1. |
International Organization for Standardization. ISO/ASTM 52900: 2021. Additive manufacturing-general principles-fundamentals and vocabulary.
|
2. |
Cooke, M. E.; Rosenzweig, D. H.; Liu, C.; Ghorbani, F. Editorial: Biofabrication and biopolymeric materials innovation for musculoskeletal tissue regeneration. Front Bioeng Biotechnol. 2022, 10, 909577.
doi: 10.3389/fbioe.2022.909577
URL
|
3. |
Naghieh, S.; Lindberg, G.; Tamaddon, M.; Liu, C. Biofabrication strategies for musculoskeletal disorders: evolution towards clinical applications. Bioengineering (Basel). 2021, 8, 123.
|
4. |
Woolf, A. D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003, 81, 646-656.
|
5. |
Allen, K. D.; Golightly, Y. M. State of the evidence. Curr Opin Rheumatol. 2015, 27, 276-283.
doi: 10.1097/BOR.0000000000000161
URL
|
6. |
Wang, D.; Zhang, X.; Huang, S.; Liu, Y.; Fu, B. S.; Mak, K. K.; Blocki, A. M.; Yung, P. S.; Tuan, R. S.; Ker, D. F. E. Engineering multi-tissue units for regenerative medicine: bone-tendon-muscle units of the rotator cuff. Biomaterials. 2021, 272, 120789.
doi: 10.1016/j.biomaterials.2021.120789
URL
|
7. |
Liu, C. Z.; Sachlos, E.; Wahl, D. A.; Han, Z. W.; Czernuszka, J. T. On the manufacturability of scaffold mould using a 3D printing technology. Rapid Prototyp J. 2007, 13, 163-174.
doi: 10.1108/13552540710750915
URL
|
8. |
Bourell, D. L.; Leu, M. C.; Rosen, D. W. Roadmap for additive manufacturing identifying the future of freeform processing. Laboratory for Freeform Fabrication, Advanced Manufacturing Center, The University of Texas at Austin. 2009.
|
9. |
Haglin, J. M.; Eltorai, A. E.; Gil, J. A.; Marcaccio, S. E.; Botero-Hincapie, J.; Daniels, A. H. Patient-specific orthopaedic implants. Orthop Surg. 2016, 8, 417-424.
doi: 10.1111/os.12282
URL
|
10. |
Tamaddon, M.; Gilja, H.; Wang, L.; Oliveira, J.; Sun, X.; Tan, R.; Liu, C. Osteochondral scaffolds for early treatment of cartilage defects in osteoarthritic joints: from bench to clinic. Biomater Transl. 2020, 1, 3-17.
|
11. |
Zheng, J.; Zhao, H.; Dong, E.; Kang, J.; Liu, C.; Sun, C.; Li, D.; Wang, L. Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2021, 128, 112333.
doi: 10.1016/j.msec.2021.112333
URL
|
12. |
Salmi, M. Additive manufacturing processes in medical applications. Materials (Basel). 2021, 14, 191.
doi: 10.3390/ma14010191
URL
|
13. |
Donate, R.; Tamaddon, M.; Ribeiro, V.; Monzón, M.; Oliveira, J. M.; Liu, C. Translation through collaboration: practice applied in BAMOS project in in vivo testing of innovative osteochondral scaffolds. Biomater Transl. 2022, 3, 102-104.
|
14. |
Sahranavard, M.; Sarkari, S.; Safavi, S.; Ghorbani, F. Three-dimensional bioprinting of decellularized extracellular matrix-based bio-inks for cartilage regeneration: a systematic review. Biomater Transl. 2022, 3, 105-115.
|
15. |
Sun, C.; Kang, J.; Yang, C.; Zheng, J.; Su, Y.; Dong, E.; Liu, Y.; Yao, S.; Shi, C.; Pang, H.; He, J.; Wang, L.; Liu, C.; Peng, J.; Liu, L.; Jiang, Y.; Li, D. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review. Biomater Transl. 2022, 3, 116-133.
|
16. |
Pu, F.; Wu, W.; Jing, D.; Yu, Y.; Peng, Y.; Liu, J.; Wu, Q.; Wang, B.; Zhang, Z.; Shao, Z. Three-dimensional-printed titanium prostheses with bone trabeculae enable mechanical-biological reconstruction after resection of bone tumours. Biomater Transl. 2022, 3, 134-141.
|
17. |
Naghavi, S. A.; Sun, C.; Hejazi, M.; Tamaddon, M.; Zheng, J.; Wang, L.; Zhang, C.; Varma, S. N.; Li, D.; Moazen, D.; Wang, L.; Liu, C. On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects. Biomater Transl. 2022, 3, 142-151.
|