Interpretable machine learning-driven optimization of physicochemical properties in hydrogel scaffolds to promote macrophage polarization
The physicochemical properties of hydrogel scaffolds, including storage modulus, loss modulus, swelling ratio, porosity, pore size, and roughness, are capable of promoting macrophage polarization into anti-inflammatory phenotype (M2) to accelerate tissue repair. However, most current studies focus on the effects of individual properties on M2 polarization, examining each in isolation. Enhancing the synergistic effects of multiple physicochemical properties is a challenge. In this work, a novel strategy called interpretable machine learning-driven optimization of physicochemical properties (IML-OPP) is proposed to address this challenge. In the IML-OPP strategy, the optimal value of each physicochemical property was sequentially determined based on its ranked importance. First, an initial value was identified for each property by maximizing the individual effect to promote M2 polarization. Then, these initial values were optimized based on their interactive effects. Once all the optimal values were determined, an optimized combination of physicochemical properties was designed to construct a hydrogel scaffold optimized for promoting M2 polarization. To assess the robustness and universality of the IML-OPP strategy, three optimized combinations of physicochemical properties were generated and evaluated. These results offer theoretical guidance for designing hydrogel scaffolds aimed at promoting M2 polarization.
Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.
- Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev. 2024;207:115204. doi: 10.1016/j.addr.2024.115204
- Chen S, Saeed A, Liu Q, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8:207. doi: 10.1038/s41392-023-01452-1
- Long A, Kleiner A, Looney RJ. Immune dysregulation. J Allergy Clin Immunol. 2023;151:70-80. doi: 10.1016/j.jaci.2022.11.001
- Alvarez MM, Liu JC, Trujillo-de Santiago G, et al. Delivery strategies to control inflammatory response: Modulating M1-M2 polarization in tissue engineering applications. J Control Release. 2016;240:349-363. doi: 10.1016/j.jconrel.2016.01.026
- Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021;133:4-16. doi: 10.1016/j.actbio.2021.03.038
- Tu Z, Chen M, Wang M, et al. Engineering bioactive M2 macrophage‐polarized anti-inflammatory, antioxidant, and antibacterial scaffolds for rapid angiogenesis and diabetic wound repair. Adv Funct Mater. 2021;31:2100924. doi: 10.1002/adfm.202100924
- Fisher LE, Kämmerling L, Alexander MR, Ghaemmaghami AM. Immune-instructive materials as new tools for immunotherapy. Curr Opin Biotechnol. 2022;74:194-203. doi: 10.1016/j.copbio.2021.11.005
- Jain N, Moeller J, Vogel V. Mechanobiology of macrophages: How physical factors coregulate macrophage plasticity and phagocytosis. Annu Rev Biomed Eng. 2019;21:267-297.doi: 10.1146/annurev-bioeng-062117-121224
- Li J, Ke H, Lei X, et al. Controlled-release hydrogel loaded with magnesium-based nanoflowers synergize immunomodulation and cartilage regeneration in tendon-bone healing. Bioact Mater. 2024;36:62-82. doi: 10.1016/j.bioactmat.2024.02.024
- Byun H, Han Y, Kim E, et al. Cell-homing and immunomodulatory composite hydrogels for effective wound healing with neovascularization. Bioact Mater. 2024;36:185-202. doi: 10.1016/j.bioactmat.2024.02.029
- Teng YY, Zou ML, Liu SY, et al. Dual-action icariin-containing thermosensitive hydrogel for wound macrophage polarization and hair-follicle neogenesis. Front Bioeng Biotechnol. 2022;10:902894. doi: 10.3389/fbioe.2022.902894
- Zhao T, Chen L, Yu C, et al. Effect of injectable calcium alginate-amelogenin hydrogel on macrophage polarization and promotion of jawbone osteogenesis. RSC Adv. 2024;14:2016-2026. doi: 10.1039/d3ra05046g
- Li F, Liu T, Liu X, et al. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization. Int J Biol Macromol. 2024;260:129682. doi: 10.1016/j.ijbiomac.2024.129682
- Lv L, Xie Y, Li K, et al. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Adv Healthc Mater. 2018;7:e1800675. doi: 10.1002/adhm.201800675
- Abaricia JO, Shah AH, Chaubal M, Hotchkiss KM, Olivares-Navarrete R. Wnt signaling modulates macrophage polarization and is regulated by biomaterial surface properties. Biomaterials. 2020;243:119920. doi: 10.1016/j.biomaterials.2020.119920
- Frey DD, Engelhardt F, Greitzer EM. A role for “one-factor-at-a-time” experimentation in parameter design. Res Eng Design. 2003;14:65-74. doi: 10.1007/s00163-002-0026-9
- Gu J, Gao C, Wang L. The evolution of artificial intelligence in biomedicine: Bibliometric analysis. JMIR AI. 2023;2:e45770. doi: 10.2196/45770
- Rudin C, Chen C, Chen Z, Huang H, Semenova L, Zhong C. Interpretable machine learning: Fundamental principles and 10 grand challenges. Stat Surv. 2022;16: 1-85. doi: 10.1214/21-ss133
- Cho YR, Kang M. Interpretable machine learning in bioinformatics. Methods. 2020;179:1-2. doi: 10.1016/j.ymeth.2020.05.024
- Chen, X, Li, Y, Li, X, et al. An interpretable machine learning prognostic system for locoregionally advanced nasopharyngeal carcinoma based on tumor burden features. Oral Oncol. 2021;118:105335. doi: 10.1016/j.oraloncology.2021.105335
- Alabi RO, Almangush A, Elmusrati M, Leivo I, Mäkitie AA. An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer. Int J Med Inform. 2022;168:104896. doi: 10.1016/j.ijmedinf.2022.104896
- Echezarreta-López MM, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int J Pharm. 2013;453:641-647. doi: 10.1016/j.ijpharm.2013.06.036
- Rafieyan S, Vasheghani-Farahani E, Baheiraei N, Keshavarz H. MLATE: Machine learning for predicting cell behavior on cardiac tissue engineering scaffolds. Comput Biol Med. 2023;158:106804. doi: 10.1016/j.compbiomed.2023.106804
- Kinney JB, Atwal GS. Equitability, mutual information, and the maximal information coefficient. Proc Natl Acad Sci USA. 2014;111:3354-3359. doi: 10.1073/pnas.1309933111
- Goecks J, Jalili V, Heiser LM, Gray JW. How machine learning will transform biomedicine. Cell. 2020;181:92-101. doi: 10.1016/j.cell.2020.03.022
- Guo JL, Januszyk M, Longaker MT. Machine learning in tissue engineering. Tissue Eng Part A. 2023;29:2-19. doi: 10.1089/ten.TEA.2022.0128
- Raschka, S. Model evaluation, model selection, and algorithm selection in machine learning. ArXiv. 2018. doi: 10.48550/arXiv.1811.12808
- Ponce-Bobadilla AV, Schmitt V, Maier CS, Mensing S, Stodtmann S. Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clin Transl Sci. 2024;17:e70056. doi: 10.1111/cts.70056
- Li X, Zhao Y, Zhang D, et al. Development of an interpretable machine learning model associated with heavy metals’ exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018. Chemosphere. 2023;311:137039. doi: 10.1016/j.chemosphere.2022.137039
- Liu T, Siegel E, Shen D. Deep learning and medical image analysis for COVID-19 diagnosis and prediction. Annu Rev Biomed Eng. 2022;24:179-201. doi: 10.1146/annurev-bioeng-110220-012203
- Calderaro J, Žigutytė L, Truhn D, Jaffe A, Kather JN. Artificial intelligence in liver cancer - new tools for research and patient management. Nat Rev Gastroenterol Hepatol. 2024;21:585-599. doi: 10.1038/s41575-024-00919-y
- Karaoglu IC, Kebabci AO, Kizilel S. Optimization of gelatin methacryloyl hydrogel properties through an artificial neural network model. ACS Appl Mater Interfaces. 2023;15:44796-44808. doi: 10.1021/acsami.3c12207
- Liu W, Zhang Y, Lyu Y, Bosiakov S, Liu Y. Inverse design of anisotropic bone scaffold based on machine learning and regenerative genetic algorithm. Front Bioeng Biotechnol. 2023;11:1241151. doi: 10.3389/fbioe.2023.1241151
- Ghalavand M, Moradi-Chaleshtori M, Dorostkar R, Mohammadi- Yeganeh S, Hashemi SM. Exosomes derived from rapamycin-treated 4T1 breast cancer cells induced polarization of macrophages to M1 phenotype. Biotechnol Appl Biochem. 2023;70:1754-1771. doi: 10.1002/bab.2473
- Zhang H, Qin C, Shi Z, et al. Bioprinting of inorganic-biomaterial/ neural-stem-cell constructs for multiple tissue regeneration and functional recovery. Natl Sci Rev. 2024;11:nwae035. doi: 10.1093/nsr/nwae035
- Wang W, Cui Y, Wei X, et al. CuCo(2)O(4) nanoflowers with multiple enzyme activities for treating bacterium-infected wounds via cuproptosis-like death. ACS Nano. 2024;18:15845-15863. doi: 10.1021/acsnano.4c02825
- Hu Z, Shan J, Jin X, et al. Nanoarchitectonics of in situ antibiotic-releasing acicular nanozymes for targeting and inducing cuproptosis-like death to eliminate drug-resistant bacteria. ACS Nano. 2024;18:24327-24349. doi: 10.1021/acsnano.4c06565
- Sun Y, Zhang W, Luo Z, et al. ZnO‐CuS/F127 hydrogels with multienzyme properties for implant‐related infection therapy by inhibiting bacterial arginine biosynthesis and promoting tissue repair. Adv Funct Mater. 2024;35(8):2415778. doi: 10.1002/adfm.202415778
- Taunk K, De S, Verma S, Swetapadma A. A Brief Review of Nearest Neighbor Algorithm for Learning and Classification. In: Proceedings of the 2019 International Conference on Intelligent Computing and Control Systems (ICCS). Madurai, India: IEEE; 2019. p. 1255-1260. doi: 10.1109/ICCS45141.2019.9065747
- Chen T, Guestrin C. XGBoost. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016. p. 785-794. doi: 10.1145/2939672.2939785
- Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: Unbiased Boosting with Categorical Features. In: Advances in Neural Information Processing Systems 31 (Nips 2018). Vol. 31. 2018. p. 6639-6649.
- Ke GL, Meng Q, Finley T, et al. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In: Advances in Neural Information Processing Systems 30 (Nips 2017). Vol. 30. 2017. p. 3149-3157.
- Kotsiantis SB. Decision trees: A recent overview. Artif Intell Rev. 2011;39:261-283. doi: 10.1007/s10462-011-9272-4
- Breiman L. Random forests. Mach Learn. 2001;45:5-32. doi: 10.1023/A:1010950718922
- Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63:3-42. doi: 10.1007/s10994-006-6226-1
- Johnson R, Zhang T. Learning nonlinear functions using regularized greedy forest. IEEE Trans Pattern Anal Mach Intell. 2014;36:942-954. doi: 10.1109/TPAMI.2013.159
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. doi: 10.1038/nature14539
- Reddy R, Kumar UMA. Classification of user’s review using modified logistic regression technique. Int J Syst Assur Eng Manag. 2022;15:279-286. doi: 10.1007/s13198-022-01711-4
- Hearst MA. Support vector machines. IEEE Intell Syst Their Appl. 1998;13:18-21. doi: 10.1109/5254.708428
- Tharwat A, Gaber T, Ibrahim A, Hassanien AE. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017;30:169-190. doi: 10.3233/AIC-170729
- Ghosh A, SahaRay R, Chakrabarty S, Bhadra S. Robust generalised quadratic discriminant analysis. Pattern Recognit. 2021;117:107981. doi: 10.1016/j.patcog.2021.107981
- Fei W, Changshui Z. Label propagation through linear neighborhoods. IEEE Trans Knowl Data Eng. 2008;20:55-67. doi: 10.1109/TKDE.2007.190672
- Csató L, Fokoué E, Opper M, Schottky B, Winther O. Efficient Approaches to Gaussian Process Classification. In: Advances in Neural Information Processing Systems 12. Vol. 12. 2000. p. 251-257.
- Arpit D, Wu S, Natarajan P, Prasad R, Natarajan P. Ridge Regression based Classifiers for Large Scale Class Imbalanced Datasets. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV). Clearwater Beach, FL, USA: IEEE; 2013. p. 267-274. doi: 10.1109/WACV.2013.6475028
- Anand MV, KiranBala B, Srividhya SR, Kavitha C, Younus M, Rahman MH. Gaussian naïve bayes algorithm: A reliable technique involved in the assortment of the segregation in cancer. Mob Inform Syst. 2022; 2022:1-7. doi: 10.1155/2022/2436946
- Sayfullina L, Eirola E, Komashinsky D, et al. Efficient Detection of Zero-day Android Malware Using Normalized Bernoulli Naive Bayes. In: 2015 IEEE Trustcom/BigDataSE/ISPA. Helsinki, Finland: IEEE; 2015. p. 198-205. doi: 10.1109/Trustcom.2015.375
- Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y. Online passive-aggressive algorithms. J Mach Learn Res. 2006;7:551-585.