Biomaterials Translational ›› 2021, Vol. 2 ›› Issue (1): 50-60.doi: 10.3877/cma.j.issn.2096-112X.2021.01.007
• RESEARCH ARTICLE • Previous Articles Next Articles
Dahae Seong, Monchupa Kingsak, Yuan Lin, Qian Wang, Shamia Hoque*()
Received:
2021-01-17
Revised:
2021-03-08
Accepted:
2021-03-21
Online:
2021-03-31
Published:
2021-03-28
Contact:
Shamia Hoque
E-mail:hoques@cec.sc.edu
Seong, D.; Kingsak, M.; Lin, Y.; Wang, Q.; Hoque, S, Fate and transport of enveloped viruses in indoor built spaces – through understanding vaccinia virus and surface interactions. Biomater Transl. 2021, 2(1), 50-60.
Figure 2. VACV structural and physical properties. (A) Schematic illustration of the VACV structure, genomic capacity, shape, average size, and surface charge. (B) Fluorescence imaging of green fluorescence protein-tagged VACV (green). (C) Zeta potentials of VACV over the pH 8 and pH 4.5 in 1 mM Tris buffer. Data are expressed as mean ± SD. (D) Atomic force microscopy image of VACV deposited on PDDA-glass substrate. The black arrows point to VACV particles. (E) Representative transmission electron microscopic images of VACV. The white arrows point to (1) outer membrane, (2) core membrane, and (3) surface tubules. Scale bars: 100 μm in B, 20 μm in enlarged part in B, 1 μm in D and 100 nm in E. PDDA: poly(diallyl dimethylammonium chloride); VACV: vaccinia virus. The duplicate samples were measured and two experiments were repeated to acquire the data.
Sensor | VACV adhesion | VACV detachment | |||
---|---|---|---|---|---|
∆f (Hz) | ∆D (×10-6) | ∆f (Hz) | ∆D (×10-6) | ||
Gold | -5.77 | 1.90 | -5.37 | 1.39 | |
SiO2 | -31.70 | 1.85 | -27.60 | 0.98 | |
Glass | -29.81 | 2.52 | -27.22 | 1.72 | |
Stainless-steel | -22.16 | 2.40 | -21.23 | 2.11 |
Table 1 Frequency (?f) and dissipation (?D) shift due to VACV adhesion and mass (?m) of adhered VACV on the sensor surface calculated by Sauerbrey relation
Sensor | VACV adhesion | VACV detachment | |||
---|---|---|---|---|---|
∆f (Hz) | ∆D (×10-6) | ∆f (Hz) | ∆D (×10-6) | ||
Gold | -5.77 | 1.90 | -5.37 | 1.39 | |
SiO2 | -31.70 | 1.85 | -27.60 | 0.98 | |
Glass | -29.81 | 2.52 | -27.22 | 1.72 | |
Stainless-steel | -22.16 | 2.40 | -21.23 | 2.11 |
Figure 3. Quartz crystal microbalance with dissipation analysis of the frequency (?f, black line) and dissipation (?D, red line) (×10-6) shifts of VACV on gold (A), SiO2 (B), glass (C), and stainless-steel (D). Black arrow: VACV injection; blue arrow: rinsing with MilliQ. (E) Mass of adhered and remained virus layer on the sensor surfaces calculated by Sauerbrey relation. SS: stainless-steel; VACV: vaccinia virus. This is representative of an experiment started at 2.00 × 105 plaque-forming unit/mL.
Figure 4. Frequency-dissipation plots for VACV for gold (A), SiO2 (B), glass (C), and stainless-steel (D). ‘1’, ‘2’, and ‘3’ show the steps of the adhesion process, ‘1’ adhesion, ‘2’ reaching saturation and ‘3’ detachment due to the wash cycle. The numbers correspond to the slope represented by K1, K2 and K3. VACV: vaccinia virus. This is representative of an experiment started at 2.00 × 105 plaque-forming unit/mL.
1. |
Hall, C. B.; Douglas, R. G. Jr. Geiman, J. M. Possible transmission by fomites of respiratory syncytial virus. J Infect Dis. 1980, 141, 98-102.
doi: 10.1093/infdis/141.1.98 URL pmid: 7365274 |
2. |
Chan, K. H.; Peiris, J. S.; Lam, S. Y.; Poon, L. L.; Yuen, K. Y.; Seto, W. H. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Adv Virol. 2011, 2011, 734690.
doi: 10.1155/2011/734690 URL pmid: 22312351 |
3. | van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. 2020, 382, 1564-1567. |
4. |
Chin, A. W. H.; Chu, J. T. S.; Perera, M. R. A.; Hui, K. P. Y.; Yen, H. L.; Chan, M. C. W.; Peiris, M.; Poon, L. L. M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020, 1, e10.
doi: 10.1016/S2666-5247(20)30003-3 URL pmid: 32835322 |
5. |
Azuma, K.; Yanagi, U.; Kagi, N.; Kim, H.; Ogata, M.; Hayashi, M. Environmental factors involved in SARS-CoV-2 transmission: effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ Health Prev Med. 2020, 25, 66.
doi: 10.1186/s12199-020-00904-2 URL pmid: 33143660 |
6. |
Biryukov, J.; Boydston, J. A.; Dunning, R. A.; Yeager, J. J.; Wood, S.; Reese, A. L.; Ferris, A.; Miller, D.; Weaver, W.; Zeitouni, N. E.; Phillips, A.; Freeburger, D.; Hooper, I.; Ratnesar-Shumate, S.; Yolitz, J.; Krause, M.; Williams, G.; Dawson, D. G.; Herzog, A.; Dabisch, P.; Wahl, V.; Hevey, M. C.; Altamura, L. A. Increasing temperature and relative humidity accelerates inactivation of SARS-CoV-2 on surfaces. mSphere. 2020, 5:e00441-20.
doi: 10.1128/mSphere.00441-20 URL pmid: 32611701 |
7. |
Chen, Y. C.; Huang, L. M.; Chan, C. C.; Su, C. P.; Chang, S. C.; Chang, Y. Y.; Chen, M. L.; Hung, C. C.; Chen, W. J.; Lin, F. Y.; Lee, Y. T. SARS in hospital emergency room. Emerg Infect Dis. 2004, 10, 782-788.
doi: 10.3201/eid1005.030579 URL pmid: 15200809 |
8. |
Stilianakis, N. I.; Drossinos, Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. J R Soc Interface. 2010, 7, 1355-1366.
doi: 10.1098/rsif.2010.0026 URL pmid: 20164087 |
9. |
Wei, J.; Li, Y. Airborne spread of infectious agents in the indoor environment. Am J Infect Control. 2016, 44, S102-108.
doi: 10.1016/j.ajic.2016.06.003 URL pmid: 27590694 |
10. |
Liu, L.; Li, Y.; Nielsen, P. V.; Wei, J.; Jensen, R. L. Short-range airborne transmission of expiratory droplets between two people. Indoor Air. 2017, 27, 452-462.
doi: 10.1111/ina.12314 URL pmid: 27287598 |
11. | National Center for Immunization and Respiratory Diseases (NCIRD), Division of Viral Diseases. Public health guidance for potential COVID-19 exposure associated with travel. https://www.cdc.gov/coronavirus/2019-ncov/php/risk-assessment.html. Accessed by March 30, 2020. |
12. |
Omer, S. B.; Malani, P.; Del Rio, C. The COVID-19 pandemic in the US: a clinical update. JAMA. 2020, 323, 1767-1768.
URL pmid: 32250388 |
13. |
Read, R. A choir decided to go ahead with rehearsal. Now dozens of members have COVID-19 and two are dead. Los Angeles Times. https://www.latimes.com/world-nation/story/2020-03-29/coronavirus-choir-outbreak. Accessed by March 1, 2021.
URL pmid: 11648770 |
14. |
Correia, G.; Rodrigues, L.; Gameiro da Silva, M.; Gonçalves, T. Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med Hypotheses. 2020, 141, 109781.
URL pmid: 32361528 |
15. |
Morrison, G.; Lakey, P. S. J.; Abbatt, J.; Shiraiwa, M. Indoor boundary layer chemistry modeling. Indoor Air. 2019, 29, 956-967.
doi: 10.1111/ina.12601 URL pmid: 31461792 |
16. | K. Lai, A. C.; Nazaroff, W. W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J Aerosol Sci. 2000, 31, 463-476. |
17. | Ziskind, G.; Fichman, M.; Gutfinger, C. Effects of shear on particle motion near a surface—application to resuspension. J Aerosol Sci. 1998, 29, 323-338. |
18. | Göransson, A.; Trägårdh, C. Mechanisms responsible for sub-micron particle deposition in a laminar wall-jet. Colloids Surf Physicochem Eng Aspects. 2002, 211, 133-144. |
19. | Sjollema, J.; Busscher, H. J.; Weerkamp, A. H. Deposition of oral streptococci and polystyrene latices onto glass in a parallel plate flow cell. Biofouling. 1988, 1, 101-112. |
20. |
Busscher, H. J.; van der Mei, H. C. Microbial adhesion in flow displacement systems. Clin Microbiol Rev. 2006, 19, 127-141.
doi: 10.1128/CMR.19.1.127-141.2006 URL pmid: 16418527 |
21. |
Mitik-Dineva, N.; Wang, J.; Truong, V. K.; Stoddart, P.; Malherbe, F.; Crawford, R. J.; Ivanova, E. P. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol. 2009, 58, 268-273.
doi: 10.1007/s00284-008-9320-8 URL pmid: 19020934 |
22. | Kesavan, J. S.; Humphreys, P. D.; Bottiger, J. R.; Valdes, E. R.; Rastogi, V. K.; Knox, C. K. Deposition method, relative humidity, and surface property effects of bacterial spore reaerosolization via pulsed air jet. Aerosol Sci Technol. 2017, 51, 1027-1034. |
23. |
Hruby, D. E.; Guarino, L. A.; Kates, J. R. Vaccinia virus replication. I. Requirement for the host-cell nucleus. J Virol. 1979, 29, 705-715.
doi: 10.1128/JVI.29.2.705-715.1979 URL pmid: 107327 |
24. |
Mendoza, E. J.; Manguiat, K.; Wood, H.; Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr Protoc Microbiol. 2020, 57, ecpmc105.
doi: 10.1002/cpmc.105 URL pmid: 32475066 |
25. |
Lee, J.; Jang, J.; Akin, D.; Savran, C. A.; Bashir, R. Real-time detection of airborne viruses on a mass-sensitive device. Appl Phys Lett. 2008, 93, 13901.
doi: 10.1063/1.2956679 URL pmid: 19529841 |
26. |
Peduru Hewa, T. M.; Tannock, G. A.; Mainwaring, D. E.; Harrison, S.; Fecondo, J. V. The detection of influenza A and B viruses in clinical specimens using a quartz crystal microbalance. J Virol Methods. 2009, 162, 14-21.
doi: 10.1016/j.jviromet.2009.07.001 URL pmid: 19628008 |
27. | Jaiswal, A.; Smoukov, S.; Poggi, M.; Grzybowski, B. Quartz crystal microbalance with dissipation monitoring (QCM-D): real-time characterization of nano-scale interactions at surfaces. In Proceedings of the 2008 NSTI Nanotechnology Conference and Trade, Bosten, 2008. |
28. | Hook, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir. 1998, 14, 729-734. |
29. |
Jordan, J. L.; Fernandez, E. J. QCM-D sensitivity to protein adsorption reversibility. Biotechnol Bioeng. 2008, 101, 837-842.
doi: 10.1002/bit.21977 URL pmid: 18623227 |
30. |
Dixon, M. C. Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Tech. 2008, 19, 151-158.
URL pmid: 19137101 |
31. |
Dunér, G.; Thormann, E.; Dėdinaitė, A. Quartz crystal microbalance with dissipation (QCM-D) studies of the viscoelastic response from a continuously growing grafted polyelectrolyte layer. J Colloid Interface Sci. 2013, 408, 229-234.
doi: 10.1016/j.jcis.2013.07.008 URL pmid: 23932084 |
32. |
Doliška, A.; Ribitsch, V.; Stana Kleinschek, K.; Strnad, S. Viscoelastic properties of fibrinogen adsorbed onto poly(ethylene terephthalate) surfaces by QCM-D. Carbohydr Polym. 2013, 93, 246-255.
doi: 10.1016/j.carbpol.2012.02.075 URL pmid: 23465926 |
33. |
Roberts, K. L.; Smith, G. L. Vaccinia virus morphogenesis and dissemination. Trends Microbiol. 2008, 16, 472-479.
doi: 10.1016/j.tim.2008.07.009 URL pmid: 18789694 |
34. |
Kaufman, H. L.; Kohlhapp, F. J.; Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015, 14, 642-662.
doi: 10.1038/nrd4663 URL pmid: 26323545 |
35. |
Guo, Z. S.; Lu, B.; Guo, Z.; Giehl, E.; Feist, M.; Dai, E.; Liu, W.; Storkus, W. J.; He, Y.; Liu, Z.; Bartlett, D. L. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019, 7, 6.
doi: 10.1186/s40425-018-0495-7 URL pmid: 30626434 |
36. |
Dubochet, J.; Adrian, M.; Richter, K.; Garces, J.; Wittek, R. Structure of intracellular mature vaccinia virus observed by cryoelectron microscopy. J Virol. 1994, 68, 1935-1941.
doi: 10.1128/JVI.68.3.1935-1941.1994 URL pmid: 8107253 |
37. |
Condit, R. C.; Moussatche, N.; Traktman, P. In a nutshell: structure and assembly of the vaccinia virion. Adv Virus Res. 2006, 66, 31-124.
doi: 10.1016/S0065-3527(06)66002-8 URL pmid: 16877059 |
38. |
Michen, B.; Graule, T. Isoelectric points of viruses. J Appl Microbiol. 2010, 109, 388-397.
doi: 10.1111/j.1365-2672.2010.04663.x URL pmid: 20102425 |
39. |
Roberts, P. Efficient removal of viruses by a novel polyvinylidene fluoride membrane filter. J Virol Methods. 1997, 65, 27-31.
doi: 10.1016/s0166-0934(96)02163-5 URL pmid: 9128859 |
40. |
Cyrklaff, M.; Risco, C.; Fernández, J. J.; Jiménez, M. V.; Estéban, M.; Baumeister, W.; Carrascosa, J. L. Cryo-electron tomography of vaccinia virus. Proc Natl Acad Sci U S A. 2005, 102, 2772-2777.
doi: 10.1073/pnas.0409825102 URL pmid: 15699328 |
41. |
Martin, R. M.; Burke, K.; Verma, D.; Xie, H.; Langer, J.; Schlaberg, R.; Swaminathan, S.; Hanson, K. E. Contact transmission of vaccinia to an infant diagnosed by viral culture and metagenomic sequencing. Open Forum Infect Dis. 2020, 7, ofaa111.
doi: 10.1093/ofid/ofaa111 URL pmid: 32685604 |
42. |
Takahashi, K.; Fukuzaki, S. Cleanability of titanium and stainless steel particles in relation to surface charge aspects. Biocontrol Sci. 2008, 13, 9-16.
doi: 10.4265/bio.13.9 URL pmid: 18432111 |
43. | Thatcher, T. L.; Fairchild, W. A.; Nazaroff, W. W. Particle deposition from natural convection enclosure flow onto smooth surfaces. Aerosol Sci Technol. 1996, 25, 359-374. |
44. | Thatcher, T. L.; Layton, D. W. Deposition, resuspension, and penetration of particles within a residence. Atmos Environ. 1995, 29, 1487-1497. |
45. |
Lai, A. C. Particle deposition indoors: a review. Indoor Air. 2002, 12, 211-214.
doi: 10.1034/j.1600-0668.2002.01159.x URL pmid: 12532752 |
46. |
Zhao, B.; Wu, J. Particle deposition in indoor environments: analysis of influencing factors. J Hazard Mater. 2007, 147, 439-448.
doi: 10.1016/j.jhazmat.2007.01.032 URL pmid: 17280778 |
47. | Hoque, S.; Omar, F. B. Coupling computational fluid dynamics simulations and statistical moments for designing healthy indoor spaces. Int J Environ Res Public Health. 2019, 16, 800. |
48. | El Hamdani, S.; Limam, K.; Abadie, M. O.; Bendou, A. Deposition of fine particles on building internal surfaces. Atmos Environ. 2008, 42, 8893-8901. |
49. | Wang, Y.; Li, A.; Fan, X.; Shang, L.; Lu, S. Effects of surface properties of vertical textiles indoors on particle deposition: a small-scale chamber study. Aerosol Air Qual Res. 2019, 19, 885-895. |
50. | Nazaroff, W.; Gadgil, A.; Weschler, C. Critique of the use of deposition velocity in modeling indoor air quality In Modeling of indoor air quality and exposure, Nagda, N., ed. ASTM International: West Conshohocken, PA, 1993; pp 81-104. |
51. | Abadie, M.; Limam, K.; Allard, F. Indoor particle pollution: effect of wall textures on particle deposition. Build Environ. 2001, 36, 821-827. |
52. | Lai, A. C. K.; Nazaroff, W. W. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos Environ. 2005, 39, 4893-4900. |
53. | Wong, L. T.; Chan, W. Y.; Mui, K. W.; Lai, A. C. K. An Experimental and Numerical Study on Deposition of Bioaerosols in a Scaled Chamber. Aerosol Sci Technol. 2010, 44, 117-128. |
54. | Whyte, W.; Eaton, T. Deposition velocities of airborne microbe-carrying particles. Eur J Parenter Pharm Sci. 2016, 21, 45-49. |
55. | Seong, D.; Hoque, S. Does the presence of certain bacterial family in the microbiome indicate specific indoor environment characteristics? A factorial design approach for identifying bio-fingerprints. Indoor Built Environ. 2019, 29, 117-131. |
56. | Ranade, M. B. Adhesion and removal of fine particles on surfaces. Aerosol Sci Technol. 1987, 7, 161-176. |
57. | Corn, M. The adhesion of solid particles to solid surfaces. I. A review. J Air Pollut Control Assoc. 1961, 11, 523-528. |
58. |
Corn, M. The adhesion of solid particles to solid surfaces. II. J Air Pollut Control Assoc. 1961, 11, 566-575.
doi: 10.1080/00022470.1961.10468039 URL pmid: 13881367 |
59. | Visser, J. Particle adhesion and removal: a review. Particulate Sci Technol. 1995, 13, 169-196. |
60. | Tan, C. L. C.; Gao, S.; Wee, B. S.; Asa-Awuku, A.; Thio, B. J. R. Adhesion of dust particles to common indoor surfaces in an air-conditioned environment. Aerosol Sci Technol. 2014, 48, 541-551. |
61. | Christenson, H. K. Adhesion and surface energy of mica in air and water. J Phys Chem. 1993, 97, 12034-12041. |
62. | Goldasteh, I.; Tian, Y.; Ahmadi, G.; R. Ferro, A. Human induced flow field and resultant particle resuspension and transport during gait cycle. Build Environ. 2014, 77, 101-109. |
63. | Mullins, M. E.; Michaels, L. P.; Menon, V.; Locke, B.; Ranade, M. B. Effect of geometry on particle adhesion. Aerosol Sci Technol. 1992, 17, 105-118. |
64. |
Audry, M. C.; Ramos, S.; Charlaix, E. Adhesion between highly rough alumina surfaces: an atomic force microscope study. J Colloid Interface Sci. 2009, 331, 371-378.
doi: 10.1016/j.jcis.2008.11.050 URL pmid: 19101675 |
65. | Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci. 1975, 53, 314-326. |
66. | Nasr, B.; Ahmadi, G.; Ferro, A. R.; Dhaniyala, S. A model for particle removal from surfaces with large-scale roughness in turbulent flows. Aerosol Sci Technol. 2020, 54, 291-303. |
67. | Kim, Y.; Wellum, G.; Mello, K.; Strawhecker, K. E.; Thoms, R.; Giaya, A.; Wyslouzil, B. E. Effects of relative humidity and particle and surface properties on particle resuspension rates. Aerosol Sci Technol. 2016, 50, 339-352. |
68. | Jones, R.; Pollock, H. M.; Cleaver, J. A. S.; Hodges, C. S. Adhesion forces between glass and silicon surfaces in air studied by afm: effects of relative humidity, particle size, roughness, and surface treatment. Langmuir. 2002, 18, 8045-8055. |
69. |
Katainen, J.; Paajanen, M.; Ahtola, E.; Pore, V.; Lahtinen, J. Adhesion as an interplay between particle size and surface roughness. J Colloid Interface Sci. 2006, 304, 524-529.
doi: 10.1016/j.jcis.2006.09.015 URL pmid: 17010358 |
70. | Bohinc, K.; Dražić, G.; Abram, A.; Jevšnik, M.; Jeršek, B.; Nipič, D.; Kurinčič, M.; Raspor, P. Metal surface characteristics dictate bacterial adhesion capacity. Int J Adhes Adhes. 2016, 68, 39-46. |
71. |
An, Y. H.; Friedman, R. J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res. 1998, 43, 338-348.
doi: 10.1002/(sici)1097-4636(199823)43:3<338::aid-jbm16>3.0.co;2-b URL pmid: 9730073 |
72. |
Ji, Y. W.; Cho, Y. J.; Lee, C. H.; Hong, S. H.; Chung, D. Y.; Kim, E. K.; Lee, H. K. Comparison of surface roughness and bacterial adhesion between cosmetic contact lenses and conventional contact lenses. Eye Contact Lens. 2015, 41, 25-33.
doi: 10.1097/ICL.0000000000000054 URL pmid: 25536530 |
73. |
Berne, C.; Ellison, C. K.; Ducret, A.; Brun, Y. V. Bacterial adhesion at the single-cell level. Nat Rev Microbiol. 2018, 16, 616-627.
doi: 10.1038/s41579-018-0057-5 URL pmid: 30008468 |
74. | Bower, C. K.; McGuire, J.; Daeschel, M. A. The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci Technol. 1996, 7, 152-157. |
75. | Logan, B. E.; Regan, J. M. Microbial fuel cells--challenges and applications. Environ Sci Technol. 2006, 40, 5172-5180. |
76. | Jasevičius, R.; Baronas, R.; Kačianauskas, R.; Šimkus, R. Numerical modeling of bacterium-surface interaction by applying DEM. Procedia Eng. 2015, 102, 1408-1414. |
77. |
Katsikogianni, M.; Missirlis, Y. F. Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. Eur Cell Mater. 2004, 8, 37-57.
doi: 10.22203/ecm.v008a05 URL pmid: 15593018 |
78. |
Zhang, X.; Zhang, Q.; Yan, T.; Jiang, Z.; Zhang, X.; Zuo, Y. Y. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environ Sci Technol. 2015, 49, 6164-6171.
URL pmid: 25898026 |
79. |
Bayoudh, S.; Othmane, A.; Mora, L.; Ben Ouada, H. Assessing bacterial adhesion using DLVO and XDLVO theories and the jet impingement technique. Colloids Surf B Biointerfaces. 2009, 73, 1-9.
doi: 10.1016/j.colsurfb.2009.04.030 URL pmid: 19493661 |
80. | van Oss, C. J. Hydrophobicity of biosurfaces — Origin, quantitative determination and interaction energies. Colloids Surf B Biointerfaces. 1995, 5, 91-110. |
81. |
Chrysikopoulos, C. V.; Syngouna, V. I. Attachment of bacteriophages MS2 and ΦX174 onto kaolinite and montmorillonite: extended-DLVO interactions. Colloids Surf B Biointerfaces. 2012, 92, 74-83.
doi: 10.1016/j.colsurfb.2011.11.028 URL pmid: 22153836 |
82. |
Wang, X.;.; Şengür-Taşdemir, R.; Koyuncu, İ.; Tarabara, V. V. Lip balm drying promotes virus attachment: Characterization of lip balm coatings and XDLVO modeling. J Colloid Interface Sci. 2021, 581, 884-894.
doi: 10.1016/j.jcis.2020.07.143 URL pmid: 32877879 |
83. |
Dang, H. T. T.; Tarabara, V. V. Virus deposition onto polyelectrolyte-coated surfaces: A study with bacteriophage MS2. J Colloid Interface Sci. 2019, 540, 155-166.
doi: 10.1016/j.jcis.2018.12.107 URL pmid: 30639663 |
84. |
Joonaki, E.; Hassanpouryouzband, A.; Heldt, C. L.; Areo, O. Surface chemistry can unlock drivers of surface stability of SARS-CoV-2 in a variety of environmental conditions. Chem. 2020, 6, 2135-2146.
URL pmid: 32838053 |
85. |
Katoh, I.; Tanabe, F.; Kasai, H.; Moriishi, K.; Shimasaki, N.; Shinohara, K.; Uchida, Y.; Koshiba, T.; Arakawa, S.; Morimoto, M. Potential risk of virus carryover by fabrics of personal protective gowns. Front Public Health. 2019, 7, 121.
doi: 10.3389/fpubh.2019.00121 URL pmid: 31179258 |
86. |
Smither, S. J.; Eastaugh, L. S.; Findlay, J. S.; Lever, M. S. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg Microbes Infect. 2020, 9, 1415-1417.
doi: 10.1080/22221751.2020.1777906 URL pmid: 32496967 |
87. |
Duan, S. M.; Zhao, X. S.; Wen, R. F.; Huang, J. J.; Pi, G. H.; Zhang, S. X.; Han, J.; Bi, S. L.; Ruan, L.; Dong, X. P. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation. Biomed Environ Sci. 2003, 16, 246-255.
URL pmid: 14631830 |
88. |
Knoll, J.; Dammert, W. R.; Nirschl, H. Integration of a microscope into a centrifuge for adhesion force measurement of particles. Powder Technol. 2017, 305, 147-155.
doi: 10.1016/j.powtec.2016.09.065 URL |
89. |
Kulvanich, P.; Stewart, P. J. Fundamental considerations in the measurement of adhesional forces between particles using the centrifuge method. Int J Pharm. 1987, 35, 111-120.
doi: 10.1016/0378-5173(87)90079-2 URL |
90. |
Huang, R.; Yi, P.; Tang, Y. Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: methodology, advantages, and limitations. Environ Sci Process Impacts. 2017, 19, 793-811.
doi: 10.1039/c6em00628k URL pmid: 28488712 |
91. | Page, K.; Wilson, M.; Mordan, N. J.; Chrzanowski, W.; Knowles, J.; Parkin, I. P. Study of the adhesion of Staphylococcus aureus to coated glass substrates. J Mater Sci. 2011, 46, 6355-6363. |
92. |
Yakub, I.; Soboyejo, W. O. Adhesion of E. coli to silver- or copper-coated porous clay ceramic surfaces. J Appl Phys. 2012, 111, 124324.
doi: 10.1063/1.4722326 URL |
93. |
Liu, Z.; Niu, H.; Rong, R.; Cao, G.; He, B. J.; Deng, Q. An experiment and numerical study of resuspension of fungal spore particles from HVAC ducts. Sci Total Environ. 2020, 708, 134742.
doi: 10.1016/j.scitotenv.2019.134742 URL pmid: 31806338 |
94. | Feigley, C.; Khan, J.; Salzberg, D.; Hussey, J.; Attaway, H.; Steed, L.; Schmidt, M.; Michels, H. Experimental tests of copper components in ventilation systems for microbial control. HVAC&R Res. 2013, 19, 53-62. |
95. |
Tamburini, E.; Donegà, V.; Marchetti, M. G.; Pedrini, P.; Monticelli, C.; Balbo, A. Study on microbial deposition and contamination onto six surfaces commonly used in chemical and microbiological laboratories. Int J Environ Res Public Health. 2015, 12, 8295-8311.
doi: 10.3390/ijerph120708295 URL pmid: 26193296 |
96. | Villapún, V. M.; Dover, L. G.; Cross, A.; González, S. Antibacterial metallic touch surfaces. Materials (Basel). 2016, 9, 736. |
97. |
Hoang, C. P.; Kinney, K. A.; Corsi, R. L.; Szaniszlo, P. J. Resistance of green building materials to fungal growth. Int Biodeterior Biodegrad. 2010, 64, 104-113.
doi: 10.1016/j.ibiod.2009.11.001 URL |
98. | Straub, H.; Bigger, C. M.; Valentin, J.; Abt, D.; Qin, X. H.; Eberl, L.; Maniura-Weber, K.; Ren Q. Bacterial adhesion on soft materials: passive physicochemical interactions or active bacterial mechanosensing? Adv Healthc Mater. 2019, 8, e1801323. |
99. | Loosmore, G. A. Evaluation and development of models for resuspension of aerosols at short times after deposition. Atmos Environ. 2003, 37, 639-647. |
100. | Ibrahim, A. H.; Brach, R. M.; Dunn, P. F. Microparticle detachment from surfaces exposed to turbulent air flow: microparticle motion after detachment. J Aerosol Sci. 2004, 35, 1189-1204. |
101. | Punrath, J. S.; Heldman, D. R. Mechanisms of small particle re-entrainment from flat surfaces. J Aerosol Sci. 1972, 3, 429-440. |
102. |
Braaten, D. A.; Paw U, K. T.; Shaw, R. H. Particle resuspension in a turbulent boundary layer-observed and modeled. J Aerosol Sci. 1990, 21, 613-628.
doi: 10.1016/0021-8502(90)90117-G URL |
103. | G., Ziskind. Particle resuspension from surfaces: revisited and re-evaluated. Rev Chem Eng. 2006, 22, 1-123. |
104. | Ziskind, G.; Fichman, M.; Gutfinger, C. Resuspension of particulates from surfaces to turbulent flows—Review and analysis. J Aerosol Sci. 1995, 26, 613-644. |
105. | Kim, Y.; Gidwani, A.; Wyslouzil, B. E.; Sohn, C. W. Source term models for fine particle resuspension from indoor surfaces. Build Environ. 2010, 45, 1854-1865. |
106. | Cheng, Z.; Yu, X.; Hsu, T. J.; Balachandar, S. A numerical investigation of fine sediment resuspension in the wave boundary layer—Uncertainties in particle inertia and hindered settling. Comput Geosci. 2015, 83, 176-192. |
107. | Ji, S.; Ouahsine, A.; Smaoui, H.; Sergent, P. 3D numerical modeling of sediment resuspension induced by the compounding effects of ship-generated waves and the ship propeller. J Eng Mech. 2014, 140, 04014034. |
108. | Wang, R. Q.; Law, A. W. K. Adams, E. E. Large-eddy simulation (LES) of settling particle cloud dynamics. Int J Multiphase Flow. 2014, 67, 65-75. |
109. | Saffman, P. G. The lift on a small sphere in a slow shear flow. J Fluid Mech. 1965, 22, 385-400. |
110. | Mollinger, A. M.; Nieuwstadt, F. T. M. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer. J Fluid Mech. 1996, 316, 285-306. |
111. | Leighton, D.; Acrivos, A. The lift on a small sphere touching a plane in the presence of a simple shear flow. Z Angew Math Phys. 1985, 36, 174-178. |
112. | Shi, L.; Bayless, D. J. Comparison of boundary conditions for predicting the collection efficiency of cyclones. Powder Technol. 2007, 173, 29-37. |
113. |
Benito, J. G.; Aracena, K. A. V.; Uñac, R. O.; Vidales, A. M.; Ippolito, I. Monte Carlo modelling of particle resuspension on a flat surface. J Aerosol Sci. 2015, 79, 126-139.
doi: 10.1016/j.jaerosci.2014.10.006 URL |
114. |
Henry, C.; Minier, J. P. A stochastic approach for the simulation of particle resuspension from rough substrates: Model and numerical implementation. J Aerosol Sci. 2014, 77, 168-192.
doi: 10.1016/j.jaerosci.2014.08.005 URL |
115. |
Ferro, A. R.; Kopperud, R. J.; Hildemann, L. M. Source strengths for indoor human activities that resuspend particulate matter. Environ Sci Technol. 2004, 38, 1759-1764.
doi: 10.1021/es0263893 URL pmid: 15074686 |
116. |
Krauter, P.; Biermann, A. Reaerosolization of fluidized spores in ventilation systems. Appl Environ Microbiol. 2007, 73, 2165-2172.
URL pmid: 17293522 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||