem, N. M.; Verheye, S.; von Birgelen, C.; Christiansen, E. H.; Barbato, E.; Garcia-Garcia, H. M.; Waksman, R. Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III. Catheter Cardiovasc Interv. 2018, 92, E502-E511.
51. Peuster, M.; Hesse, C.; Schloo, T.; Fink, C.; Beerbaum, P.; von Schnakenburg, C. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials. 2006, 27, 4955-4962.
52. Waksman, R.; Pakala, R.; Baffour, R.; Seabron, R.; Hellinga, D.; Tio, F. O. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J Interv Cardiol. 2008, 21, 15-20.
53. Shen, D.; Qi, H.; Lin, W.; Zhang, W.; Bian, D.; Shi, X.; Qin, L.; Zhang, G.; Fu, W.; Dou, K.; Xu, B.; Yin, Z.; Rao, J.; Alwi, M.; Wang, S.; Zheng, Y.; Zhang, D.; Gao, R. PDLLA-Zn-nitrided Fe bioresorbable scaffold with 53-μm-thick metallic struts and tunable multistage biodegradation function. Sci Adv. 2021, 7, eabf0614.
54. Bian, D.; Qin, L.; Lin, W.; Shen, D.; Qi, H.; Shi, X.; Zhang, G.; Liu, H.; Yang, H.; Wang, J.; Zhang, D.; Zheng, Y. Magnetic resonance (MR) safety and compatibility of a novel iron bioresorbable scaffold. Bioact Mater. 2020, 5, 260-274.
55. Lin, W.; Zhang, H.; Zhang, W.; Qi, H.; Zhang, G.; Qian, J.; Li, X.; Qin, L.; Li, H.; Wang, X.; Qiu, H.; Shi, X.; Zheng, W.; Zhang, D.; Gao, R.; Ding, J. In vivo degradation and endothelialization of an iron bioresorbable scaffold. Bioact Mater. 2021, 6, 1028-1039.
56. Caputo, R.; Kirwan, J.; Green, S.; Ebner, A. TCT-233 first in man experience with a large bore (≥14 FR) bio-corrodable vascular closure device. J Am Coll Cardiol. 2017, 70, B97.
57. Jafari, S.; Raman, R. K. S.; Davies, C. H. J.; Hofstetter, J.; Uggowitzer, P. J.; Löffler, J. F. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J Mech Behav Biomed Mater. 2017, 65, 634-643.
58. Khakpour, M.; Vafai, K. Critical assessment of arterial transport models. Int J Heat Mass Transfer. 2008, 51, 807-822.
59. Liu, X.; Yang, H.; Xiong, P.; Li, W.; Huang, H. H.; Zheng, Y. Comparative studies of Tris-HCl, HEPES and NaHCO3/CO2 buffer systems on the biodegradation behaviour of pure Zn in NaCl and SBF solutions. Corros Sci. 2019, 157, 205-219.
60. Yadav, A. P.; Nishikata, A.; Tsuru, T. Oxygen reduction mechanism on corroded zinc. J Electroanal Chem. 2005, 585, 142-149.
61. Zheng, Y. F.; Gu, X. N.; Witte, F. Biodegradable metals. Mater Sci Eng R Rep. 2014, 77, 1-34.
62. Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008, 29, 1329-1344.
63. Liu, X.; Sun, J.; Zhou, F.; Yang, Y.; Chang, R.; Qiu, K.; Pu, Z.; Li, L.; Zheng, Y. Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater Des. 2016, 94, 95-104.
64. Li, Y.; Pavanram, P.; Zhou, J.; Lietaert, K.; Bobbert, F. S. L.; Kubo, Y.; Leeflang, M. A.; Jahr, H.; Zadpoor, A. A. Additively manufactured functionally graded biodegradable porous zinc. Biomater Sci. 2020, 8,  2404-2419.
65. Gu, X. N.; Zhou, W. R.; Zheng, Y. F.; Liu, Y.; Li, Y. X. Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett. 2010, 64, 1871-1874.
66. Yan, T.; Tan, L.; Xiong, D.; Liu, X.; Zhang, B.; Yang, K. Fluoride treatment and in vitro corrosion behavior of an AZ31B magnesium alloy. Mater Sci Eng C. 2010, 30, 740-748.
67. Xu, X.; Lu, P.; Guo, M.; Fang, M. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release. Appl Surf Sci. 2010, 256, 2367-2371.
68. Einhorn, T. A.; Gerstenfeld, L. C. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015, 11, 45-54.
69. Chen, Z.; Klein, T.; Murray, R. Z.; Crawford, R.; Chang, J.; Wu, C.; Xiao, Y. Osteoimmunomodulation for the development of advanced bone biomaterials. Mater Today. 2016, 19, 304-321.
70. Kim, S. E.; Song, S. H.; Yun, Y. P.; Choi, B. J.; Kwon, I. K.; Bae, M. S.; Moon, H. J.; Kwon, Y. D. The effect of immobilization of heparin and bone morphogenic protein-2 (BMP-2) to titanium surfaces on inflammation and osteoblast function. Biomaterials. 2011, 32, 366-373.
71. Zhou, L.; Lin, Z.; Ding, J.; Huang, W.; Chen, J.; Wu, D. Inflammatory and biocompatibility evaluation of antimicrobial peptide GL13K immobilized onto titanium by silanization. Colloids Surf B Biointerfaces. 2017, 160, 581-588.
72. Luu, T. U.; Gott, S. C.; Woo, B. W.; Rao, M. P.; Liu, W. F. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl Mater Interfaces. 2015, 7, 28665-28672.
73. Jayant, R. D.; McShane, M. J.; Srivastava, R. In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: towards localized implant inflammation suppression. Int J Pharm. 2011, 403, 268-275.
74. Kzhyshkowska, J.; Gudima, A.; Riabov, V.; Dollinger, C.; Lavalle, P.; Vrana, N. E. Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol. 2015, 98, 953-962.
75. Simon-Walker, R.; Romero, R.; Staver, J. M.; Zang, Y.; Reynolds, M. M.; Popat, K. C.; Kipper, M. J. Glycocalyx-inspired nitric oxide-releasing surfaces reduce platelet adhesion and activation on titanium. ACS Biomater Sci Eng. 2017, 3, 68-77.

Conflict of interest
The authors declare they have no competing interests.
Share
Back to top