·
ORIGINAL RESEARCH
·

Comparative analysis of collagen from different sources for wound and burn management

Yuliya Kulikova1* Stanislav Sukhikh1 Anastasiia Zhikhreva1 Svetlana Noskova1 Olga Babich1
Show Less
1 Scientific and Educational Center of Industrial Biotechnology, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Submitted: 2 April 2025 | Revised: 13 May 2025 | Accepted: 15 May 2025 | Published: 20 June 2025
Copyright © 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution–NonCommercial–ShareAlike 4.0 License.
Abstract

Burns are serious injuries commonly treated using dressings and tissue-engineered biological or synthetic skin substitutes. Collagen is a promising biomaterial for tissue engineering due to its biochemical composition and structure. This study comparatively examined the properties of collagen derived from the jellyfish Aurelia aurita and Rhopilema hispidum under varying temperature conditions, alongside collagen from other animal sources. The potential application of jellyfish-derived collagen in burn and wound treatment was assessed based on these analyses. The molecular weight of jellyfish collagen ranged from 105 kDa to 240 kDa. The isoelectric point was 5.19 for R. hispidum and 4.90 for A. aurita. Compared to animal and avian collagen, jellyfish collagen exhibited a lower denaturation temperature. It was inferior in hydrophilicity, hydration degree, mechanical strength, and solubility, indicating a need for additional modification before use in tissue engineering. Microscopic analysis revealed a highly porous structure in both jellyfish species. Pore sizes for A. aurita ranged from 57.1 μm to 256.7 μm with wall thicknesses of 58.2 – 241.7 μm; for R. hispidum, pore sizes ranged from 57.1 μm to 337.6 μm and wall thicknesses from 48.7 μm to 163.6 μm. In vitro studies using human umbilical vein endothelial cells demonstrated enhanced migration on the 1st day in the presence of jellyfish collagen, indicating a lack of cytotoxicity. In vivo mouse model experiments showed rapid collagen assimilation when sutured subcutaneously. Minor inflammation observed in R. hispidum-based sponges was likely due to inadequate sterilization. These findings indicate that A. aurita and R. hispidum are viable marine sources of collagen and hold significant promise for future applications in regenerative medicine and wound healing.

Keywords
Jellyfish
Regenerative medicine
Collagen
Elastic modulus
Oxygen permeability
Membrane
Funding
The work was supported by the Ministry of Science and Higher Education of the Russian Federation, contract no. 075-15-2023-601 (extension no. 13.2251.21.0219).
Conflict of interest
The authors declare that they have no competing interests.
References

Below is the content of the Citations in the paper which has been de-formatted, however, the content stays consistent with the original.

  1. Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes-significant marine resources with potential in the wound-healing process: A review. Mar Drugs. 2023;21(4):201. doi: 10.3390/md21040201

 

  1. Wang Y, Beekman J, Hew J, et al. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev. 2018;123:3-17. doi: 10.1016/j.addr.2017.09.018

 

  1. Herndon DN, Tompkins RG. Support of the metabolic response to burn injury. Lancet. 2004;363:1895-1902. doi: 10.1016/S0140-6736(04)16360-5

 

  1. Czapran A, Headdon W, Deane AM, Lange K, Chapman MJ, Heyland DK. International observational study of nutritional support in mechanically ventilated patients following burn injury. Burns. 2015;41(3):510-518. doi: 10.1016/j.burns.2014.09.013.4

 

  1. Pozzolini M, Millo E, Oliveri C, et al. Elicited ROS scavenging activity, photoprotective, and wound-healing properties of collagen-derived peptides from the marine sponge Chondrosia reniformis. Mar. Drugs. 2018;16(12):465. doi: 10.3390/md16120465

 

  1. Verde MEQL, Ferreira-Júnior AEC, De Barros-Silva PG, et al. Nile tilapia skin (Oreochromis niloticus) for burn treatment: Ultrastructural analysis and quantitative assessment of collagen. Acta Histochem. 2021;123(6):151762. doi: 10.1016/j.acthis.2021.151762

 

  1. Li Z, Ruan C, Niu X. Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. Med Nov Technol Devices. 2023;17:100211. doi: 10.1016/j.medntd.2023.100211

 

  1. Terzi A, Storelli E, Bettini S, et al. Effects of processing on structural, mechanical and biological properties of collagen-based substrates for regenerative medicine. Sci Rep. 2018;8(1):1429. doi: 10.1038/s41598-018-19786-0

 

  1. Ben C, Liu X, Shen T, et al. A recombinant human collagen hydrogel for the treatment of partial-thickness burns: A prospective, self-controlled clinical study. Burns. 2021;47(3):634-642. doi: 10.1016/j.burns.2020.01.006

 

  1. Yamada S, Yamamoto K, Ikeda T, Yanagiguchi K, Hayashi Y. Potency of fish collagen as a scaffold for regenerative medicine. Biomed Res Int. 2014;2014(1):302932. doi: 10.1155/2014/302932

 

  1. Geahchan S, Baharlouei P, Rahman A. Marine collagen: A promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar Drugs. 2022(20):61. doi: 10.3390/md20010061

 

  1. Davison-Kotler E, Marshall WS, García-Gareta E. Sources of collagen for biomaterials in skin wound healing. Bioengineering (Basel). 2019;6(3):56. doi: 10.3390/bioengineering6030056

 

  1. Hoyer B, Bernhardt A, Lode A, et al. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater. 2014;10(2):883-892. doi: 10.1016/j.actbio.2013.10.022

 

  1. Nagai T, Worawattanamateekul W, Suzuki N. Isolation and characterization of collagen from rhizostomous jellyfish (Rhopilema asamushi). Food Chem. 2000;70:205-208. doi: 10.1016/S0308-8146(00)00081-9

 

  1. Nagai T, Ogawa T, Nakamura T. Collagen of edible jellyfish exumbrella. J Sci Food Agric. 1999;79:855-858. doi: 10.1002/(SICI)1097-0010(19990501)

 

  1. Felician FF, Yu RH, Li MZ, et al. The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum. Chin J Traumatol. 2019;22(1):12-20. doi: 10.1016/j.cjtee.2018.10.004

 

  1. Lahmar A, Rjab M, Sioud F, et al. Design of 3D hybrid plant extract/ marine and bovine collagen matrixes as potential dermal scaffolds for skin wound healing. Sci World J. 2022;30:8788061. doi: 10.1155/2022/8788061

 

  1. Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi, Y. Collagen-based medical devices for regenerative medicine and tissue engineering. Appl Biochem Biotechnol. 2024;196(8):5563-5603. doi: 10.1007/s12010-023-04793-3

 

  1. Wenger MP, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen fibrils. Biophys J. 2007;93(4):1255-1263. doi: 10.1529/biophysj.106.103192

 

  1. Barzkar N, Babich OO, Sukhikh SA, et al. Aurelia aurita jellyfish collagen: Recovery properties. Food Raw Mater. 2024;13(2):296-305. doi: 10.21603/2308-4057-2025-2-648

 

  1. Cooksey K. In: Robertson GL, editor. Food Packaging, Principles and Practices. 2nd ed. Boca Raton, FL: Taylor and Francis, CRC; 2006. p. 57-59. doi: 10.1002/pts.777

 

  1. Barzideh Z, Latiff AA, Gan CY, Benjakul S, Karim AA. Isolation and characterisation of collagen from the ribbon jellyfish (Chrysaora sp.). Int J Food Sci Technol. 2014;49:6-1490-1499. doi: 10.1111/IJFS.12464

 

  1. Montero P, Jimenez-Colmenero F, Borderias J. Effect of pH and the presence of NaCl on some hydration properties of collagenous material from trout (Salmo irideus Gibb) muscle and skin. J Sci Food Agric. 1991;54:137-146. doi: 10.1002/jsfa.2740540115

 

  1. Witono JR, Noordergraaf IW, Heeres HJ, Janssen LPBM. Water absorption, retention and the swelling characteristics of cassava starch grafted with polyacrylic acid. Carbohydr Polym. 2014;(103):325-332. doi: 10.1016/j.carbpol.2013.12.056

 

  1. Moore S, Stein WH. Chromatography of amino acids, colorimetric ninhydrin method for analysis of the effluent. Fed Proc. 1948;7(1):174.

 

  1. Ahmad M, Benjakul S, Nalinanon S. Compositional and physicochemical characteristics of acid solubilized collagen extracted from the skin of unicorn leatherjacket (Aluterus monoceros). Food Hydrocoll. 2010;24:588-594. doi: 10.1016/J.FOODHYD.2010.03.001

 

  1. Kittiphattanabawon P, Benjakul S, Visessanguan W, Shahidi, F. Isolation and characterization of collagen from the cartilages of brownbanded bamboo shark (Chiloscyllium punctatum) and blacktip shark (Carcharhinus limbatus). LWT Food Sci Technol. 2010;43:792-800. doi: 10.1016/J.LWT.2010.01.006

 

  1. Chen X, Guo Z, Zhang J, Li Y, Duan R. A new method for determining the denaturation temperature of collagen. Food Chem. 2021;343:128393. doi: 10.1016/j.foodchem.2020.128393

 

  1. Pawelec KM, Best SM, Cameron R. Collagen: A network for regenerative medicine. J Mater Chem. 2016;4(40):6484-6496. doi: 10.1039/c6tb00807k

 

  1. Krki N. Chitosan-laminated collagen film. Food Technol Biotechnol. 2012;50(4):483-489.

 

  1. Thomas V, Dean DR, Vohra YK. Nanostructured biomaterials for regenerative medicine. Curr Nanosci. 2006;2(3):155-177. doi: 10.2174/1573413710602030155

 

  1. Krishnamoorthy G, Selvakumar R, Sastry TP, Mandal AB, Doble M. Effect of D-amino acids on collagen fibrillar assembly and stability: Experimental and modelling studies. Biochem Eng J. 2013;75:92-100. doi: 10.1016/j.bej.2013.04.002

 

  1. Riching KM, Cox BL, Salick MR, et al. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys J. 2014;107(11):2546-2558. doi: 10.1016/j.bpj.2014.10.035

 

  1. Fraley SI, Wu PH, He L, et al. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci Rep. 2015;5:14580. doi: 10.1038/srep14580

 

  1. Sapudom J, Rubner S, Martin S, et al. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks. Biomaterials. 2015;52:367-37513. doi: 10.1016/j.biomaterials.2015.02.022

 

  1. Fu R, Zhu K, Li Z, et al. Type III collagen promotes pseudopodium-driven cell migration. Chem Bio Eng. 2024;2(2):97-109. doi: 10.1021/cbe.4c00133

 

  1. Condeelis J. Life at the leading edge: The formation of cell protrusions. Annu Rev Cell Biol. 1993;9:411-444. doi: 10.1146/annurev.cb.09.110193.002211

 

  1. Parent CA, Blacklock BJ, Froehlich WM, Murphy DB, Devreotes PN. G protein signaling events are activated at the leading edge of chemotactic cells. Cell. 1998;95(1):81-91. doi: 10.1016/s0092-8674(00)81784-5

 

  1. Chodniewicz D, Zhelev DV. Novel pathways of F-actin polymerization in the human neutrophil. Blood. 2003;102(6):2251-2258. doi: 10.1182/blood-2002-09-2936

 

  1. Zigmond SH. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977;75(2):606-616. doi: 10.1083/jcb.75.2.606

 

  1. Holly SP, Larson MK, Parise LV. Multiple roles of integrins in cell motility. Exp Cell Res. 2000;261(1):69-74. doi: 10.1006/excr.2000.5040

 

  1. Lin YK, Liu DC. Comparison of physical-chemical properties of type I collagen from different species. Food Chem. 2006;99:244-251. doi: 10.1016/j.foodchem.2005.06.053

 

  1. Oechsle AM, Akgün D, Krause F. Microstructure and physical-chemical propertie sof chicken collagen. Food Struct. 2016;7:29-37. doi: 10.1016/j.foostr.2016.02.001

 

  1. Potti RB, Fahad MO. Extraction and characterization of collagen from broiler chicken feet (Gallus gallus domesticus) -biomolecules from poultry waste. J Pure Appl Microbiol. 2017;11(1):315-322. doi: 10.22207/jpam.11.1.39

 

  1. Kittiphattanabawon P, Benjakul S, Visessanguan W, Kishimura H, Shahidi F. Isolation and characterisation of collagen from the skin of brown banded bamboo shark (Chiloscyllium punctatum). Food Chem. 2010;119:1519-1526. doi: 10.1016/j.foodchem.2009.09.037

 

  1. Perez-Puyana VM, Jiménez-Rosado M, Romero A, Guerrero A. Highly porous protein-based 3D scaffolds with different collagen concentrates for potential application in tissue engineering. J Appl Polym Sci. 2019;136:47954. doi: 10.1002/APP.47954

 

  1. Guan Y, He J, Chen J, et al. Valorization of fish processing by-products: Microstructural, rheological, functional, and properties of silver carp skin type I collagen. Foods. 2022;11:2985. doi: 10.3390/foods11192985

 

  1. Khong NMH, Yusoff FM, Jamilah B, et al. Improved collagen extraction from jellyfish (Acromitus hardenbergi) with increased physical-induced solubilization processes. Food Chem. 2018;251:41-50. doi: 10.1016/J.Foodchem.2017.12.083

 

  1. Balikci E. Characterization of collagen from jellyfish Aurelia aurita and investigation of biomaterials potentials. Appl Biochem Biotechnol. 2024;196:6200-6221. doi: 10.1007/s12010-023-04848-5

 

  1. Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Adv Funct Mater. 2019;29(3):1804943. doi: 10.1002/adfm.201804943

 

  1. Van Vlierberghe S, Graulus GJ, Keshari Samal S, Van Nieuwenhove I, Dubruel P. 12 - Porous hydrogel biomedical foam scaffolds for tissue repair. In: Netti P, editor. Biomedical Foams for Tissue Engineering Applications. Sawston UK: Woodhead Publishing; 2014. p. 335-390. doi: 10.1533/9780857097033.2.335

 

  1. Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Fabrication and characterization of hydrogels based on gelatinised collagen with potential application in tissue engineering. Polymers (Basel). 2020;12(5):1146. doi: 10.3390/polym12051146

 

  1. Pugliano M, Vanbellinghen X, Schwinté P, Benkirane-Jessel N, Keller L. Combined jellyfish collagen type ii, human stem cells and tgf-Β3 as a therapeutic implant for cartilage repair. J Stem Cell Res Ther. 2017;7(2):382. doi: 10.4172/2157-7633.1000382

 

  1. Mathew-Steiner SS, Roy S, Sen CK. Collagen in wound healing. Bioengineering. 2021;8:5-63. doi: 10.3390/bioengineering8050063

 

  1. Zhang Z, Li G, Shi B. Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes. J Soc Leather Technol Chem. 2005;90:23-28.

 

  1. He L, Lan W, Zhao Y. Characterization of biocompatible pig skin collagen and application of collagen-based films for enzyme immobilization. RSC Adv. 2020;10:7170-7180. doi: 10.1039/c9ra10794k

 

  1. Sakai R, Ikeda S, Isemura T. Soluble collagen of chicken leg tendon, its denaturation temperature and hydrodynamic properties. Bull Chem Soc Jpn. 1967;40(12):2890-2894. doi: 10.1246/bcsj.40.2890

 

  1. Swatschek D, Schatton W, Kellermann J, Müller WE, Kreuter J. Marine sponge collagen: Isolation, characterization and effects on the skin parameters surface-pH, moisture and sebum. Eur J Pharm Biopharm. 2002;53(1):107-113. doi: 10.1016/s0939-6411(01)00192-8

 

  1. Manimegalai NP, Ramanathan G, Gunasekaran D, Jeyakumar GFS. Cardinal acuity on the extraction and characterization of soluble collagen from the underutilized abattoir junks for clinical demands. Process Biochem. 2022;122 :29-37. doi: 10.1016/j.procbio.2022.08.011

 

  1. Muyonga JH, Cole CGB, Duodu KG. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chem. 2004;85:1-81-89. doi: 10.1016/j.foodchem.2003.06.006

 

  1. Neuffer MC, McDivitt J, Rose D, King K, Cloonan CC, Vayer JS. Hemostatic dressings for the first responder: A review. Mil Med. 2004;169:716-720. doi: 10.7205/milmed.169.9.716

 

  1. Cheng X, Shao Z, Li C, Yu L, Raja M, Liu C. Isolation, characterization and evaluation of collagen from jellyfish Rhopilema esculentum Kishinouye for use in hemostatic applications. PLoS One. 2017;12(1):e0169731. doi: 10.1371/journal.pone.0169731

 

  1. Shi Y, Zhang H, Zhang X, Chen Z, Zhao D, Ma J. Comparative study of two porous sponge scaffolds prepared by collagen derived from porcine skin and fish scales as burn wound dressings in a rabbit model. Regen Biomater. 2020;7(1):63-70. doi: 10.1093/rb/rbz036

 

  1. Coppola D, Oliviero M, Vitale GA, et al. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Mar Drugs. 2020;18(4):214. doi: 10.3390/md18040214

 

  1. Mahesh L, Kurtzman G, Shukla S. Regeneration in periodontics: Collagen-a review of its properties and applications in dentistry. Compend Contin Educ Dent. 2015;36(5):358-363.

 

  1. De Jonge N, Foolen J, Brugmans MC, Söntjens SH, Baaijens FP, Bouten CV. Degree of scaffold degradation influences collagen (re) orientation in engineered tissues. Tissue Eng Part A. 2014;20(11-12):1747-1757. doi: 10.1089/ten.TEA.2013.0517

 

  1. Buchert J, Ercili Cura D, Ma H, et al. Crosslinking food proteins for improved functionality, Annu Rev Food Sci Technol. 2010;1:113-138. doi: 10.1146/annurev.food.080708.100841

 

  1. Nair M, Best SM, Cameron RE. Crosslinking collagen constructs: Achieving cellular selectivity through modifications of physical and chemical properties. Appl Sci. 2020;10(19):6911. doi: 10.3390/app10196911

 

  1. Alavarse AC, FrachiniE CG, Da Silva RLCG, Lima VH, Shavandi A, Petri DFS. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int J Biol Macromol. 2022;202:558. doi: 10.1016/j.ijbiomac.2022.01.029

 

  1. Leonard AR, Cumming MH, Ali MA, Cabral JD. Fish collagen cross-linking strategies to improve mechanical and bioactive capabilities for tissue engineering and regenerative medicine. Adv Funct Mater. 2024;2405335. doi: 10.1002/adfm.202405335

 

  1. O’Neill L, Dobbyn P, Kulkarni M, Pandit A. Wound healing using plasma modified collagen. Clin Plasma Med. 2018;12:23-32. doi: 10.1016/j.cpme.2018.10.002

 

  1. Lv X, Lai L, Xu Y, et al. Effects of riboflavin/ultraviolet-A scleral collagen cross-linking on regional scleral thickness and expression of MMP-2 and MT1-MMP in myopic guinea pigs, PLoS One. 2023;18(1):0279111. doi: 10.1371/journal.pone.0279111

 

  1. Ouyang L, Highley CB, Sun W, Burdick JA. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater. 2017;29(8):1604983. doi: 10.1002/adma.201604983

 

  1. Adamiak K, Sionkowska A. Current methods of collagen cross-linking. Int J Biol Macromol. 2020;161:550-560. doi: 10.1016/j.ijbiomac.2020.06.075

 

  1. Ab Aziz NA. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum. Prep Biochem Biotechnol. 2021;51(1):44-53. doi: 10.1080/10826068.2020.1789991

 

  1. Sampath Kumar NS, Nazeer RA, Jaiganesh R. Wound healing properties of collagen from the bone of two marine fishes. Int J Pept Res Ther. 2012;18-185-192. doi: 10.1007/s10989-012-9291-2

 

  1. Santos MH, Silva RM, Dumont VC. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications. Mater Sci Eng C Mater Biol Appl. 2013;33(2):790-800. doi: 10.1016/j.msec.2012.11.003

 

  1. Zourazema S, Zendeh Z, Aksun ET, et al. Extraction, characterization, and biocompatibility evaluation of type i collagen from chicken feet skin. Biomed Mater Devices. 2025:1-15. doi: 10.1007/s44174-024-00266-1

 

  1. Buehler MJ. Nature designs tough collagen: Explaining the nanostructure of collagen fibrils. Proc Natl Acad Sci USA. 2006;103(33):12285-12290. doi: 10.1073/pnas.0603216103

 

  1. Chowdhury SR, Mh Busra MF, Lokanathan Y, et al. Collagen type I: A versatile biomaterial. Adv Exp Med Biol. 2018;1077:389-414. doi: 10.1007/978-981-13-0947-2_21

 

  1. Cunniffe GM, O’Brien FJ. Collagen scaffolds for orthopedic regenerative medicine. JOM. 2011;63:66-73. doi: 10.1007/s11837-011-0061-y

 

  1. Ahmed M, Verma AK, Patel R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review. Sustain Chem Pharm. 2020;18:100315. doi: 10.1016/j.scp.2020.100315
Share
Back to top